1
|
Salzler HR, Vandadi V, Sallean JR, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. Genetics 2024; 228:iyae168. [PMID: 39417694 PMCID: PMC11631440 DOI: 10.1093/genetics/iyae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions betwen MSL3 (male-specific lethal 3) and Set2-dependent histone marks like trimethylated H3 lysine-36 (H3K36me3). However, Set2 could affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Furthermore, it is important to parse male-specific effects from those that are X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 'residue' and Set2 'writer' mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global, male-specific reduction of X-genes in Set2 or H3K36 mutants, we observe heterogeneous effects. Interestingly, we identified groups of differentially expressed genes (DEGs) whose changes were in opposite directions following loss of H3K36 or Set2, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, differential expression analysis of combined H3.2K36R/H3.3K36R mutants showed neither consistent reduction in X-gene expression, nor correlation with MSL3 binding. Motif analysis of the DEGs implicated BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 is essential for spreading the MSL complex to genes along the male X. Rather, we propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Julia R Sallean
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Makki R, Meller VH. Identification of X chromatin is modulated by complementary pathways in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae057. [PMID: 38491905 PMCID: PMC11152068 DOI: 10.1093/g3journal/jkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/04/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Drosophila melanogaster males have one X chromosome while females have two. This creates an imbalance in X:A gene dosage between the sexes. This imbalance is corrected by increasing transcription from male X-linked genes approximately 2-fold. This process involves the Male-Specific Lethal (MSL) complex, which is recruited to Chromatin Entry Sites (CES) and transcribed X-linked genes, where it modifies chromatin to increase expression. Repetitive sequences strikingly enriched in X euchromatin, the 1.688X satellite repeats, also promote recruitment of the MSL complex to nearby genes. Unlike CES, the 1.688X repeats do not recruit the MSL complex directly. The genetic architecture of recruitment by these DNA elements remains speculative. To facilitate dissection of the mechanism of recruitment, we developed a luciferase reporter system for recruitment of compensation to an autosome. The system was validated by knock down of genes known to participate in compensation. Knock down of factors genetically linked to X recognition reveals that 1.688X repeats recruit through a different mechanism than the CES. Our findings suggest that 1.688X repeats play a larger role during embryogenesis, whereas the contribution of 1.688X repeats and CES is equivalent later in development. Our studies also reveal unexpected complexity and potential interdependence of recruiting elements.
Collapse
Affiliation(s)
- Reem Makki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Salzler HR, Vandadi V, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592390. [PMID: 38766267 PMCID: PMC11100620 DOI: 10.1101/2024.05.03.592390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions of MSL3 (male-specific lethal 3) with histone marks; in particular, Set2-dependent H3 lysine-36 trimethylation (H3K36me3). However, Set2 might affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Further, it is difficult to parse male-specific effects from those that are simply X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 (residue) and Set2 (writer) mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global male-specific reduction of X-genes in Set2/H3K36 mutants, the effects were heterogeneous. We identified cohorts of genes whose expression was significantly altered following loss of H3K36 or Set2, but the changes were in opposite directions, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, analysis of combined H3.2K36R/H3.3K36R mutants neither showed consistent reduction in X-gene expression, nor any correlation with MSL3 binding. Examination of other developmental stages/tissues revealed additional layers of context-dependence. Our studies implicate BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 directly recruits the MSL complex. We propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Wei KHC, Chatla K, Bachtrog D. Single-cell RNA-seq of Drosophila miranda testis reveals the evolution and trajectory of germline sex chromosome regulation. PLoS Biol 2024; 22:e3002605. [PMID: 38687805 PMCID: PMC11135767 DOI: 10.1371/journal.pbio.3002605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/29/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Although sex chromosomes have evolved from autosomes, they often have unusual regulatory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary forces driving these unique transcriptional programs are critical for genome evolution but have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how former autosomes acquire sex-chromosome-specific regulatory programs using single-cell and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context. We show that contrary to mammals and worms, the X down-regulation through germline progression is most consistent with the shutdown of DC instead of MSCI, resulting in half gene dosage at the end of meiosis for all 3 X's. Moreover, lowly expressed germline and meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppression after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell types and this dosage imbalance is rescued by contributions from Y-linked gametologs which produce transcripts that are translated to compensate both gene and protein dosage. We find an excess of previously autosomal testis genes becoming Y-specific, showing that the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex genes are predominantly expressed during meiotic stages of spermatogenesis, consistent with their amplification being driven to interfere with mendelian segregation. Altogether, this study reveals germline regulation of evolving sex chromosomes and elucidates the consequences these unique regulatory mechanisms have on the evolution of sex chromosome architecture.
