1
|
Zhang Y, Nersisyan L, Fürst E, Alexopoulos I, Santolaria C, Huch S, Bassot C, Garre E, Sunnerhagen P, Piazza I, Pelechano V. Ribosomes modulate transcriptome abundance via generalized frameshift and out-of-frame mRNA decay. Mol Cell 2025; 85:2017-2031.e7. [PMID: 40378831 DOI: 10.1016/j.molcel.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/17/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Cells need to adapt their transcriptome to quickly match cellular needs in changing environments. mRNA abundance can be controlled by altering both its synthesis and decay. Here, we show how, in response to poor nutritional conditions, the bulk of the S. cerevisiae transcriptome undergoes -1 ribosome frameshifts and experiences an accelerated out-of-frame co-translational mRNA decay. Using RNA metabolic labeling, we demonstrate that in poor nutritional conditions, nonsense-mediated mRNA decay (NMD)-dependent degradation represents at least one-third of the total mRNA decay. We further characterize this mechanism and identify low codon optimality as a key factor for ribosomes to induce out-of-frame mRNA decay. Finally, we show that this phenomenon is conserved from bacteria to humans. Our work provides evidence for a direct regulatory feedback mechanism coupling protein demand with the control of mRNA abundance to limit cellular growth and broadens the functional landscape of mRNA quality control.
Collapse
Affiliation(s)
- Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden; Armenian Bioinformatics Institute, Yerevan, Armenia; Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Eliska Fürst
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Ioannis Alexopoulos
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Carlos Santolaria
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Claudio Bassot
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg 40530 Gothenburg, Sweden
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
2
|
Tennakoon R, Bily TM, Hasan F, Syal S, Voigt A, Balci TB, Hoffman KS, O’Donoghue P. Glutamine missense suppressor transfer RNAs inhibit polyglutamine aggregation. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102442. [PMID: 39897579 PMCID: PMC11787650 DOI: 10.1016/j.omtn.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Huntington's disease (HD) is caused by polyglutamine (polyQ) repeat expansions in the huntingtin gene. HD-causative polyQ alleles lead to protein aggregation, which is a prerequisite for disease. Translation fidelity modifies protein aggregation, and several studies suggest that mutating one or two glutamine (Gln) residues in polyQ reduces aggregation. Thus, we hypothesized that missense suppression of Gln codons with other amino acids will reduce polyQ aggregate formation in cells. In neuroblastoma cells, we assessed tRNA variants that misread Gln codons with serine (tRNASer C/UUG) or alanine (tRNAAla C/UUG). The tRNAs with the CUG anticodon were more effective at suppressing the CAG repeats in polyQ, and serine and alanine mis-incorporation had differential impacts on polyQ. The expression of tRNASer CUG reduced polyQ protein production as well as both soluble and insoluble aggregate formation. In contrast, cells expressing tRNAAla CUG selectively decreased insoluble polyQ aggregate formation by 2-fold. Mass spectrometry confirmed Ala mis-incorporation at an average level of ∼20% per Gln codon. Cells expressing the missense suppressor tRNAs showed no cytotoxic effects and no defects in growth or global protein synthesis levels. Our findings demonstrate that tRNA-dependent missense suppression of Gln codons is well tolerated in mammalian cells and significantly reduces polyQ levels and aggregates that cause HD.
Collapse
Affiliation(s)
- Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Teija M.I. Bily
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sunidhi Syal
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen, 52062 Aachen, Germany
| | - Tugce B. Balci
- Department of Paediatrics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Ren G, Gu X, Zhang L, Gong S, Song S, Chen S, Chen Z, Wang X, Li Z, Zhou Y, Li L, Yang J, Lai F, Dang Y. Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human. Nucleic Acids Res 2024; 52:2463-2479. [PMID: 38281188 PMCID: PMC10954444 DOI: 10.1093/nar/gkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Ribosomal frameshifting refers to the process that ribosomes slip into +1 or -1 reading frame, thus produce chimeric trans-frame proteins. In viruses and bacteria, programmed ribosomal frameshifting can produce essential trans-frame proteins for viral replication or regulation of other biological processes. In humans, however, functional trans-frame protein derived from ribosomal frameshifting is scarcely documented. Combining multiple assays, we show that short codon repeats could act as cis-acting elements that stimulate ribosomal frameshifting in humans, abbreviated as CRFS hereafter. Using proteomic analyses, we identified many putative CRFS events from 32 normal human tissues supported by trans-frame peptides positioned at codon repeats. Finally, we show a CRFS-derived trans-frame protein (HDAC1-FS) functions by antagonizing the activities of HDAC1, thus affecting cell migration and apoptosis. These data suggest a novel type of translational recoding associated with codon repeats, which may expand the coding capacity of mRNA and diversify the regulation in human.
