1
|
Chi H, Deng S, Xu K, Zhang Y, Song T, Yu J, Wang Y, Liu J, Zhang Y, Shi J, Wang Y, Xu J. SEMA3G-NRP1 Signaling Functions as an Immune Checkpoint That Enables Tumor Immune Evasion by Impairing T-cell Cytotoxicity. Cancer Res 2025; 85:912-924. [PMID: 39652581 DOI: 10.1158/0008-5472.can-24-2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 03/04/2025]
Abstract
T cells within the tumor microenvironment frequently exhibit dysfunctional characteristics that compromise their ability to elicit both innate and therapeutic-induced immune responses. Regulators of immune dysfunction represent therapeutic targets to activate antitumor immunity. In this study, we identified semaphorin 3G (SEMA3G) as a key regulator of immune responses in cancer. SEMA3G was widely upregulated in diverse human cancers, and its expression was positively correlated with tumor progression. SEMA3G acted as a ligand that inhibited the activation and functionality of T cells. A comprehensive receptor screening approach demonstrated that SEMA3G exhibited a significantly stronger affinity for neuropilin (NRP) 1 than for NRP2. Furthermore, SEMA3G primarily impeded T-cell functions via NRP1. Disruption of SEMA3G using CRISPR/Cas9 technology or blockade with a neutralizing antibody effectively restored the cytotoxicity of CD8+ T cells and inhibited the growth of tumors in vivo. This research underscores the role of SEMA3G in T-cell dysfunction within tumors and proposes targeting SEMA3G as a cancer immunotherapeutic strategy. Significance: SEMA3G binding to NRP1 suppresses cytotoxic T-cell activity to induce an immunosuppressive tumor microenvironment, positioning SEMA3G as a promising therapeutic target for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Chi
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Shouyan Deng
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Ke Xu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yibo Zhang
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Teng Song
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Jianghong Yu
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yiting Wang
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Jiayang Liu
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Jiawei Shi
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yungang Wang
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Jie Xu
- School of Pharmacy, Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Ma N, Huang L, Zhou Q, Zhang X, Luo Q, Song G. Mechanical stretch promotes the migration of mesenchymal stem cells via Piezo1/F-actin/YAP axis. Exp Cell Res 2025; 446:114461. [PMID: 39988125 DOI: 10.1016/j.yexcr.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Mesenchymal stem cells (MSCs) have self-renewal ability and the potential for multi-directional differentiation, and their clinical application has promising prospects, but improving the migration ability of MSCs in vivo is one of the challenges. We previously determined mechanical stretch at 1 Hz with 10 % strain for 8 h can significantly promote MSC migration, however, the molecular mechanism remains poorly understood. Here, we reported that the expression and activity of yes-associated protein (YAP) are upregulated after mechanical stretch. As a classical inhibitor of the YAP-TEAD activity and YAP protein, the treatment of verteporfin (VP) suppressed mechanical stretch-promoted MSC migration. We also observed F-actin polymerization after mechanical stretch. Next, we used Latrunculin A (Lat A), the most widely used reagent to depolymerize actin filaments, to treat MSCs and we found that Lat A treatment inhibits MSC migration by suppressing YAP expression and activity. In addition, the protein expression of Piezo1 was also upregulated after mechanical stretch. Knockdown of Piezo1 suppressed mechanical stretch-promoted MSC migration by restraining F-actin polymerization. Together, these findings demonstrate the role of Piezo1/F-actin/YAP signaling pathway in MSC migration under mechanical stretch, providing new experimental evidence for an in-depth understanding the mechanobiological mechanism of MSC migration.
Collapse
Affiliation(s)
- Ning Ma
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lei Huang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qianxu Zhou
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Zhao Y, Yu B, Wang Y, Tan S, Xu Q, Wang Z, Zhou K, Liu H, Ren Z, Jiang Z. Ang-1 and VEGF: central regulators of angiogenesis. Mol Cell Biochem 2025; 480:621-637. [PMID: 38652215 DOI: 10.1007/s11010-024-05010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-β-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Bo Yu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yanxia Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Shiming Tan
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Qian Xu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhaoyue Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Huiting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
4
|
Peng JY, Fu X, Luo XY, Liu F, Zhang B, Zhou B, Sun K, Chen AF. Endothelial ELABELA improves post-ischemic angiogenesis by upregulating VEGFR2 expression. Transl Res 2024; 270:13-23. [PMID: 38548174 DOI: 10.1016/j.trsl.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Post-ischemic angiogenesis is critical for perfusion recovery and tissue repair. ELABELA (ELA) plays an essential role in embryonic heart development and vasculogenesis. However, the mechanism of ELA on post-ischemic angiogenesis is poorly characterized. METHODS We first assessed ELA expression after hind limb ischemia (HLI) in mice. We then established a HLI model in tamoxifen-inducible endothelial-ELA-specific knockout mice (ELAECKO) and assessed the rate of perfusion recovery, capillary density, and VEGFR2 pathway. Knockdown of ELA with lentivirus or siRNA and exogenous addition of ELA peptides were employed to analyze the effects of ELA on angiogenic capacity and VEGFR2 pathway in endothelial cells in vitro. The serum levels of ELA in healthy people and patients with type 2 diabetes mellitus (T2DM) and diabetic foot ulcer (DFU) were detected by a commercial ELISA kit. RESULTS In murine HLI models, ELA was significantly up-regulated in the ischemic hindlimb. Endothelial-specific deletion of ELA impaired perfusion recovery and angiogenesis. In physiologic conditions, no significant difference in VEGFR2 expression was found between ELAECKO mice and ELAWT mice. After ischemia, the expression of VEGFR2, p-VEGFR2, and p-AKT was significantly lower in ELAECKO mice than in ELAWT mice. In cellular experiments, the knockdown of ELA inhibited endothelial cell proliferation and tube formation, and the addition of ELA peptides promoted proliferation and tube formation. Mechanistically, ELA upregulated the expression of VEGFR2, p-VEGFR2, and p-AKT in endothelial cells under hypoxic conditions. In clinical investigations, DFU patients had significantly lower serum levels of ELA compared to T2DM patients. CONCLUSION Our results indicated that endothelial ELA is a positive regulator of post-ischemic angiogenesis via upregulating VEGFR2 expression. Targeting ELA may be a potential therapeutic option for peripheral arterial diseases.