Collapse
Affiliation(s)
- Kevin H-C. Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
5
|
Kalita AI, Marois E, Kozielska M, Weissing FJ, Jaouen E, Möckel MM, Rühle F, Butter F, Basilicata MF, Keller Valsecchi CI. The sex-specific factor SOA controls dosage compensation in Anopheles mosquitoes. Nature 2023; 623:175-182. [PMID: 37769784 PMCID: PMC10620080 DOI: 10.1038/s41586-023-06641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The Anopheles mosquito is one of thousands of species in which sex differences play a central part in their biology, as only females need a blood meal to produce eggs. Sex differentiation is regulated by sex chromosomes, but their presence creates a dosage imbalance between males (XY) and females (XX). Dosage compensation (DC) can re-equilibrate the expression of sex chromosomal genes. However, because DC mechanisms have only been fully characterized in a few model organisms, key questions about its evolutionary diversity and functional necessity remain unresolved1. Here we report the discovery of a previously uncharacterized gene (sex chromosome activation (SOA)) as a master regulator of DC in the malaria mosquito Anopheles gambiae. Sex-specific alternative splicing prevents functional SOA protein expression in females. The male isoform encodes a DNA-binding protein that binds the promoters of active X chromosomal genes. Expressing male SOA is sufficient to induce DC in female cells. Male mosquitoes lacking SOA or female mosquitoes ectopically expressing the male isoform exhibit X chromosome misregulation, which is compatible with viability but causes developmental delay. Thus, our molecular analyses of a DC master regulator in a non-model organism elucidates the evolutionary steps that lead to the establishment of a chromosome-specific fine-tuning mechanism.
Collapse
Affiliation(s)
| | - Eric Marois
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Strasbourg, France
| | - Magdalena Kozielska
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Etienne Jaouen
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Strasbourg, France
| | | | - Frank Rühle
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, Greifswald, Germany
| | - M Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
6
|
Forbes Beadle L, Zhou H, Rattray M, Ashe HL. Modulation of transcription burst amplitude underpins dosage compensation in the Drosophila embryo. Cell Rep 2023; 42:112382. [PMID: 37060568 PMCID: PMC10283159 DOI: 10.1016/j.celrep.2023.112382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
Dosage compensation, the balancing of X-linked gene expression between sexes and to the autosomes, is critical to an organism's fitness and survival. In Drosophila, dosage compensation involves hypertranscription of the male X chromosome. Here, we use quantitative live imaging and modeling at single-cell resolution to study X chromosome dosage compensation in Drosophila. We show that the four X chromosome genes studied undergo transcriptional bursting in male and female embryos. Mechanistically, our data reveal that transcriptional upregulation of male X chromosome genes is primarily mediated by a higher RNA polymerase II initiation rate and burst amplitude across the expression domain. In contrast, burst frequency is spatially modulated in nuclei within the expression domain in response to different transcription factor concentrations to tune the transcriptional response. Together, these data show how the local and global regulation of distinct burst parameters can establish the complex transcriptional outputs underpinning developmental patterning.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hongpeng Zhou
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
7
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|
8
|
Couvillion M, Harlen KM, Lachance KC, Trotta KL, Smith E, Brion C, Smalec BM, Churchman LS. Transcription elongation is finely tuned by dozens of regulatory factors. eLife 2022; 11:e78944. [PMID: 35575476 PMCID: PMC9154744 DOI: 10.7554/elife.78944] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the complex network that regulates transcription elongation requires the quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We performed native elongating transcript sequencing (NET-seq) in 41 strains of Saccharomyces cerevisiae lacking known elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers, and remodelers. We found that the opposing effects of these factors balance transcription elongation and antisense transcription. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Antisense transcription varies highly across the regulatory landscapes analyzed, but antisense transcription in itself does not affect sense transcription at the same locus. Our findings collectively show that a diverse array of factors regulate transcription elongation by precisely balancing Pol II activity.
Collapse
Affiliation(s)
- Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kevin M Harlen
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kate C Lachance
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kristine L Trotta
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Erin Smith
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Christian Brion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Brendan M Smalec
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
Faucillion ML, Johansson AM, Larsson J. Modulation of RNA stability regulates gene expression in two opposite ways: through buffering of RNA levels upon global perturbations and by supporting adapted differential expression. Nucleic Acids Res 2022; 50:4372-4388. [PMID: 35390159 PMCID: PMC9071389 DOI: 10.1093/nar/gkac208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
The steady state levels of RNAs, often referred to as expression levels, result from a well-balanced combination of RNA transcription and decay. Alterations in RNA levels will therefore result from tight regulation of transcription rates, decay rates or both. Here, we explore the role of RNA stability in achieving balanced gene expression and present genome-wide RNA stabilities in Drosophila melanogaster male and female cells as well as male cells depleted of proteins essential for dosage compensation. We identify two distinct RNA-stability mediated responses involved in regulation of gene expression. The first of these responds to acute and global changes in transcription and thus counteracts potentially harmful gene mis-expression by shifting the RNA stability in the direction opposite to the transcriptional change. The second response enhances inter-individual differential gene expression by adjusting the RNA stability in the same direction as a transcriptional change. Both mechanisms are global, act on housekeeping as well as non-housekeeping genes and were observed in both flies and mammals. Additionally, we show that, in contrast to mammals, modulation of RNA stability does not detectably contribute to dosage compensation of the sex-chromosomes in D. melanogaster.