Collapse
Affiliation(s)
- Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoqian Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shimin Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shuang Song
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhenjing Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoyan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhanbiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yingshui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Longxi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
4
|
Ito H, Machida K, Hasumi M, Ueyama M, Nagai Y, Imataka H, Taguchi H. Reconstitution of C9orf72 GGGGCC repeat-associated non-AUG translation with purified human translation factors. Sci Rep 2023; 13:22826. [PMID: 38129650 PMCID: PMC10739749 DOI: 10.1038/s41598-023-50188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Nucleotide repeat expansion of GGGGCC (G4C2) in the non-coding region of C9orf72 is the most common genetic cause underlying amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts harboring this repeat expansion undergo the translation of dipeptide repeats via a non-canonical process known as repeat-associated non-AUG (RAN) translation. In order to ascertain the essential components required for RAN translation, we successfully recapitulated G4C2-RAN translation using an in vitro reconstituted translation system comprising human factors, namely the human PURE system. Our findings conclusively demonstrate that the presence of fundamental translation factors is sufficient to mediate the elongation from the G4C2 repeat. Furthermore, the initiation mechanism proceeded in a 5' cap-dependent manner, independent of eIF2A or eIF2D. In contrast to cell lysate-mediated RAN translation, where longer G4C2 repeats enhanced translation, we discovered that the expansion of the G4C2 repeats inhibited translation elongation using the human PURE system. These results suggest that the repeat RNA itself functions as a repressor of RAN translation. Taken together, our utilization of a reconstituted RAN translation system employing minimal factors represents a distinctive and potent approach for elucidating the intricacies underlying RAN translation mechanism.
Collapse
Grants
- JPMJFS2112 Japan Science and Technology Agency
- JP26116002 Ministry of Education, Culture, Sports, Science and Technology
- JP18H03984 Ministry of Education, Culture, Sports, Science and Technology
- JP21H04763 Ministry of Education, Culture, Sports, Science and Technology
- JP20H05925 Ministry of Education, Culture, Sports, Science and Technology
- 2019-25 Mitsubishi Foundation
- 2019 Uehara Memorial Foundation
Collapse
Affiliation(s)
- Hayato Ito
- School of Life Science and Technology, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Kodai Machida
- Graduate School of Engineering, University of Hyogo, Shosha, 2167, Himeji, Hyogo, 671-2280, Japan
| | - Mayuka Hasumi
- School of Life Science and Technology, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Morio Ueyama
- Department of Neurology, Faculty of Medicine, Kindai University, Ohonohigashi 377-2, Osaka-Sayama, 589-8511, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Faculty of Medicine, Kindai University, Ohonohigashi 377-2, Osaka-Sayama, 589-8511, Japan
| | - Hiroaki Imataka
- Graduate School of Engineering, University of Hyogo, Shosha, 2167, Himeji, Hyogo, 671-2280, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan.
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
5
|
Pinzaru AM, Tavazoie SF. Transfer RNAs as dynamic and critical regulators of cancer progression. Nat Rev Cancer 2023; 23:746-761. [PMID: 37814109 DOI: 10.1038/s41568-023-00611-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment. Such alterations in the levels of specific tRNAs have been shown to causally impact cancer progression, including metastasis. Moreover, sequencing methods have identified tRNA-derived small RNAs that influence various aspects of cancer progression, such as cell proliferation and invasion, and could serve as diagnostic and prognostic biomarkers or putative therapeutic targets in various cancers. Finally, there is accumulating evidence, including from genetic models, that specific tRNA synthetases - the enzymes responsible for charging tRNAs with amino acids - can either promote or suppress tumour formation. In this Review, we provide an overview of how deregulation of tRNAs influences cancer formation and progression.
Collapse
Affiliation(s)
- Alexandra M Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Vishweswaraiah S, Yilmaz A, Saiyed N, Khalid A, Koladiya PR, Pan X, Macias S, Robinson AC, Mann D, Green BD, Kerševičiūte I, Gordevičius J, Radhakrishna U, Graham SF. Integrative Analysis Unveils the Correlation of Aminoacyl-tRNA Biosynthesis Metabolites with the Methylation of the SEPSECS Gene in Huntington's Disease Brain Tissue. Genes (Basel) 2023; 14:1752. [PMID: 37761892 PMCID: PMC10530570 DOI: 10.3390/genes14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The impact of environmental factors on epigenetic changes is well established, and cellular function is determined not only by the genome but also by interacting partners such as metabolites. Given the significant impact of metabolism on disease progression, exploring the interaction between the metabolome and epigenome may offer new insights into Huntington's disease (HD) diagnosis and treatment. Using fourteen post-mortem HD cases and fourteen control subjects, we performed metabolomic profiling of human postmortem brain tissue (striatum and frontal lobe), and we performed DNA methylome profiling using the same frontal lobe tissue. Along with finding several perturbed metabolites and differentially methylated loci, Aminoacyl-tRNA biosynthesis (adj p-value = 0.0098) was the most significantly perturbed metabolic pathway with which two CpGs of the SEPSECS gene were correlated. This study improves our understanding of molecular biomarker connections and, importantly, increases our knowledge of metabolic alterations driving HD progression.
Collapse
Affiliation(s)
- Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (S.V.); (U.R.)
| | - Ali Yilmaz
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Nazia Saiyed
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Abdullah Khalid
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Purvesh R. Koladiya
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Xiaobei Pan
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (X.P.); (S.M.); (B.D.G.)
| | - Shirin Macias
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (X.P.); (S.M.); (B.D.G.)
| | - Andrew C. Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford M6 8HD, UK; (A.C.R.); (D.M.)
| | - David Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford M6 8HD, UK; (A.C.R.); (D.M.)
| | - Brian D. Green
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (X.P.); (S.M.); (B.D.G.)
| | - Ieva Kerševičiūte
- VUGENE, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA; (I.K.); (J.G.)
| | - Juozas Gordevičius
- VUGENE, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA; (I.K.); (J.G.)
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (S.V.); (U.R.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (S.V.); (U.R.)
