1
|
Kuś K, Carrique L, Kecman T, Fournier M, Hassanein SS, Aydin E, Kilchert C, Grimes JM, Vasiljeva L. DSIF factor Spt5 coordinates transcription, maturation and exoribonucleolysis of RNA polymerase II transcripts. Nat Commun 2025; 16:10. [PMID: 39746995 PMCID: PMC11695829 DOI: 10.1038/s41467-024-55063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Precursor messenger RNA (pre-mRNA) is processed into its functional form during RNA polymerase II (Pol II) transcription. Although functional coupling between transcription and pre-mRNA processing is established, the underlying mechanisms are not fully understood. We show that the key transcription termination factor, RNA exonuclease Xrn2 engages with Pol II forming a stable complex. Xrn2 activity is stimulated by Spt5 to ensure efficient degradation of nascent RNA leading to Pol II dislodgement from DNA. Our results support a model where Xrn2 first forms a stable complex with the elongating Pol II to achieve its full activity in degrading nascent RNA revising the current 'torpedo' model of termination, which posits that RNA degradation precedes Xrn2 engagement with Pol II. Spt5 is also a key factor that attenuates the expression of non-coding transcripts, coordinates pre-mRNA splicing and 3'-end processing. Our findings indicate that engagement with the transcribing Pol II is an essential regulatory step modulating the activity of RNA enzymes such as Xrn2, thus advancing our understanding of how RNA maturation is controlled during transcription.
Collapse
Affiliation(s)
- Krzysztof Kuś
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | - Loic Carrique
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Sayed Hassanein
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ebru Aydin
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2025; 437:168814. [PMID: 39374889 PMCID: PMC12045467 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
3
|
Bahat A, Itzhaki E, Weiss B, Tolmasov M, Tsoory M, Kuperman Y, Brandis A, Shurrush KA, Dikstein R. Lowering mutant huntingtin by small molecules relieves Huntington's disease symptoms and progression. EMBO Mol Med 2024; 16:523-546. [PMID: 38374466 PMCID: PMC10940305 DOI: 10.1038/s44321-023-00020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024] Open
Abstract
Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.
Collapse
Affiliation(s)
- Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Elad Itzhaki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michael Tolmasov
- The Mina & Everard Goodman Faculty of Life-Sciences and The Leslie & Susan Gonda Multidisciplinary Brain Research Center Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Khriesto A Shurrush
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
4
|
Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun 2021; 12:6078. [PMID: 34667177 PMCID: PMC8526623 DOI: 10.1038/s41467-021-26360-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Melania Bruno
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanja Kaufmann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ursula E Schoeberl
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Carmen Ebenwaldner
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Etienne Beltzung
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gen Lin
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Martin Leeb
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Carrie Bernecky
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Caizzi L, Monteiro-Martins S, Schwalb B, Lysakovskaia K, Schmitzova J, Sawicka A, Chen Y, Lidschreiber M, Cramer P. Efficient RNA polymerase II pause release requires U2 snRNP function. Mol Cell 2021; 81:1920-1934.e9. [PMID: 33689748 DOI: 10.1016/j.molcel.2021.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Transcription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes. Multiomics analysis reveals that inhibition of U2 snRNP function increases the duration of Pol II pausing in the promoter-proximal region, impairs recruitment of the pause release factor P-TEFb, and reduces Pol II elongation velocity at the beginning of genes. Our results indicate that efficient release of paused Pol II into active transcription elongation requires the formation of functional spliceosomes and that eukaryotic mRNA biogenesis relies on positive feedback from the splicing machinery to the transcription machinery.