Collapse
Affiliation(s)
| | | | - Jan Larsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
10
|
When Down Is Up: Heterochromatin, Nuclear Organization and X Upregulation. Cells 2021; 10:cells10123416. [PMID: 34943924 PMCID: PMC8700316 DOI: 10.3390/cells10123416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Organisms with highly differentiated sex chromosomes face an imbalance in X-linked gene dosage. Male Drosophila solve this problem by increasing expression from virtually every gene on their single X chromosome, a process known as dosage compensation. This involves a ribonucleoprotein complex that is recruited to active, X-linked genes to remodel chromatin and increase expression. Interestingly, the male X chromosome is also enriched for several proteins associated with heterochromatin. Furthermore, the polytenized male X is selectively disrupted by the loss of factors involved in repression, silencing, heterochromatin formation or chromatin remodeling. Mutations in many of these factors preferentially reduce male survival or enhance the lethality of mutations that prevent normal recognition of the X chromosome. The involvement of primarily repressive factors in a process that elevates expression has long been puzzling. Interestingly, recent work suggests that the siRNA pathway, often associated with heterochromatin formation and repression, also helps the dosage compensation machinery identify the X chromosome. In light of this finding, we revisit the evidence that links nuclear organization and heterochromatin to regulation of the male X chromosome.
Collapse
|
11
|
Aleman JR, Kuhn TM, Pascual-Garcia P, Gospocic J, Lan Y, Bonasio R, Little SC, Capelson M. Correct dosage of X chromosome transcription is controlled by a nuclear pore component. Cell Rep 2021; 35:109236. [PMID: 34133927 PMCID: PMC8224986 DOI: 10.1016/j.celrep.2021.109236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023] Open
Abstract
Dosage compensation in Drosophila melanogaster involves a 2-fold transcriptional upregulation of the male X chromosome, which relies on the X-chromosome-binding males-specific lethal (MSL) complex. However, how such 2-fold precision is accomplished remains unclear. Here, we show that a nuclear pore component, Mtor, is involved in setting the correct levels of transcription from the male X chromosome. Using larval tissues, we demonstrate that the depletion of Mtor results in selective upregulation at MSL targets of the male X, beyond the required 2-fold. Mtor and MSL components interact genetically, and depletion of Mtor can rescue the male lethality phenotype of MSL components. Using RNA fluorescence in situ hybridization (FISH) analysis and nascent transcript sequencing, we find that the effect of Mtor is not due to defects in mRNA export but occurs at the level of nascent transcription. These findings demonstrate a physiological role for Mtor in the process of dosage compensation, as a transcriptional attenuator of X chromosome gene expression.
Collapse
Affiliation(s)
- Jennifer R Aleman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Terra M Kuhn
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Yemin Lan
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Shawn C Little
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Belyi A, Argyridou E, Parsch J. The Influence of Chromosomal Environment on X-Linked Gene Expression in Drosophila melanogaster. Genome Biol Evol 2020; 12:2391-2402. [PMID: 33104185 PMCID: PMC7719225 DOI: 10.1093/gbe/evaa227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes often differ from autosomes with respect to their gene expression and regulation. In Drosophila melanogaster, X-linked genes are dosage compensated by having their expression upregulated in the male soma, a process mediated by the X-chromosome-specific binding of the dosage compensation complex (DCC). Previous studies of X-linked gene expression found a negative correlation between a gene’s male-to-female expression ratio and its distance to the nearest DCC binding site in somatic tissues, including head and brain, which suggests that dosage compensation influences sex-biased gene expression. A limitation of the previous studies, however, was that they focused on endogenous X-linked genes and, thus, could not disentangle the effects of chromosomal position from those of gene-specific regulation. To overcome this limitation, we examined the expression of an exogenous reporter gene inserted at many locations spanning the X chromosome. We observed a negative correlation between the male-to-female expression ratio of the reporter gene and its distance to the nearest DCC binding site in somatic tissues, but not in gonads. A reporter gene’s location relative to a DCC binding site had greater influence on its expression than the local regulatory elements of neighboring endogenous genes, suggesting that intra-chromosomal variation in the strength of dosage compensation is a major determinant of sex-biased gene expression. Average levels of sex-biased expression did not differ between head and brain, but there was greater positional effect variation in the brain, which may explain the observed excess of endogenous sex-biased genes located on the X chromosome in this tissue.