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
7
|
Davyt M, Bharti N, Ignatova Z. Effect of mRNA/tRNA mutations on translation speed: Implications for human diseases. J Biol Chem 2023; 299:105089. [PMID: 37495112 PMCID: PMC10470029 DOI: 10.1016/j.jbc.2023.105089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Recent discoveries establish tRNAs as central regulators of mRNA translation dynamics, and therefore cotranslational folding and function of the encoded protein. The tRNA pool, whose composition and abundance change in a cell- and tissue-dependent manner, is the main factor which determines mRNA translation velocity. In this review, we discuss a group of pathogenic mutations, in the coding sequences of either protein-coding genes or in tRNA genes, that alter mRNA translation dynamics. We also summarize advances in tRNA biology that have uncovered how variations in tRNA levels on account of genetic mutations affect protein folding and function, and thereby contribute to phenotypic diversity in clinical manifestations.
Collapse
Affiliation(s)
- Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
8
|
Wang S, Sun S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol Neurodegener 2023; 18:58. [PMID: 37626421 PMCID: PMC10464328 DOI: 10.1186/s13024-023-00642-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
RNA translation is tightly controlled in eukaryotic cells to regulate gene expression and maintain proteome homeostasis. RNA binding proteins, translation factors, and cell signaling pathways all modulate the translation process. Defective translation is involved in multiple neurological diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder and poses a major public health challenge worldwide. Over the past few years, tremendous advances have been made in the understanding of the genetics and pathogenesis of ALS. Dysfunction of RNA metabolisms, including RNA translation, has been closely associated with ALS. Here, we first introduce the general mechanisms of translational regulation under physiological and stress conditions and review well-known examples of translation defects in neurodegenerative diseases. We then focus on ALS-linked genes and discuss the recent progress on how translation is affected by various mutant genes and the repeat expansion-mediated non-canonical translation in ALS.
Collapse
Affiliation(s)
- Shaopeng Wang
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Poulis P, Peske F, Rodnina MV. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing. Biol Chem 2023; 404:755-767. [PMID: 37077160 DOI: 10.1515/hsz-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
In each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size. However, signals in the mRNA, as well as environmental cues, can change the timing and dynamics of the key rearrangements leading to recoding of the mRNA into production of trans-frame peptides from the same mRNA. In this review, we discuss recent advances on the mechanics of translocation and reading frame maintenance. Furthermore, we describe the mechanisms and biological relevance of non-canonical translocation pathways, such as hungry and programmed frameshifting and translational bypassing, and their link to disease and infection.
Collapse
Affiliation(s)
- Panagiotis Poulis
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
10
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
11
|
Storkebaum E, Rosenblum K, Sonenberg N. Messenger RNA Translation Defects in Neurodegenerative Diseases. N Engl J Med 2023; 388:1015-1030. [PMID: 36920757 DOI: 10.1056/nejmra2215795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Erik Storkebaum
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| | - Kobi Rosenblum
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| | - Nahum Sonenberg
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| |
Collapse
|
12
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
13
|
Wright SE, Rodriguez CM, Monroe J, Xing J, Krans A, Flores BN, Barsur V, Ivanova MI, Koutmou KS, Barmada SJ, Todd PK. CGG repeats trigger translational frameshifts that generate aggregation-prone chimeric proteins. Nucleic Acids Res 2022; 50:8674-8689. [PMID: 35904811 PMCID: PMC9410890 DOI: 10.1093/nar/gkac626] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
CGG repeat expansions in the FMR1 5’UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat. While exploring the mechanism of this differential toxicity, we observed a +1 translational frameshift within the CGG repeat from the arginine to glycine reading frame. Frameshifts occurred within the first few translated repeats and were triggered predominantly by RNA sequence and structural features. Short chimeric R/G peptides form aggregates distinct from those formed by either pure arginine or glycine, and these chimeras induce toxicity in cultured rodent neurons. Together, this work suggests that CGG repeats support translational frameshifting and that chimeric RAN translated peptides may contribute to CGG repeat-associated toxicity in FXTAS and related disorders.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 84305, USA
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiazheng Xing
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkatesha Barsur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
14
|
Jonsson WO, Mirek ET, Wek RC, Anthony TG. Activation and execution of the hepatic integrated stress response by dietary essential amino acid deprivation is amino acid specific. FASEB J 2022; 36:e22396. [PMID: 35690926 PMCID: PMC9204950 DOI: 10.1096/fj.202200204rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
Dietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild‐type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2‐dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Emily T Mirek
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Johnson SL, Prifti MV, Sujkowski A, Libohova K, Blount JR, Hong L, Tsou WL, Todi SV. Drosophila as a Model of Unconventional Translation in Spinocerebellar Ataxia Type 3. Cells 2022; 11:cells11071223. [PMID: 35406787 PMCID: PMC8997593 DOI: 10.3390/cells11071223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
RNA toxicity contributes to diseases caused by anomalous nucleotide repeat expansions. Recent work demonstrated RNA-based toxicity from repeat-associated, non-AUG-initiated translation (RAN translation). RAN translation occurs around long nucleotide repeats that form hairpin loops, allowing for translation initiation in the absence of a start codon that results in potentially toxic, poly-amino acid repeat-containing proteins. Discovered in Spinocerebellar Ataxia Type (SCA) 8, RAN translation has been documented in several repeat-expansion diseases, including in the CAG repeat-dependent polyglutamine (polyQ) disorders. The ATXN3 gene, which causes SCA3, also known as Machado–Joseph Disease (MJD), contains a CAG repeat that is expanded in disease. ATXN3 mRNA possesses features linked to RAN translation. In this paper, we examined the potential contribution of RAN translation to SCA3/MJD in Drosophila by using isogenic lines that contain homomeric or interrupted CAG repeats. We did not observe unconventional translation in fly neurons or glia. However, our investigations indicate differential toxicity from ATXN3 protein-encoding mRNA that contains pure versus interrupted CAG repeats. Additional work suggests that this difference may be due in part to toxicity from homomeric CAG mRNA. We conclude that Drosophila is not suitable to model RAN translation for SCA3/MJD, but offers clues into the potential pathogenesis stemming from CAG repeat-containing mRNA in this disorder.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Alyson Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Jessica R. Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Luke Hong
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.L.J.); (M.V.P.); (A.S.); (K.L.); (J.R.B.); (L.H.); (W.-L.T.)