Collapse
Affiliation(s)
- Livia Caizzi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sara Monteiro-Martins
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kseniia Lysakovskaia
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jana Schmitzova
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Anna Sawicka
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ying Chen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
6
|
Role of promoters in regulating alternative splicing. Gene 2021; 782:145523. [PMID: 33667606 DOI: 10.1016/j.gene.2021.145523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
Alternative splicing (AS) plays a critical role in enhancing proteome complexity in higher eukaryotes. Almost all the multi intron-containing genes undergo AS in humans. Splicing mainly occurs co-transcriptionally, where RNA polymerase II (RNA pol II) plays a crucial role in coordinating transcription and pre-mRNA splicing. Aberrant AS leads to non-functional proteins causative in various pathophysiological conditions such as cancers, neurodegenerative diseases, and muscular dystrophies. Transcription and pre-mRNA splicing are deeply interconnected and can influence each other's functions. Several studies evinced that specific promoters employed by RNA pol II dictate the RNA processing decisions. Promoter-specific recruitment of certain transcriptional factors or transcriptional coactivators influences splicing, and the extent to which these factors affect splicing has not been discussed in detail. Here, in this review, various DNA-binding proteins and their influence on promoter-specific AS are extensively discussed. Besides, this review highlights how the promoter-specific epigenetic changes might regulate AS.
Collapse
|
7
|
Krasnopolsky S, Novikov A, Kuzmina A, Taube R. CRISPRi-mediated depletion of Spt4 and Spt5 reveals a role for DSIF in the control of HIV latency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194656. [PMID: 33333262 DOI: 10.1016/j.bbagrm.2020.194656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023]
Abstract
Pivotal studies on the control of HIV transcription has laid the foundations for our understanding of how metazoan transcription is executed, and what are the factors that control this step. Part of this work established a role for DRB Sensitivity Inducing Factor (DSIF), consisting of Spt4 and Spt5, in promoting pause-release of RNA Polymerase II (Pol II) for optimal elongation. However, while there has been substantial progress in understanding the role of DSIF in mediating HIV gene transcription, its involvement in establishing viral latency has not been explored. Moreover, the effects of depleting Spt4 or Spt5, or simultaneously knocking down both subunits of DSIF have not been examined. In this study, we employed CRISPR interference (CRIPSRi) to knockdown the expression of Spt4, Spt5 or the entire DSIF complex, and monitored effects on HIV transcription and viral latency. Knocking down DSIF, or each of its subunits, inhibited HIV transcription, primarily at the step of Tat transactivation. This was accompanied by a decrease in promoter occupancy of Pol II and Cdk9, and to a lesser extent, AFF4. Interestingly, targeting the expression of one subunit of DSIF, reduced the protein stability of its counterpart partner. Moreover, depletion of Spt4, Spt5 or DSIF complex impaired cell growth, but did not cause cell death. Finally, knockdown of Spt4, Spt5 or DSIF, facilitated entry of HIV into latency. We conclude that each DSIF subunit plays a role in maintaining the stability of its other partner, achieving optimal function of the DSIF to enhance viral gene transcription.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alex Novikov
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
8
|
Abstract
A20/TNFAIP3 is a TNF induced gene that plays a profound role in preserving cellular and organismal homeostasis (Lee, et al., 2000; Opipari etal., 1990). This protein has been linked to multiple human diseases via genetic, epigenetic, and an emerging series of patients with mono-allelic coding mutations. Diverse cellular functions of this pleiotropically expressed protein include immune-suppressive, anti-inflammatory, and cell protective functions. The A20 protein regulates ubiquitin dependent cell signals; however, the biochemical mechanisms by which it performs these functions is surprisingly complex. Deciphering these cellular and biochemical facets of A20 dependent biology should greatly improve our understanding of murine and human disease pathophysiology as well as unveil new mechanisms of cell and tissue biology.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
9
|
Decker TM. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J Mol Biol 2020; 433:166657. [PMID: 32987031 DOI: 10.1016/j.jmb.2020.09.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
The transcription elongation factor Spt5 is conserved from bacteria to humans. In eukaryotes, Spt5 forms a complex with Spt4 and regulates processive transcription elongation. Recent studies on transcription elongation suggest different mechanistic roles in yeast versus mammals. Higher eukaryotes utilize Spt4-Spt5 (DSIF) to regulate promoter-proximal pausing, a transcription-regulatory mechanism that connects initiation to productive elongation. DSIF is a versatile transcription factor and has been implicated in both gene-specific regulation and transcription through nucleosomes. Future studies will further elucidate the role of DSIF in transcriptional dynamics and disentangle its inhibitory and enhancing activities in transcription.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, USA.