Collapse
Affiliation(s)
- Aleksei Belyi
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Bhardwaj V, Semplicio G, Erdogdu NU, Manke T, Akhtar A. MAPCap allows high-resolution detection and differential expression analysis of transcription start sites. Nat Commun 2019; 10:3219. [PMID: 31363093 PMCID: PMC6667505 DOI: 10.1038/s41467-019-11115-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
The position, shape and number of transcription start sites (TSS) are critical determinants of gene regulation. Most methods developed to detect TSSs and study promoter usage are, however, of limited use in studies that demand quantification of expression changes between two or more groups. In this study, we combine high-resolution detection of transcription start sites and differential expression analysis using a simplified TSS quantification protocol, MAPCap (Multiplexed Affinity Purification of Capped RNA) along with the software icetea. Applying MAPCap on developing Drosophila melanogaster embryos and larvae, we detected stage and sex-specific promoter and enhancer activity and quantify the effect of mutants of maleless (MLE) helicase at X-chromosomal promoters. We observe that MLE mutation leads to a median 1.9 fold drop in expression of X-chromosome promoters and affects the expression of several TSSs with a sexually dimorphic expression on autosomes. Our results provide quantitative insights into promoter activity during dosage compensation. The position, shape and number of transcription start sites (TSS) regulate gene expression. Here authors present MAPCap, a method for high-resolution detection and differential expression analysis of TSS, and apply MAPCap to early fly development, detecting stage and sex-specific promoter and enhancer activity.
Collapse
Affiliation(s)
- Vivek Bhardwaj
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Giuseppe Semplicio
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Niyazi Umut Erdogdu
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
| |
Collapse
|
15
|
NMD-degradome sequencing reveals ribosome-bound intermediates with 3'-end non-templated nucleotides. Nat Struct Mol Biol 2018; 25:940-950. [PMID: 30275517 DOI: 10.1038/s41594-018-0132-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) controls mRNA quality and degrades physiologic mRNAs to fine-tune gene expression in changing developmental or environmental milieus. NMD requires that its targets are removed from the translating pool of mRNAs. Since the decay steps of mammalian NMD remain unknown, we developed assays to isolate and sequence direct NMD decay intermediates transcriptome-wide based on their co-immunoprecipitation with phosphorylated UPF1, which is the active form of this essential NMD factor. We show that, unlike steady-state UPF1, phosphorylated UPF1 binds predominantly deadenylated mRNA decay intermediates and activates NMD cooperatively from 5'- and 3'-ends. We leverage method modifications to characterize the 3'-ends of NMD decay intermediates, show that they are ribosome-bound, and reveal that some are subject to the addition of non-templated nucleotide. Uridines are added by TUT4 and TUT7 terminal uridylyl transferases and removed by the Perlman syndrome-associated exonuclease DIS3L2. The addition of other non-templated nucleotides appears to inhibit decay.
Collapse
|
16
|
Lucchesi JC. Transcriptional modulation of entire chromosomes: dosage compensation. J Genet 2018; 97:357-364. [PMID: 29932054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dosage compensation is a regulatory system designed to equalize the transcription output of the genes of the sex chromosomes that are present in different doses in the sexes (X or Z chromosome, depending on the animal species involved). Different mechanisms of dosage compensation have evolved in different animal groups. In Drosophila males, a complex (male-specific lethal) associates with the X chromosome and enhances the activity of most X-linked genes by increasing the rate of RNAPII elongation. In Caenorhabditis, a complex (dosage compensation complex) that contains a number of proteins involved in condensing chromosomes decreases the level of transcription of both X chromosomes in the XX hermaphrodite. In mammals, dosage compensation is achieved by the inactivation, early during development, of most X-linked genes on one of the two X chromosomes in females. The mechanism involves the synthesis of an RNA (Tsix) that protects one of the two Xs from inactivation, and of another RNA (Xist) that coats the other X chromosome and recruits histone and DNA modifying enzymes. This review will focus on the current progress in understanding the dosage compensation mechanisms in the three taxa where it has been best studied at the molecular level: flies, round worms and mammals.