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
16
|
A mistranslation-prone transcriptome underlying polyglutamine expansion diseases. Nat Rev Mol Cell Biol 2021; 22:583-584. [PMID: 33833432 DOI: 10.1038/s41580-021-00368-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Atkins JF, O’Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021; 13:1251. [PMID: 34199077 PMCID: PMC8310308 DOI: 10.3390/v13071251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Collapse
Affiliation(s)
- John F. Atkins
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Kate M. O’Connor
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Pramod R. Bhatt
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gary Loughran
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| |
Collapse
|
18
|
Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem Soc Trans 2021; 49:775-792. [PMID: 33729487 PMCID: PMC8106499 DOI: 10.1042/bst20200690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.
Collapse
|
19
|
Avcilar-Kucukgoze I, Kashina A. Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology. Front Mol Biosci 2020; 7:610617. [PMID: 33392265 PMCID: PMC7773854 DOI: 10.3389/fmolb.2020.610617] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Transfer tRNAs (tRNAs) are small non-coding RNAs that are highly conserved in all kingdoms of life. Originally discovered as the molecules that deliver amino acids to the growing polypeptide chain during protein synthesis, tRNAs have been believed for a long time to play exclusive role in translation. However, recent studies have identified key roles for tRNAs and tRNA-derived small RNAs in multiple other processes, including regulation of transcription and translation, posttranslational modifications, stress response, and disease. These emerging roles suggest that tRNAs may be central players in the complex machinery of biological regulatory pathways. Here we overview these non-canonical roles of tRNA in normal physiology and disease, focusing largely on eukaryotic and mammalian systems.
Collapse
Affiliation(s)
- Irem Avcilar-Kucukgoze
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Pavlova NN, King B, Josselsohn RH, Violante S, Macera VL, Vardhana SA, Cross JR, Thompson CB. Translation in amino-acid-poor environments is limited by tRNA Gln charging. eLife 2020; 9:62307. [PMID: 33289483 PMCID: PMC7744096 DOI: 10.7554/elife.62307] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
An inadequate supply of amino acids leads to accumulation of uncharged tRNAs, which can bind and activate GCN2 kinase to reduce translation. Here, we show that glutamine-specific tRNAs selectively become uncharged when extracellular amino acid availability is compromised. In contrast, all other tRNAs retain charging of their cognate amino acids in a manner that is dependent upon intact lysosomal function. In addition to GCN2 activation and reduced total translation, the reduced charging of tRNAGln in amino-acid-deprived cells also leads to specific depletion of proteins containing polyglutamine tracts including core-binding factor α1, mediator subunit 12, transcriptional coactivator CBP and TATA-box binding protein. Treating amino-acid-deprived cells with exogenous glutamine or glutaminase inhibitors restores tRNAGln charging and the levels of polyglutamine-containing proteins. Together, these results demonstrate that the activation of GCN2 and the translation of polyglutamine-encoding transcripts serve as key sensors of glutamine availability in mammalian cells.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bryan King
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Rachel H Josselsohn
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sara Violante
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Victoria L Macera
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Santosha A Vardhana
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Justin R Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Craig B Thompson
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
21
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
22
|
Mikl M, Pilpel Y, Segal E. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat Commun 2020; 11:3061. [PMID: 32546731 PMCID: PMC7297798 DOI: 10.1038/s41467-020-16961-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is the controlled slippage of the translating ribosome to an alternative frame. This process is widely employed by human viruses such as HIV and SARS coronavirus and is critical for their replication. Here, we developed a high-throughput approach to assess the frameshifting potential of a sequence. We designed and tested >12,000 sequences based on 15 viral and human PRF events, allowing us to systematically dissect the rules governing ribosomal frameshifting and discover novel regulatory inputs based on amino acid properties and tRNA availability. We assessed the natural variation in HIV gag-pol frameshifting rates by testing >500 clinical isolates and identified subtype-specific differences and associations between viral load in patients and the optimality of PRF rates. We devised computational models that accurately predict frameshifting potential and frameshifting rates, including subtle differences between HIV isolates. This approach can contribute to the development of antiviral agents targeting PRF.
Collapse
Affiliation(s)
- Martin Mikl
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel.
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
23
|
Abstract
Identification of repeat-associated non-AUG (RAN) translation in trinucleotide (CAG) repeat diseases has led to the emerging concept that CAG repeat diseases are caused by nonpolyglutamine products. Nonetheless, the in vivo contribution of RAN translation to the pathogenesis of CAG repeat diseases remains elusive. Via CRISPR/Cas9-mediated genome editing, we established knock-in mouse models that harbor expanded CAG repeats in the mouse huntingtin gene to express RAN-translated products with or without polyglutamine peptides. We found that RAN translation is not detected in the knock-in mouse models when expanded CAG repeats are expressed at the endogenous level. Consistently, the expanded CAG repeats that cannot be translated into polyglutamine repeats do not yield the neuropathological and behavioral phenotypes that were found in knock-in mice expressing expanded polyglutamine repeats. Our findings suggest that RAN-translated products do not play a major role in the pathogenesis of CAG repeat diseases and underscore the importance in targeting polyglutamine repeats for therapeutics.