| |
Collapse
|
10
|
Tellier M, Maudlin I, Murphy S. Transcription and splicing: A two-way street. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1593. [PMID: 32128990 DOI: 10.1002/wrna.1593] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
RNA synthesis by RNA polymerase II and RNA processing are closely coupled during the transcription cycle of protein-coding genes. This coupling affords opportunities for quality control and regulation of gene expression and the effects can go in both directions. For example, polymerase speed can affect splice site selection and splicing can increase transcription and affect the chromatin landscape. Here we review the many ways that transcription and splicing influence one another, including how splicing "talks back" to transcription. We will also place the connections between transcription and splicing in the context of other RNA processing events that define the exons that will make up the final mRNA. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Isabella Maudlin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Zhang X, Shi Y, Wang L, Li X, Zhang S, Wang X, Jin M, Hsiao CD, Lin H, Han L, Liu K. Metabolomics for Biomarker Discovery in Fermented Black Garlic and Potential Bioprotective Responses against Cardiovascular Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12191-12198. [PMID: 31588747 DOI: 10.1021/acs.jafc.9b04073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fermented black garlic has multiple beneficial biological activities, including cardiovascular protection, anticancer, hepatoprotective, and antibacterial properties. In this study, metabolic differences in the properties of black and fresh garlic were investigated via liquid chromatography quadrupole/time-of-flight-based metabolomics, leading to the identification of characteristic components. Fermented black garlic samples and their Amadori products (AC) promoted angiogenesis, prevented thrombus formation by rescuing chemical-induced vascular lesions in zebrafish, and inhibited H2O2-induced injury of endothelial cells, thus reducing the risk of cardiovascular disease. AC suppressed activation of the mitogen-activated protein kinase pathway through inhibition of p38 and ERK1/2 phosphorylation, in turn, increasing the availability of c-Fos/c-Jun or c-Jun/c-Jun complexes for apoptotic resistance. Clarification of the associated signaling pathways should therefore provide a solid foundation for optimization of black garlic-based therapies.
Collapse
Affiliation(s)
- Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Yongping Shi
- College of Pharmaceutical Sciences , Shanxi Medical University , Taiyuan , Shanxi 030001 , China
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Ximin Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Meng Jin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Center for Nanotechnology , Chung Yuan Christian University , Chung-Li , Taiwan 32023 , China
| | - Houwen Lin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Liwen Han
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| |
Collapse
|
12
|
Maudlin IE, Beggs JD. Spt5 modulates cotranscriptional spliceosome assembly in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1298-1310. [PMID: 31289129 PMCID: PMC6800482 DOI: 10.1261/rna.070425.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
There is increasing evidence from yeast to humans that pre-mRNA splicing occurs mainly cotranscriptionally, such that splicing and transcription are functionally coupled. Currently, there is little insight into the contribution of the core transcription elongation machinery to cotranscriptional spliceosome assembly and pre-mRNA splicing. Spt5 is a member of the core transcription elongation machinery and an essential protein, whose absence in budding yeast causes defects in pre-mRNA splicing. To determine how Spt5 affects pre-mRNA splicing, we used the auxin-inducible degron system to conditionally deplete Spt5 in Saccharomyces cerevisiae and assayed effects on cotranscriptional spliceosome assembly and splicing. We show that Spt5 is needed for efficient splicing and for the accumulation of U5 snRNPs at intron-containing genes, and therefore for stable cotranscriptional assembly of spliceosomes. The defect in cotranscriptional spliceosome assembly can explain the relatively mild splicing defect as being a consequence of the failure of cotranscriptional splicing. Coimmunoprecipitation of Spt5 with core spliceosomal proteins and all spliceosomal snRNAs suggests a model whereby Spt5 promotes cotranscriptional pre-mRNA splicing by stabilizing the association of U5 snRNP with spliceosome complexes as they assemble on the nascent transcript. If this phenomenon is conserved in higher eukaryotes, it has the potential to be important for cotranscriptional regulation of alternative splicing.