Collapse
Affiliation(s)
- John C Lucchesi
- Department of Biology, Emory University, Atlanta, GA 30322, USA. E-mail:
| |
Collapse
|
17
|
|
18
|
Samata M, Akhtar A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu Rev Biochem 2018; 87:323-350. [PMID: 29668306 DOI: 10.1146/annurev-biochem-062917-011816] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Collapse
Affiliation(s)
- Maria Samata
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; .,Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany;
| |
Collapse
|
19
|
Short cryptic exons mediate recursive splicing in Drosophila. Nat Struct Mol Biol 2018; 25:365-371. [PMID: 29632374 DOI: 10.1038/s41594-018-0052-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/02/2018] [Indexed: 01/11/2023]
Abstract
Many long Drosophila introns are processed by an unusual recursive strategy. The presence of ~200 adjacent splice acceptor and splice donor sites, termed ratchet points (RPs), were inferred to reflect 'zero-nucleotide exons', whose sequential processing subdivides removal of long host introns. We used CRISPR-Cas9 to disrupt several intronic RPs in Drosophila melanogaster, some of which recapitulated characteristic loss-of-function phenotypes. Unexpectedly, selective disruption of RP splice donors revealed constitutive retention of unannotated short exons. Assays using functional minigenes confirm that unannotated cryptic splice donor sites are critical for recognition of intronic RPs, demonstrating that recursive splicing involves the recognition of cryptic RP exons. This appears to be a general mechanism, because canonical, conserved splice donors are specifically enriched in a 40-80-nt window downstream of known and newly annotated intronic RPs and exhibit similar properties to a broadly expanded class of expressed RP exons. Overall, these studies unify the mechanism of Drosophila recursive splicing with that in mammals.
Collapse
|
20
|
Dasmeh P. Multi-step regulation of transcription kinetics explains the non-linear relation between RNA polymerase II density and mRNA expression in dosage compensation. J Theor Biol 2018; 438:92-95. [PMID: 29162446 DOI: 10.1016/j.jtbi.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/01/2022]
Abstract
In heterogametic organisms, expression of unequal number of X chromosomes in males and females is balanced by a process called dosage compensation. In Drosophila and mammals, dosage compensation involves nearly two-fold up-regulation of the X chromosome mediated by dosage compensation complex (DCC). Experimental studies on the role of DCC on RNA polymerase II (Pol II) transcription in mammals disclosed a non-linear relationship between Pol II densities at different transcription steps and mRNA expression. An ∼20-30% increase in Pol II densities corresponds to a rough 200% increase in mRNA expression and two-fold up-regulation. Here, using a simple kinetic model of Pol II transcription calibrated by in vivo measured rate constants of different transcription steps in mammalian cells, we demonstrate how this non-linearity can be explained by multi-step transcriptional regulation. Moreover, we show how multi-step enhancement of Pol II transcription can increase mRNA production while leaving Pol II densities unaffected. Our theoretical analysis not only recapitulates experimentally observed Pol II densities upon two-fold up-regulation but also points to erroneous interpretations of Pol II profiles from chromatin immunoprecipitation sequencing (ChIP-seq) or global run-on assays.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Departement de Biochimie, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec H3T 1J4, Canada; Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec H3T 1J4, Canada; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Urban J, Kuzu G, Bowman S, Scruggs B, Henriques T, Kingston R, Adelman K, Tolstorukov M, Larschan E. Enhanced chromatin accessibility of the dosage compensated Drosophila male X-chromosome requires the CLAMP zinc finger protein. PLoS One 2017; 12:e0186855. [PMID: 29077765 PMCID: PMC5659772 DOI: 10.1371/journal.pone.0186855] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/09/2017] [Indexed: 01/21/2023] Open
Abstract
The essential process of dosage compensation is required to equalize gene expression of X-chromosome genes between males (XY) and females (XX). In Drosophila, the conserved Male-specific lethal (MSL) histone acetyltransferase complex mediates dosage compensation by increasing transcript levels from genes on the single male X-chromosome approximately two-fold. Consistent with its increased levels of transcription, the male X-chromosome has enhanced chromatin accessibility, distinguishing it from the autosomes. Here, we demonstrate that the non-sex-specific CLAMP (Chromatin-linked adaptor for MSL proteins) zinc finger protein that recognizes GA-rich sequences genome-wide promotes the specialized chromatin environment on the male X-chromosome and can act over long genomic distances (~14 kb). Although MSL complex is required for increasing transcript levels of X-linked genes, it is not required for enhancing global male X-chromosome chromatin accessibility, and instead works cooperatively with CLAMP to facilitate an accessible chromatin configuration at its sites of highest occupancy. Furthermore, CLAMP regulates chromatin structure at strong MSL complex binding sites through promoting recruitment of the Nucleosome Remodeling Factor (NURF) complex. In contrast to the X-chromosome, CLAMP regulates chromatin and gene expression on autosomes through a distinct mechanism that does not involve NURF recruitment. Overall, our results support a model where synergy between a non-sex-specific transcription factor (CLAMP) and a sex-specific cofactor (MSL) creates a specialized chromatin domain on the male X-chromosome.