Collapse
|
24
|
Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F, Pöhlmann S, Rodnina MV. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res 2019; 47:5210-5222. [PMID: 30968122 PMCID: PMC6547452 DOI: 10.1093/nar/gkz202] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a –1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNALeu that reads the UUA codon at the mRNA slippery site. This tRNALeu isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support –1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant –1-frameshifting efficiency to ensure successful virus propagation.
Collapse
Affiliation(s)
- Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.,Faculty of Biology and Psychology, University of Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Molecular Dynamics Simulations Suggest a Non-Doublet Decoding Model of -1 Frameshifting by tRNA Ser3. Biomolecules 2019; 9:biom9110745. [PMID: 31752208 PMCID: PMC6920855 DOI: 10.3390/biom9110745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/28/2022] Open
Abstract
In-frame decoding in the ribosome occurs through canonical or wobble Watson-Crick pairing of three mRNA codon bases (a triplet) with a triplet of anticodon bases in tRNA. Departures from the triplet-triplet interaction can result in frameshifting, meaning downstream mRNA codons are then read in a different register. There are many mechanisms to induce frameshifting, and most are insufficiently understood. One previously proposed mechanism is doublet decoding, in which only codon bases 1 and 2 are read by anticodon bases 34 and 35, which would lead to -1 frameshifting. In E. coli, tRNASer3GCU can induce -1 frameshifting at alanine (GCA) codons. The logic of the doublet decoding model is that the Ala codon's GC could pair with the tRNASer3's GC, leaving the third anticodon residue U36 making no interactions with mRNA. Under that model, a U36C mutation would still induce -1 frameshifting, but experiments refute this. We perform all-atom simulations of wild-type tRNASer3, as well as a U36C mutant. Our simulations revealed a hydrogen bond between U36 of the anticodon and G1 of the codon. The U36C mutant cannot make this interaction, as it lacks the hydrogen-bond-donating H3. The simulation thus suggests a novel, non-doublet decoding mechanism for -1 frameshifting by tRNASer3 at Ala codons.
Collapse
|
26
|
Cook C, Petrucelli L. Genetic Convergence Brings Clarity to the Enigmatic Red Line in ALS. Neuron 2019; 101:1057-1069. [PMID: 30897357 DOI: 10.1016/j.neuron.2019.02.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder that orchestrates an attack on the motor nervous system that is unrelenting. Recent discoveries into the pathogenic consequences of repeat expansions in C9ORF72, which are the most common genetic cause of ALS, combined with the identification of new genetic mutations are providing novel insight into the underlying mechanism(s) that cause ALS. In particular, the myriad of functions linked to ALS-associated genes have collectively implicated four main pathways in disease pathogenesis, including RNA metabolism and translational biology; protein quality control; cytoskeletal integrity and trafficking; and mitochondrial function and transport. Through the identification of common disease mechanisms on which multiple ALS genes converge, key targets for potential therapeutic intervention are highlighted.
Collapse
Affiliation(s)
- Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
27
|
Zhang Z, Ruan H, Liu CJ, Ye Y, Gong J, Diao L, Guo AY, Han L. tRic: a user-friendly data portal to explore the expression landscape of tRNAs in human cancers. RNA Biol 2019; 17:1674-1679. [PMID: 31432762 DOI: 10.1080/15476286.2019.1657744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transfer RNAs (tRNAs) play critical roles in human cancer. Currently, no database provides the expression landscape and clinical relevance of tRNAs across a variety of human cancers. Utilizing miRNA-seq data from The Cancer Genome Atlas, we quantified the relative expression of tRNA genes and merged them into the codon level and amino level across 31 cancer types. The expression of tRNAs is associated with clinical features of patient smoking history and overall survival, and disease stage, subtype, and grade. We further analysed codon frequency and amino acid frequency for each protein coding gene and linked alterations of tRNA expression with protein translational efficiency. We include these data resources in a user-friendly data portal, tRic (tRNA in cancer, https://hanlab.uth.edu/tRic/ or http://bioinfo.life.hust.edu.cn/tRic/), which can be of significant interest to the research community.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Chun-Jie Liu
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei, PR China
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei, PR China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston , Houston, TX, USA
| |
Collapse
|
28
|
Kearse MG, Goldman DH, Choi J, Nwaezeapu C, Liang D, Green KM, Goldstrohm AC, Todd PK, Green R, Wilusz JE. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes Dev 2019; 33:871-885. [PMID: 31171704 PMCID: PMC6601509 DOI: 10.1101/gad.324715.119] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/24/2019] [Indexed: 02/05/2023]
Abstract
Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Daniel H Goldman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jiou Choi
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Chike Nwaezeapu
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Veterans Affairs Medical Center, Ann Arbor, Michigan 48105, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Korniy N, Samatova E, Anokhina MM, Peske F, Rodnina MV. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs. FEBS Lett 2019; 593:1468-1482. [PMID: 31222875 PMCID: PMC6771820 DOI: 10.1002/1873-3468.13478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/14/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
Some proteins are expressed as a result of a ribosome frameshifting event that is facilitated by a slippery site and downstream secondary structure elements in the mRNA. This review summarizes recent progress in understanding mechanisms of –1 frameshifting in several viral genes, including IBV 1a/1b, HIV‐1 gag‐pol, and SFV 6K, and in Escherichia coli dnaX. The exact frameshifting route depends on the availability of aminoacyl‐tRNAs: the ribosome normally slips into the –1‐frame during tRNA translocation, but can also frameshift during decoding at condition when aminoacyl‐tRNA is in limited supply. Different frameshifting routes and additional slippery sites allow viruses to maintain a constant production of their key proteins. The emerging idea that tRNA pools are important for frameshifting provides new direction for developing antiviral therapies.