Collapse
Affiliation(s)
- Isabella E Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Jean D Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
13
|
Bahat A, Lahav O, Plotnikov A, Leshkowitz D, Dikstein R. Targeting Spt5-Pol II by Small-Molecule Inhibitors Uncouples Distinct Activities and Reveals Additional Regulatory Roles. Mol Cell 2019; 76:617-631.e4. [PMID: 31564557 DOI: 10.1016/j.molcel.2019.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
Spt5 is a conserved and essential transcription elongation factor that promotes promoter-proximal pausing, promoter escape, elongation, and mRNA processing. Spt5 plays specific roles in the transcription of inflammation and stress-induced genes and tri-nucleotide expanded-repeat genes involved in inherited neurological pathologies. Here, we report the identification of Spt5-Pol II small-molecule inhibitors (SPIs). SPIs faithfully reproduced Spt5 knockdown effects on promoter-proximal pausing, NF-κB activation, and expanded-repeat huntingtin gene transcription. Using SPIs, we identified Spt5 target genes that responded with profoundly diverse kinetics. SPIs uncovered the regulatory role of Spt5 in metabolism via GDF15, a food intake- and body weight-inhibitory hormone. SPIs further unveiled a role for Spt5 in promoting the 3' end processing of histone genes. While several SPIs affect all Spt5 functions, a few inhibit a single one, implying uncoupling and selective targeting of Spt5 activities. SPIs expand the understanding of Spt5-Pol II functions and are potential drugs against metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Or Lahav
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Mitra P, Deshmukh AS, Gurupwar R, Kashyap P. Characterization of Toxoplasma gondii Spt5 like transcription elongation factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:184-197. [DOI: 10.1016/j.bbagrm.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
|
15
|
Marié IJ, Chang HM, Levy DE. HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 2018; 215:3194-3212. [PMID: 30463877 PMCID: PMC6279398 DOI: 10.1084/jem.20180520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
In contrast to the common role of histone deacetylases (HDACs) for gene repression, HDAC activity provides a required positive function for IFN-stimulated gene (ISG) expression. Here, we show that HDAC1/2 as components of the Sin3A complex are required for ISG transcriptional elongation but not for recruitment of RNA polymerase or transcriptional initiation. Transcriptional arrest by HDAC inhibition coincides with failure to recruit the epigenetic reader Brd4 and elongation factor P-TEFb due to sequestration of Brd4 on hyperacetylated chromatin. Brd4 availability is regulated by an equilibrium cycle between opposed acetyltransferase and deacetylase activities that maintains a steady-state pool of free Brd4 available for recruitment to inducible promoters. An ISG expression signature is a hallmark of interferonopathies and other autoimmune diseases. Combined inhibition of HDAC1/2 and Brd4 resolved the aberrant ISG expression detected in cells derived from patients with two inherited interferonopathies, ISG15 and USP18 deficiencies, defining a novel therapeutic approach to ISG-associated autoimmune diseases.
Collapse
Affiliation(s)
- Isabelle J Marié
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Hao-Ming Chang
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - David E Levy
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
16
|
Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018; 27:1018-1037. [PMID: 29664212 PMCID: PMC5980561 DOI: 10.1002/pro.3424] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
TFIIH is a 10‐subunit complex that regulates RNA polymerase II (pol II) transcription but also serves other important biological roles. Although much remains unknown about TFIIH function in eukaryotic cells, much progress has been made even in just the past few years, due in part to technological advances (e.g. cryoEM and single molecule methods) and the development of chemical inhibitors of TFIIH enzymes. This review focuses on the major cellular roles for TFIIH, with an emphasis on TFIIH function as a regulator of pol II transcription. We describe the structure of TFIIH and its roles in pol II initiation, promoter‐proximal pausing, elongation, and termination. We also discuss cellular roles for TFIIH beyond transcription (e.g. DNA repair, cell cycle regulation) and summarize small molecule inhibitors of TFIIH and diseases associated with defects in TFIIH structure and function.