Collapse
Affiliation(s)
- Jennifer Urban
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sarah Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Benjamin Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina, United States of America
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina, United States of America
| | - Robert Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina, United States of America
| | - Michael Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MT); (EL)
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (MT); (EL)
| |
Collapse
|
22
|
Mayer A, Churchman LS. A Detailed Protocol for Subcellular RNA Sequencing (subRNA-seq). ACTA ACUST UNITED AC 2017; 120:4.29.1-4.29.18. [PMID: 28967997 DOI: 10.1002/cpmb.44] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In eukaryotic cells, RNAs at various maturation and processing levels are distributed across cellular compartments. The standard approach to determine transcript abundance and identity in vivo is RNA sequencing (RNA-seq). RNA-seq relies on RNA isolation from whole-cell lysates and thus mainly captures fully processed, stable, and more abundant cytoplasmic RNAs over nascent, unstable, and nuclear RNAs. Here, we provide a step-by-step protocol for subcellular RNA-seq (subRNA-seq). subRNA-seq allows the quantitative measurement of RNA polymerase II-generated RNAs from the chromatin, nucleoplasm, and cytoplasm of mammalian cells. This approach relies on cell fractionation prior to RNA isolation and sequencing library preparation. High-throughput sequencing of the subcellular RNAs can then be used to reveal the identity, abundance, and subcellular distribution of transcripts, thus providing insights into RNA processing and maturation. Deep sequencing of the chromatin-associated RNAs further offers the opportunity to study nascent RNAs. Subcellular RNA-seq libraries are obtained within 5 days. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andreas Mayer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
23
|
Schauer T, Ghavi‐Helm Y, Sexton T, Albig C, Regnard C, Cavalli G, Furlong EEM, Becker PB. Chromosome topology guides the Drosophila Dosage Compensation Complex for target gene activation. EMBO Rep 2017; 18:1854-1868. [PMID: 28794204 PMCID: PMC5623837 DOI: 10.15252/embr.201744292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
X chromosome dosage compensation in Drosophila requires chromosome-wide coordination of gene activation. The male-specific lethal dosage compensation complex (DCC) identifies and binds to X-chromosomal high-affinity sites (HAS) from which it boosts transcription. A sub-class of HAS, PionX sites, represent first contacts on the X. Here, we explored the chromosomal interactions of representative PionX sites by high-resolution 4C and determined the global chromosome conformation by Hi-C in sex-sorted embryos. Male and female X chromosomes display similar nuclear architecture, concordant with clustered, constitutively active genes. PionX sites, like HAS, are evenly distributed in the active compartment and engage in short- and long-range interactions beyond compartment boundaries. Long-range, inter-domain interactions between DCC binding sites are stronger in males, suggesting that the complex refines chromatin organization. By de novo induction of DCC in female cells, we monitored the extent of activation surrounding PionX sites. This revealed a remarkable range of DCC action not only in linear proximity, but also at megabase distance if close in space, suggesting that DCC profits from pre-existing chromosome folding to activate genes.
Collapse
Affiliation(s)
- Tamás Schauer
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| | - Yad Ghavi‐Helm
- European Molecular Biology LaboratoryGenome Biology UnitHeidelbergGermany
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular BiologyIllkirchFrance
| | - Christian Albig
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| | - Catherine Regnard
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| | - Giacomo Cavalli
- Institute of Human GeneticsCNRSMontpellierFrance
- University of MontpellierMontpellierFrance
| | - Eileen EM Furlong
- European Molecular Biology LaboratoryGenome Biology UnitHeidelbergGermany
| | - Peter B Becker
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
24
|
Dosage Compensation in Drosophila-a Model for the Coordinate Regulation of Transcription. Genetics 2017; 204:435-450. [PMID: 27729494 DOI: 10.1534/genetics.115.185108] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022] Open
Abstract
The sex chromosomes have special significance in the history of genetics. The chromosomal basis of inheritance was firmly established when Calvin Bridges demonstrated that exceptions to Mendel's laws of segregation were accompanied at the cytological level by exceptional sex chromosome segregation. The morphological differences between X and Y exploited in Bridges' experiments arose as a consequence of the evolution of the sex chromosomes. Originally a homologous chromosome pair, the degeneration of the Y chromosome has been accompanied by a requirement for increased expression of the single X chromosome in males. Drosophila has been a model for the study of this dosage compensation and has brought key strengths, including classical genetics, the exceptional cytology of polytene chromosomes, and more recently, comprehensive genomics. The impact of these studies goes beyond sex chromosome regulation, providing valuable insights into mechanisms for the establishment and maintenance of chromatin domains, and for the coordinate regulation of transcription.
Collapse
|
25
|
Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol 2017; 46:72-80. [PMID: 28363125 DOI: 10.1016/j.ceb.2017.03.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022]
Abstract
The synthesis of nascent RNA is a discontinuous process in which phases of productive elongation by RNA polymerase are interrupted by frequent pauses. Transcriptional pausing was first observed decades ago, but was long considered to be a special feature of transcription at certain genes. This view was challenged when studies using genome-wide approaches revealed that RNA polymerase II pauses at promoter-proximal regions in large sets of genes in Drosophila and mammalian cells. High-resolution genomic methods uncovered that pausing is not restricted to promoters, but occurs globally throughout gene-body regions, implying the existence of key-rate limiting steps in nascent RNA synthesis downstream of transcription initiation. Here, we outline the experimental breakthroughs that led to the discovery of pervasive transcriptional pausing, discuss its emerging roles and regulation, and highlight the importance of pausing in human development and disease.