Collapse
Affiliation(s)
- Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria M Anokhina
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
31
|
Adamla F, Rollins J, Newsom M, Snow S, Schosserer M, Heissenberger C, Horrocks J, Rogers AN, Ignatova Z. A Novel Caenorhabditis Elegans Proteinopathy Model Shows Changes in mRNA Translational Frameshifting During Aging. Cell Physiol Biochem 2019; 52:970-983. [PMID: 30977983 DOI: 10.33594/000000067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Regulation of mRNA translation is central to protein homeostasis and is optimized for speed and accuracy. Spontaneous recoding events occur virtually at any codon but at very low frequency and are commonly assumed to increase as the cell ages. METHODS Here, we leveraged the polyglutamine(polyQ)-frameshifting model of huntingtin exon 1 with CAG repeat length in the pathological range (Htt51Q), which undergoes enhanced non-programmed translational -1 frameshifting. RESULTS In body muscle cells of Caenorhabditis elegans, -1 frameshifting occured at the onset of expression of the zero-frame product, correlated with mRNA level of the non-frameshifted expression and formed aggregates correlated with reduced motility in C. elegans. Spontaneous frameshifting was modulated by IFG-1, the homologue of the nutrient-responsive eukaryotic initiation factor 4G (eIF4G), under normal growth conditions and NSUN-5, a conserved ribosomal RNA methyltransferase, under osmotic stress. CONCLUSION Our results suggest that frameshifting and aggregation occur at even early stages of development and, because of their intrinsic stability, may persist and accelerate the onset of age-related proteinopathies.
Collapse
Affiliation(s)
- Frauke Adamla
- Department of Chemistry and Biochemistry, University of Hamburg, Hamburg, Germany
| | - Jarod Rollins
- MDI Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, USA
| | - Matthew Newsom
- MDI Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, USA
| | - Santina Snow
- MDI Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, USA
| | - Markus Schosserer
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Heissenberger
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jordan Horrocks
- MDI Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, USA
| | - Aric N Rogers
- MDI Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, USA,
| | - Zoya Ignatova
- Department of Chemistry and Biochemistry, University of Hamburg, Hamburg, Germany,
| |
Collapse
|
32
|
Lant JT, Berg MD, Heinemann IU, Brandl CJ, O'Donoghue P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem 2019; 294:5294-5308. [PMID: 30643023 DOI: 10.1074/jbc.rev118.002982] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.
Collapse
Affiliation(s)
| | | | | | | | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
33
|
mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting. Int J Mol Sci 2018; 19:ijms19123867. [PMID: 30518074 PMCID: PMC6321510 DOI: 10.3390/ijms19123867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022] Open
Abstract
In contrast to -1 programmed ribosomal frameshifting (PRF) stimulation by an RNA pseudoknot downstream of frameshifting sites, a refolding upstream RNA hairpin juxtaposing the frameshifting sites attenuates -1 PRF in human cells and stimulates +1 frameshifting in yeast. This eukaryotic functional mimicry of the internal Shine-Dalgarno (SD) sequence-mediated duplex was confirmed directly in the 70S translation system, indicating that both frameshifting regulation activities of upstream hairpin are conserved between 70S and 80S ribosomes. Unexpectedly, a downstream pseudoknot also possessed two opposing hungry codon-mediated frameshifting regulation activities: attenuation of +1 frameshifting and stimulation of a non-canonical -1 frameshifting within the +1 frameshift-prone CUUUGA frameshifting site in the absence of release factor 2 (RF2) in vitro. However, the -1 frameshifting activity of the downstream pseudoknot is not coupled with its +1 frameshifting attenuation ability. Similarly, the +1 frameshifting activity of the upstream hairpin is not required for its -1 frameshifting attenuation function Thus, each of the mRNA duplexes flanking the two ends of a ribosomal mRNA-binding channel possesses two functions in bi-directional ribosomal frameshifting regulation: frameshifting stimulation and counteracting the frameshifting activity of each other.
Collapse
|
34
|
Polyserine repeats promote coiled coil-mediated fibril formation and length-dependent protein aggregation. J Struct Biol 2018; 204:572-584. [PMID: 30194983 DOI: 10.1016/j.jsb.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
Abstract
Short polyserine (polyS) repeats are frequently found in proteins and longer ones are produced in neurological disorders such as Huntington disease (HD) owing to translational frameshifting or non-ATG-dependent translation, together with polyglutamine (polyQ) and polyalanine (polyA) repeats, forming intracellular aggregates. However, the physiological and pathological structures of polyS repeats are not clearly understood. Early studies highlighted their structural versatility, similar to other homopolymers whose conformation is influenced by the surrounding protein context. As polyS stretches are frequently near polyQ and polyA repeats, which can be part of coiled coil (CC) structures, and the frameshift-derived polyS repeats in HD directly flank CC heptads important for aggregation, we investigate here the structural and aggregation properties of polyS in the context of CC structures. We have taken advantage of peptide models, previously used to study polyQ and polyA in CCs, in which we inserted polyS repeats of variable length and studied them in comparison with polyQ and polyA peptides. We found that polyS repeats promote CC-mediated polymerization and fibrillization as revealed by circular dichroism, chemical crosslinking, and atomic force microscopy. Furthermore, they promote CC-based, length-dependent intracellular aggregation, which is negligible with 7 and widespread with 49 serines. These findings show that polyS repeats can participate in the formation of CCs, as previously found for polyQ and polyA, conferring to peptides distinctive structural properties with aggregation kinetics that are intermediate between those of polyA and polyQ CCs, and contribute to an overall structural definition of the pathophysiogical roles of homopolymeric repeats in CC structures.