Collapse
Affiliation(s)
- Jenna K Rimel
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| |
Collapse
|
17
|
Fitz J, Neumann T, Pavri R. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. EMBO J 2018. [PMID: 29514850 PMCID: PMC5897773 DOI: 10.15252/embj.201797965] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spt5 is a highly conserved RNA polymerase II (Pol II)‐associated pausing and elongation factor. However, its impact on global elongation and Pol II processivity in mammalian cells has not been clarified. Here, we show that depleting Spt5 in mouse embryonic fibroblasts (MEFs) does not cause global elongation defects or decreased elongation rates. Instead, in Spt5‐depleted cells, a fraction of Pol II molecules are dislodged during elongation, thus decreasing the number of Pol II complexes that complete the transcription cycle. Most strikingly, this decrease is restricted to a narrow window between 15 and 20 kb from the promoter, a distance which coincides with the stage where accelerating Pol II attains maximum elongation speed. Consequently, long genes show a greater dependency on Spt5 for optimal elongation efficiency and overall gene expression than short genes. We propose that an important role of Spt5 in mammalian elongation is to promote the processivity of those Pol II complexes that are transitioning toward maximum elongation speed 15–20 kb from the promoter.
Collapse
Affiliation(s)
- Johanna Fitz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
18
|
Tkachenko AV, Troitskaya OS, Semenov DV, Dmitrienko EV, Kuligina EV, Richter VA, Koval OA. Immunogenicity of recombinant analog of antitumor protein lactaptin. Mol Biol 2017. [DOI: 10.1134/s0026893317050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Blythe AJ, Yazar-Klosinski B, Webster MW, Chen E, Vandevenne M, Bendak K, Mackay JP, Hartzog GA, Vrielink A. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci 2016; 25:1710-21. [PMID: 27376968 DOI: 10.1002/pro.2976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Berra Yazar-Klosinski
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Michael W Webster
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, 95064
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katerina Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Grant A Hartzog
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
20
|
Diamant G, Bahat A, Dikstein R. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes. Nat Commun 2016; 7:11547. [PMID: 27180651 PMCID: PMC4873663 DOI: 10.1038/ncomms11547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022] Open
Abstract
A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5'-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID-promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID-promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes.
Collapse
Affiliation(s)
- Gil Diamant
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7600, Israel
| | - Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7600, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7600, Israel
| |
Collapse
|
21
|
Analysis of Subcellular RNA Fractions Revealed a Transcription-Independent Effect of Tumor Necrosis Factor Alpha on Splicing, Mediated by Spt5. Mol Cell Biol 2016; 36:1342-53. [PMID: 26903558 DOI: 10.1128/mcb.01117-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022] Open
Abstract
The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) modulates the expression of many genes, primarily through activation of NF-κB. Here, we examined the global effects of the elongation factor Spt5 on nascent and mature mRNAs of TNF-α-induced cells using chromatin and cytosolic subcellular fractions. We identified several classes of TNF-α-induced genes controlled at the level of transcription, splicing, and chromatin retention. Spt5 was found to facilitate splicing and chromatin release in genes displaying high induction rates. Further analysis revealed striking effects of TNF-α on the splicing of 25% of expressed genes; the vast majority were not transcriptionally induced. Splicing enhancement of noninduced genes by TNF-α was transient and independent of NF-κB. Investigating the underlying basis, we found that Spt5 is required for the splicing facilitation of the noninduced genes. In line with this, Spt5 interacts with Sm core protein splicing factors. Furthermore, following TNF-α treatment, levels of RNA polymerase II (Pol II) but not Spt5 are reduced from the splicing-induced genes, suggesting that these genes become enriched with a Pol II-Spt5 form. Our findings revealed the Pol II-Spt5 complex as a highly competent coordinator of cotranscriptional splicing.
Collapse
|
22
|
A Novel Allosteric Mechanism of NF-κB Dimerization and DNA Binding Targeted by an Anti-Inflammatory Drug. Mol Cell Biol 2016; 36:1237-47. [PMID: 26830231 DOI: 10.1128/mcb.00895-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
The NF-κB family plays key roles in immune and stress responses, and its deregulation contributes to several diseases. Therefore its modulation has become an important therapeutic target. Here, we used a high-throughput screen for small molecules that directly inhibit dimerization of the NF-κB protein p65. One of the identified inhibitors is withaferin A (WFA), a documented anticancer and anti-inflammatory compound. Computational modeling suggests that WFA contacts the dimerization interface on one subunit and surface residues E285 and Q287 on the other. Despite their locations far from the dimerization site, E285 and Q287 substitutions diminished both dimerization and the WFA effect. Further investigation revealed that their effects on dimerization are associated with their proximity to a conserved hydrophobic core domain (HCD) that is crucial for dimerization and DNA binding. Our findings established NF-κB dimerization as a drug target and uncovered an allosteric domain as a target of WFA action.