Collapse
|
26
|
McElroy KA, Jung YL, Zee BM, Wang CI, Park PJ, Kuroda MI. upSET, the Drosophila homologue of SET3, Is Required for Viability and the Proper Balance of Active and Repressive Chromatin Marks. G3 (BETHESDA, MD.) 2017; 7:625-635. [PMID: 28064188 PMCID: PMC5295607 DOI: 10.1534/g3.116.037788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022]
Abstract
Chromatin plays a critical role in faithful implementation of gene expression programs. Different post-translational modifications (PTMs) of histone proteins reflect the underlying state of gene activity, and many chromatin proteins write, erase, bind, or are repelled by, these histone marks. One such protein is UpSET, the Drosophila homolog of yeast Set3 and mammalian KMT2E (MLL5). Here, we show that UpSET is necessary for the proper balance between active and repressed states. Using CRISPR/Cas-9 editing, we generated S2 cells that are mutant for upSET We found that loss of UpSET is tolerated in S2 cells, but that heterochromatin is misregulated, as evidenced by a strong decrease in H3K9me2 levels assessed by bulk histone PTM quantification. To test whether this finding was consistent in the whole organism, we deleted the upSET coding sequence using CRISPR/Cas-9, which we found to be lethal in both sexes in flies. We were able to rescue this lethality using a tagged upSET transgene, and found that UpSET protein localizes to transcriptional start sites (TSS) of active genes throughout the genome. Misregulated heterochromatin is apparent by suppressed position effect variegation of the wm4 allele in heterozygous upSET-deleted flies. Using nascent-RNA sequencing in the upSET-mutant S2 lines, we show that this result applies to heterochromatin genes generally. Our findings support a critical role for UpSET in maintaining heterochromatin, perhaps by delimiting the active chromatin environment.
Collapse
Affiliation(s)
- Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Youngsook L Jung
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Charlotte I Wang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Peter J Park
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
27
|
Kuzu G, Kaye EG, Chery J, Siggers T, Yang L, Dobson JR, Boor S, Bliss J, Liu W, Jogl G, Rohs R, Singh ND, Bulyk ML, Tolstorukov MY, Larschan E. Expansion of GA Dinucleotide Repeats Increases the Density of CLAMP Binding Sites on the X-Chromosome to Promote Drosophila Dosage Compensation. PLoS Genet 2016; 12:e1006120. [PMID: 27414415 PMCID: PMC4945028 DOI: 10.1371/journal.pgen.1006120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.
Collapse
Affiliation(s)
- Guray Kuzu
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Emily G. Kaye
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jessica Chery
- Department of Cell Biology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Lin Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jason R. Dobson
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sonia Boor
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jacob Bliss
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gerwald Jogl
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Nadia D. Singh
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Y. Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MYT); (EL)
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (MYT); (EL)
| |
Collapse
|
28
|
Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 2016; 11:813-33. [PMID: 27010758 DOI: 10.1038/nprot.2016.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many features of how gene transcription occurs in human cells remain unclear, mainly because of a lack of quantitative approaches to follow genome transcription with nucleotide precision in vivo. Here we present a robust genome-wide approach for studying RNA polymerase II (Pol II)-mediated transcription in human cells at single-nucleotide resolution by native elongating transcript sequencing (NET-seq). Elongating RNA polymerase and the associated nascent RNA are prepared by cell fractionation, avoiding immunoprecipitation or RNA labeling. The 3' ends of nascent RNAs are captured through barcode linker ligation and converted into a DNA sequencing library. The identity and abundance of the 3' ends are determined by high-throughput sequencing, which reveals the exact genomic locations of Pol II. Human NET-seq can be applied to the study of the full spectrum of Pol II transcriptional activities, including the production of unstable RNAs and transcriptional pausing. By using the protocol described here, a NET-seq library can be obtained from human cells in 5 d.