Collapse
|
35
|
Leighton LJ, Bredy TW. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain. Noncoding RNA 2018; 4:E15. [PMID: 29880782 PMCID: PMC6027130 DOI: 10.3390/ncrna4020015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.
Collapse
Affiliation(s)
- Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
Kapur M, Ackerman SL. mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease. Trends Genet 2018; 34:218-231. [PMID: 29352613 DOI: 10.1016/j.tig.2017.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Gao FB, Richter JD, Cleveland DW. Rethinking Unconventional Translation in Neurodegeneration. Cell 2017; 171:994-1000. [PMID: 29149615 DOI: 10.1016/j.cell.2017.10.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 11/27/2022]
Abstract
Eukaryotic translation is tightly regulated to ensure that protein production occurs at the right time and place. Recent studies on abnormal repeat proteins, especially in age-dependent neurodegenerative diseases caused by nucleotide repeat expansion, have highlighted or identified two forms of unconventional translation initiation: usage of AUG-like sites (near cognates) or repeat-associated non-AUG (RAN) translation. We discuss how repeat proteins may differ due to not just unconventional initiation, but also ribosomal frameshifting and/or imperfect repeat DNA replication, expansion, and repair, and we highlight how research on translation of repeats may uncover insights into the biology of translation and its contribution to disease.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605 USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017; 43:871-888. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Paulina Fuentes-Vázquez
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Gerardo Leyva-Gómez
- b Laboratory of Connective Tissue , CENIAQ, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - Bulmaro Cisneros
- c Department of Genetics and Molecular Biology , CINVESTAV-IPN , Mexico City , Mexico
| | - Rafael Villalobos
- d División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Jonathan J Magaña
- e Laboratory of Genomic Medicine, Department of Genetics , Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - David Quintanar-Guerrero
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| |
Collapse
|
40
|
Lokhande S, Patra BN, Ray A. A link between chromatin condensation mechanisms and Huntington's disease: connecting the dots. MOLECULAR BIOSYSTEMS 2016; 12:3515-3529. [PMID: 27714015 DOI: 10.1039/c6mb00598e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Huntington's disease is a rare neurodegenerative disorder whose complex pathophysiology exhibits system-wide changes in the body, with striking and debilitating clinical features targeting the central nervous system. Among the various molecular functions affected in this disease, mitochondrial dysfunction and transcriptional dysregulation are some of the most studied aspects of this disease. However, there is evidence of the involvement of a mutant Huntingtin protein in the processes of DNA damage, chromosome condensation and DNA repair. This review attempts to briefly recapitulate the clinical features, model systems used to study the disease, major molecular processes affected, and, more importantly, examines recent evidence for the involvement of the mutant Huntingtin protein in the processes regulating chromosome condensation, leading to DNA damage response and neuronal death.
Collapse
Affiliation(s)
- Sonali Lokhande
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Biranchi N Patra
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Animesh Ray
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| |
Collapse
|
41
|
Avcilar-Kucukgoze I, Bartholomäus A, Cordero Varela JA, Kaml RFX, Neubauer P, Budisa N, Ignatova Z. Discharging tRNAs: a tug of war between translation and detoxification in Escherichia coli. Nucleic Acids Res 2016; 44:8324-34. [PMID: 27507888 PMCID: PMC5041488 DOI: 10.1093/nar/gkw697] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
Translation is a central cellular process and is optimized for speed and fidelity. The speed of translation of a single codon depends on the concentration of aminoacyl-tRNAs. Here, we used microarray-based approaches to analyze the charging levels of tRNAs in Escherichia coli growing at different growth rates. Strikingly, we observed a non-uniform aminoacylation of tRNAs in complex media. In contrast, in minimal medium, the level of aminoacyl-tRNAs is more uniform and rises to approximately 60%. Particularly, the charging level of tRNA(Ser), tRNA(Cys), tRNA(Thr) and tRNA(His) is below 50% in complex medium and their aminoacylation levels mirror the degree that amino acids inhibit growth when individually added to minimal medium. Serine is among the most toxic amino acids for bacteria and tRNAs(Ser) exhibit the lowest charging levels, below 10%, at high growth rate although intracellular serine concentration is plentiful. As a result some serine codons are among the most slowly translated codons. A large fraction of the serine is most likely degraded by L-serine-deaminase, which competes with the seryl-tRNA-synthetase that charges the tRNAs(Ser) These results indicate that the level of aminoacylation in complex media might be a competition between charging for translation and degradation of amino acids that inhibit growth.