Collapse
Affiliation(s)
- Jia-Yu Peng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Child Healthcare, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Yang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bing Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Mirza SL, Upton PD, Hodgson J, Gräf S, Morrell NW, Dunmore BJ. SEMA3G regulates BMP9 inhibition of VEGF-mediated migration and network formation in pulmonary endothelial cells. Vascul Pharmacol 2024; 155:107381. [PMID: 38795838 DOI: 10.1016/j.vph.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
AIMS Bone morphogenetic protein-9 (BMP9) is critical for bone morphogenetic protein receptor type-2 (BMPR2) signalling in pulmonary vascular endothelial cells. Furthermore, human genetics studies support the central role of disrupted BMPR2 mediated BMP9 signalling in vascular endothelial cells in the initiation of pulmonary arterial hypertension (PAH). In addition, loss-of-function mutations in BMP9 have been identified in PAH patients. BMP9 is considered to play an important role in vascular homeostasis and quiescence. METHODS AND RESULTS We identified a novel BMP9 target as the class-3 semaphorin, SEMA3G. Although originally identified as playing a role in neuronal development, class-3 semaphorins may have important roles in endothelial function. Here we show that BMP9 transcriptional regulation of SEMA3G occurs via ALK1 and the canonical Smad pathway, requiring both Smad1 and Smad5. Knockdown studies demonstrated redundancy between type-2 receptors in that BMPR2 and ACTR2A were compensatory. Increased SEMA3G expression by BMP9 was found to be regulated by the transcription factor, SOX17. Moreover, we observed that SEMA3G regulates VEGF signalling by inhibiting VEGFR2 phosphorylation and that VEGF, in contrast to BMP9, negatively regulated SEMA3G transcription. Functional endothelial cell assays of VEGF-mediated migration and network formation revealed that BMP9 inhibition of VEGF was abrogated by SEMA3G knockdown. Conversely, treatment with recombinant SEMA3G partially mimicked the inhibitory action of BMP9 in these assays. CONCLUSIONS This study provides further evidence for the anti-angiogenic role of BMP9 in microvascular endothelial cells and these functions are mediated at least in part via SOX17 and SEMA3G induction.
Collapse
Affiliation(s)
- Sarah L Mirza
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Paul D Upton
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Joshua Hodgson
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas W Morrell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Benjamin J Dunmore
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| |
Collapse
|
6
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
7
|
Wei L, Gao J, Wang L, Tao Q, Tu C. Hippo/YAP signaling pathway: a new therapeutic target for diabetes mellitus and vascular complications. Ther Adv Endocrinol Metab 2023; 14:20420188231220134. [PMID: 38152659 PMCID: PMC10752099 DOI: 10.1177/20420188231220134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/11/2023] [Indexed: 12/29/2023] Open
Abstract
Diabetic angiopathy, which includes diabetic kidney disease (DKD), cardio-cerebrovascular disease, and diabetic retinopathy (DR) among other diseases, is one of the most common complications affecting diabetic patients. Among these, DKD, which is a major cause of morbidity and mortality, affects about 40% of diabetic patients. Similarly, DR involves retinal neovascularization and neurodegeneration as a result of chronic hyperglycemia and is the main cause of visual impairment and blindness. In addition, inflammation also promotes atherosclerosis and diabetes, with atherosclerosis-related cardiovascular diseases being often a main cause of disability or death in diabetic patients. Given that vascular diseases caused by diabetes negatively impact human health, it is therefore important to identify appropriate treatments. In this context, some studies have found that the Hippo/Yes-associated protein (YAP) pathway is a highly evolutionarily conserved protein kinase signal pathway that regulates organ growth and size through its effector signaling pathway Transcriptional co-Activator with PDZ-binding motif (TAZ) and its YAP. YAP is a key factor in the Hippo pathway. The activation of YAP regulates gluconeogenesis, thereby regulating glucose tolerance levels; silencing the YAP gene thereby prevents the formation of glomerular fibrosis. YAP can combine with TEA domain family members to regulate the proliferation and migration of retinal vascular endothelial cells (ECs), so YAP plays a prominent role in the formation and pathology of retinal vessels. In addition, YAP/TAZ activation and translocation to the nucleus promote endothelial inflammation and monocyte-EC attachment, which can increase diabetes-induced cardiovascular atherosclerosis. Hippo/YAP signaling pathway provides a potential therapeutic target for diabetic angiopathy, which can prevent the progression of diabetes to DR and improve renal fibrosis and cardio-vascular atherosclerosis.
Collapse
Affiliation(s)
- Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingjing Gao
- Zhonglou District Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Liangzhi Wang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213000, Jiangsu, China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213000, Jiangsu, China
| |
Collapse
|