Collapse
|
29
|
Zhang Z, Presgraves DC. DrosophilaX-Linked Genes Have Lower Translation Rates than Autosomal Genes. Mol Biol Evol 2015; 33:413-28. [DOI: 10.1093/molbev/msv227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
|
30
|
Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT, Kharchenko PV, Kuroda MI, French CA. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev 2015. [PMID: 26220994 PMCID: PMC4526735 DOI: 10.1101/gad.267583.115] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NUT midline carcinoma (NMC), a subtype of squamous cell cancer, is one of the most aggressive human solid malignancies known. NMC is driven by the creation of a translocation oncoprotein, BRD4-NUT, which blocks differentiation and drives growth of NMC cells. BRD4-NUT forms distinctive nuclear foci in patient tumors, which we found correlate with ∼100 unprecedented, hyperacetylated expanses of chromatin that reach up to 2 Mb in size. These "megadomains" appear to be the result of aberrant, feed-forward loops of acetylation and binding of acetylated histones that drive transcription of underlying DNA in NMC patient cells and naïve cells induced to express BRD4-NUT. Megadomain locations are typically cell lineage-specific; however, the cMYC and TP63 regions are targeted in all NMCs tested and play functional roles in tumor growth. Megadomains appear to originate from select pre-existing enhancers that progressively broaden but are ultimately delimited by topologically associating domain (TAD) boundaries. Therefore, our findings establish a basis for understanding the powerful role played by large-scale chromatin organization in normal and aberrant lineage-specific gene transcription.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Erica M Walsh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xin Wang
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Adlai R Grayson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter T Hsi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts 02115, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Abstract
The different dose of X chromosomes in males and females produces a potentially fatal imbalance in X-linked gene products. This imbalance is addressed by dosage compensation, a process that modulates expression from an entire X chromosome in one sex. Dosage compensation acts on thousands of genes with disparate expression patterns. Both flies and mammals accomplish this with remarkable specificity by targeting epigenetic chromatin modifications to a single chromosome. Long noncoding RNAs that are expressed from the X chromosome are essential elements of the targeting mechanism in both lineages. We recently discovered that the siRNA pathway, as well as small RNA from satellite repeats that are strikingly enriched on the fly X chromosome, also promote X recognition. In this article we review the current understanding of X recognition in flies and discuss potential mechanisms by which the siRNA pathway, repetitive elements and long noncoding RNAs might cooperate to promote X recognition.
Collapse
Affiliation(s)
- Debashish U Menon
- a Department of Genetics ; University of North Carolina ; Chapel Hill , NC USA
| | - Victoria H Meller
- b Department of Biological Sciences ; Wayne State University ; Detroit , MI USA
| |
Collapse
|
32
|
Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 2015; 161:541-554. [PMID: 25910208 DOI: 10.1016/j.cell.2015.03.010] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.
Collapse
|
33
|
Keller CI, Akhtar A. The MSL complex: juggling RNA-protein interactions for dosage compensation and beyond. Curr Opin Genet Dev 2015; 31:1-11. [PMID: 25900149 DOI: 10.1016/j.gde.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/17/2015] [Indexed: 12/27/2022]
Abstract
The Male Specific Lethal (MSL) complex provides an exquisite example of an epigenetic modulator that is involved in chromosome-wide as well as individual gene regulation in flies and mammals. In this review, we discuss the recent advances in biochemical and structural understanding of the MSL complex modules and how they function in X chromosome regulation in flies. Moreover, we describe possible conserved and dosage compensation-independent functions of the MSL complex with a particular focus on mammalian systems.
Collapse
Affiliation(s)
- Claudia Isabelle Keller
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany.
| |
Collapse
|
34
|
Abstract
In many animals, males have one X and females have two X chromosomes. The difference in X chromosome dosage between the two sexes is compensated by mechanisms that regulate X chromosome transcription. Recent advances in genomic techniques have provided new insights into the molecular mechanisms of X chromosome dosage compensation. In this review, I summarize our current understanding of dosage imbalance in general, and then review the molecular mechanisms of X chromosome dosage compensation with an emphasis on the parallels and differences between the three well-studied model systems, M. musculus, D. melanogaster and C. elegans.
Collapse
Affiliation(s)
- Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
35
|
Sytnikova YA, Rahman R, Chirn GW, Clark JP, Lau NC. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures. Genome Res 2014; 24:1977-90. [PMID: 25267525 PMCID: PMC4248314 DOI: 10.1101/gr.178129.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity.
Collapse
Affiliation(s)
- Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Josef P Clark
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
36
|
Ferrari F, Alekseyenko AA, Park PJ, Kuroda MI. Transcriptional control of a whole chromosome: emerging models for dosage compensation. Nat Struct Mol Biol 2014; 21:118-25. [PMID: 24500429 PMCID: PMC4342042 DOI: 10.1038/nsmb.2763] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022]
Abstract
Males and females of many animal species differ in their sex-chromosome karyotype, and this creates imbalances between X-chromosome and autosomal gene products that require compensation. Although distinct molecular mechanisms have evolved in three highly studied systems, they all achieve coordinate regulation of an entire chromosome by differential RNA-polymerase occupancy at X-linked genes. High-throughput genome-wide methods have been pivotal in driving the latest progress in the field. Here we review the emerging models for dosage compensation in mammals, flies and nematodes, with a focus on mechanisms affecting RNA polymerase II activity on the X chromosome.
Collapse
Affiliation(s)
- Francesco Ferrari
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Artyom A Alekseyenko
- 1] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter J Park
- 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mitzi I Kuroda
- 1] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|