1
|
Dulińska-Litewka J, Dykas K, Boznański S, Hałubiec P, Kaczor-Kamińska M, Zagajewski J, Bohn T, Wątor G. The Influence of β-Carotene and Its Liposomal Form on the Expression of EMT Markers and Androgen-Dependent Pathways in Different Prostate Cell Lines. Antioxidants (Basel) 2024; 13:902. [PMID: 39199148 PMCID: PMC11351549 DOI: 10.3390/antiox13080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Although the prognosis in the early stages is good, the treatment of advanced PCa remains a formidable challenge. Even after an initial response to hormone therapy or chemotherapy, recurrences are frequent and resistance to any systemic treatment is common. β-Carotene (BC), a plant-derived tetraterpene, is known for its antioxidant capacity and can modulate multiple cellular signaling pathways, potentially affecting androgen synthesis. We investigated the influence of BC (dissolved in EtOH/THF with a cell culture medium or encapsulated in liposomes (LP-BCs)) on the viability, migration potential, and connective tissue cleavage capabilities of several PCa cell lines (Du145, LNCaP, PC-3, and 22Rv1) and a healthy prostate model (RWPE cells). BC significantly reduced the proliferative capacity of all investigated cell lines at various concentrations (1.5-30 µM) and decreased cell migration. However, it significantly increased the expression of epidermal-mesenchymal transition (EMT) master proteins in all cancer cell lines and RWPE (p < 0.05) These effects were not observed with LP-BCs. This study suggests that LP-BCs, with their higher antiproliferative capabilities and pronounced inhibition of the EMT, may be a more effective form of possible PCa prevention or treatment than the free form. LPs may also modulate lipid metabolism in PCa cells.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (M.K.-K.); (J.Z.)
| | - Kacper Dykas
- Student Scientific Group, Faculty of Medicine, Medical Bio-Chemistry, Medical College, Jagiellonian University, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (K.D.); (S.B.); (P.H.)
- Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, Łazarza 16, 31-530 Krakow, Poland
| | - Stanisław Boznański
- Student Scientific Group, Faculty of Medicine, Medical Bio-Chemistry, Medical College, Jagiellonian University, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (K.D.); (S.B.); (P.H.)
| | - Przemysław Hałubiec
- Student Scientific Group, Faculty of Medicine, Medical Bio-Chemistry, Medical College, Jagiellonian University, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (K.D.); (S.B.); (P.H.)
- Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, Łazarza 16, 31-530 Krakow, Poland
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (M.K.-K.); (J.Z.)
| | - Jacek Zagajewski
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (M.K.-K.); (J.Z.)
| | - Torsten Bohn
- Luxembourg Institute of Health, Nutrition and Health Research Group, Department of Precision Health, 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg;
| | - Gracjan Wątor
- Centre for Medical Genomics OMICRON, Medical College, Jagiellonian University, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland;
| |
Collapse
|
2
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|