Collapse
Affiliation(s)
- Irem Avcilar-Kucukgoze
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14467 Potsdam, Germany
| | - Alexander Bartholomäus
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14467 Potsdam, Germany Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| | - Juan A Cordero Varela
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14467 Potsdam, Germany
| | | | - Peter Neubauer
- Bioprocess Engineering, Technical University Berlin, Ackerstr. 76, 13355 Berlin, Germany
| | - Nediljko Budisa
- Biocatalysis, Technical University Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14467 Potsdam, Germany Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| |
Collapse
|
42
|
Sagi D, Rak R, Gingold H, Adir I, Maayan G, Dahan O, Broday L, Pilpel Y, Rechavi O. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLoS Genet 2016; 12:e1006264. [PMID: 27560950 PMCID: PMC4999229 DOI: 10.1371/journal.pgen.1006264] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal's lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene's promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species.
Collapse
Affiliation(s)
- Dror Sagi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Rak
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Idan Adir
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gadi Maayan
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orna Dahan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Saffert P, Adamla F, Schieweck R, Atkins JF, Ignatova Z. An Expanded CAG Repeat in Huntingtin Causes +1 Frameshifting. J Biol Chem 2016; 291:18505-13. [PMID: 27382061 DOI: 10.1074/jbc.m116.744326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 01/08/2023] Open
Abstract
Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5' end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1.
Collapse
Affiliation(s)
- Paul Saffert
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Frauke Adamla
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Rico Schieweck
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany
| | - John F Atkins
- the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland, and the Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Zoya Ignatova
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany, Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany,
| |
Collapse
|
45
|
The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci 2016; 17:383-95. [PMID: 27150398 DOI: 10.1038/nrn.2016.38] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A nucleotide repeat expansion (NRE) within the chromosome 9 open reading frame 72 (C9orf72) gene was the first of this type of mutation to be linked to multiple neurological conditions, including amyotrophic lateral sclerosis and frontotemporal dementia. The pathogenic mechanisms through which the C9orf72 NRE contributes to these disorders include loss of C9orf72 function and gain-of-function mechanisms of C9orf72 driven by toxic RNA and protein species encoded by the NRE. These mechanisms have been linked to several cellular defects - including nucleocytoplasmic trafficking deficits and nuclear stress - that have been observed in both patients and animal models.
Collapse
|
46
|
Green KM, Linsalata AE, Todd PK. RAN translation-What makes it run? Brain Res 2016; 1647:30-42. [PMID: 27060770 DOI: 10.1016/j.brainres.2016.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
Nucleotide-repeat expansions underlie a heterogeneous group of neurodegenerative and neuromuscular disorders for which there are currently no effective therapies. Recently, it was discovered that such repetitive RNA motifs can support translation initiation in the absence of an AUG start codon across a wide variety of sequence contexts, and that the products of these atypical translation initiation events contribute to neuronal toxicity. This review examines what we currently know and do not know about repeat associated non-AUG (RAN) translation in the context of established canonical and non-canonical mechanisms of translation initiation. We highlight recent findings related to RAN translation in three repeat expansion disorders: CGG repeats in fragile X-associated tremor ataxia syndrome (FXTAS), GGGGCC repeats in C9orf72 associated amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and CAG repeats in Huntington disease. These studies suggest that mechanistic differences may exist for RAN translation dependent on repeat type, repeat reading frame, and the surrounding sequence context, but that for at least some repeats, RAN translation retains a dependence on some of the canonical translational initiation machinery. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Katelyn M Green
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexander E Linsalata
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Veterans Affairs Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
47
|
McKenney KM, Alfonzo JD. From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications. Life (Basel) 2016; 6:E13. [PMID: 26985907 PMCID: PMC4810244 DOI: 10.3390/life6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
All nucleic acids in cells are subject to post-transcriptional chemical modifications. These are catalyzed by a myriad of enzymes with exquisite specificity and that utilize an often-exotic array of chemical substrates. In no molecule are modifications more prevalent than in transfer RNAs. In the present document, we will attempt to take a chemical rollercoaster ride from prebiotic times to the present, with nucleoside modifications as key players and tRNA as the centerpiece that drove the evolution of biological systems to where we are today. These ideas will be put forth while touching on several examples of tRNA modification enzymes and their modus operandi in cells. In passing, we submit that the choice of tRNA is not a whimsical one but rather highlights its critical function as an essential invention for the evolution of protein enzymes.
Collapse
Affiliation(s)
- Katherine M McKenney
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Exploiting tRNAs to Boost Virulence. Life (Basel) 2016; 6:life6010004. [PMID: 26797637 PMCID: PMC4810235 DOI: 10.3390/life6010004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 01/22/2023] Open
Abstract
Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.
Collapse
|
49
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Baranov PV, Atkins JF, Yordanova MM. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat Rev Genet 2015; 16:517-29. [PMID: 26260261 DOI: 10.1038/nrg3963] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The non-universality of the genetic code is now widely appreciated. Codes differ between organisms, and certain genes are known to alter the decoding rules in a site-specific manner. Recently discovered examples of decoding plasticity are particularly spectacular. These examples include organisms and organelles with disruptions of triplet continuity during the translation of many genes, viruses that alter the entire genetic code of their hosts and organisms that adjust their genetic code in response to changing environments. In this Review, we outline various modes of alternative genetic decoding and expand existing terminology to accommodate recently discovered manifestations of this seemingly sophisticated phenomenon.
Collapse
Affiliation(s)
- Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Ireland
| | - John F Atkins
- 1] School of Biochemistry and Cell Biology, University College Cork, Ireland. [2] Department of Human Genetics, University of Utah, 15 N 2030 E Rm. 7410, Salt Lake City, Utah 84112-5330, USA
| | | |
Collapse
|