Collapse
|
23
|
Rother S, Bartels M, Schweda AT, Resch K, Pallua N, Nourbakhsh M. NF‐κB‐repressing factor phosphorylation regulates transcription elongation
via
its interactions with 5'→3' exoribonuclease 2 and negative elongation factor. FASEB J 2015; 30:174-85. [DOI: 10.1096/fj.15-270256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Sascha Rother
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | - Myriam Bartels
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | | | - Klaus Resch
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery and Burn CenterRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen University HospitalAachenGermany
| | - Mahtab Nourbakhsh
- Department of Plastic and Reconstructive Surgery, Hand Surgery and Burn CenterRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen University HospitalAachenGermany
| |
Collapse
|
24
|
Jimeno-González S, Ceballos-Chávez M, Reyes JC. A positioned +1 nucleosome enhances promoter-proximal pausing. Nucleic Acids Res 2015; 43:3068-78. [PMID: 25735750 PMCID: PMC4381062 DOI: 10.1093/nar/gkv149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5′-3′ exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), E-41012, Seville, Spain
| | - María Ceballos-Chávez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), E-41012, Seville, Spain
| | - José C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), E-41012, Seville, Spain
| |
Collapse
|
25
|
Maul RW, Cao Z, Venkataraman L, Giorgetti CA, Press JL, Denizot Y, Du H, Sen R, Gearhart PJ. Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo-activated cells. ACTA ACUST UNITED AC 2014; 211:2297-306. [PMID: 25288395 PMCID: PMC4203944 DOI: 10.1084/jem.20131512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Variable (V) genes of immunoglobulins undergo somatic hypermutation by activation-induced deaminase (AID) to generate amino acid substitutions that encode antibodies with increased affinity for antigen. Hypermutation is restricted to germinal center B cells and cannot be recapitulated in ex vivo-activated splenic cells, even though the latter express high levels of AID. This suggests that there is a specific feature of antigen activation in germinal centers that recruits AID to V genes which is absent in mitogen-activated cultured cells. Using two Igh knock-in mouse models, we found that RNA polymerase II accumulates in V regions in B cells after both types of stimulation for an extended distance of 1.2 kb from the TATA box. The paused polymerases generate abundant single-strand DNA targets for AID. However, there is a distinct accumulation of the initiating form of polymerase, along with the transcription cofactor Spt5 and AID, in the V region from germinal center cells, which is totally absent in cultured cells. These data support a model where mutations are prevalent in germinal center cells, but not in ex vivo cells, because the initiating form of polymerase is retained, which affects Spt5 and AID recruitment.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Zheng Cao
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | | | | | - Joan L Press
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Yves Denizot
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87025 Limoges, France
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
26
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
27
|
Diamant G, Dikstein R. Transcriptional control by NF-κB: elongation in focus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:937-45. [PMID: 23624258 DOI: 10.1016/j.bbagrm.2013.04.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/01/2023]
Abstract
The NF-κB family of transcription factors governs the cellular reaction to a variety of extracellular signals. Following stimulation, NF-κB activates genes involved in inflammation, cell survival, cell cycle, immune cell homeostasis and more. This review focuses on studies of the past decade that uncover the transcription elongation process as a key regulatory stage in the activation pathway of NF-κB. Of interest are studies that point to the elongation phase as central to the selectivity of target gene activation by NF-κB. Particularly, the cascade leading to phosphorylation and acetylation of the NF-κB subunit p65 on serine 276 and lysine 310, respectively, was shown to mediate the recruitment of Brd4 and P-TEFb to many pro-inflammatory target genes, which in turn facilitate elongation and mRNA processing. On the other hand, some anti-inflammatory genes are refractory to this pathway and are dependent on the elongation factor DSIF for efficient elongation and mRNA processing. While these studies have advanced our knowledge of NF-κB transcriptional activity, they have also raised unresolved issues regarding the specific genomic and physiological contexts by which NF-κB utilizes different mechanisms for activation.
Collapse
Affiliation(s)
- Gil Diamant
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot , Israel
| | | |
Collapse
|