1
|
Mkrtchian S, Eldh M, Ebberyd A, Gabrielsson S, Végvári Á, Ricksten SE, Danielson M, Oras J, Wiklund A, Eriksson LI, Gómez-Galán M. Changes in circulating extracellular vesicle cargo are associated with cognitive decline after major surgery: an observational case-control study. Br J Anaesth 2025; 134:1683-1695. [PMID: 39426921 PMCID: PMC12106869 DOI: 10.1016/j.bja.2024.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Postoperative neurocognitive decline is a frequent complication triggered by unclear signalling mechanisms. This observational case-control study investigated the effects of hip or knee replacement surgery on the composition of circulating extracellular vesicles (EVs), potential periphery-to-brain messengers, and their association with neurocognitive outcomes. METHODS We mapped the microRNAome and proteome of plasma-derived EVs from 12 patients (six with good and six with poor neurocognitive outcomes at 3 months after surgery) at preoperative and postoperative timepoints (4, 8, 24, and 48 h). Complement C3-EV association was confirmed by flow cytometry in plasma- and cerebrospinal fluid (CSF)-derived EVs, with total plasma and CSF C3 and C3a concentrations determined using enzyme-linked immunosorbent assay. RESULTS Differential expression analysis found eight dysregulated EV microRNAs (miRNAs) exclusively in the poor neurocognitive outcomes group. Pathway analysis suggested potential downregulation of proliferative pathways and activation of extracellular matrix and inflammatory response pathways in EV target tissues. Proteome analysis revealed a time-dependent increase in immune-related EV proteins, including complement system proteins, notably EV surface-associated C3. Such upward kinetics was detected earlier in the poor neurocognitive outcomes group. Interestingly, CSF-derived EVs from the same group showed a drastic drop of C3 at 48 h with unchanged concentrations in the good neurocognitive outcomes group. Functionally, the complement system was activated in both patient groups in plasma, but only in the poor neurocognitive outcomes group in CSF. CONCLUSIONS Our findings highlight the impact of surgery on plasma- and CSF-derived EVs, particularly in patients with poor neurocognitive outcomes, indicating a potential role for EVs. The small sample size necessitates verification with a larger patient cohort.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anette Ebberyd
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Ricksten
- Department of Anesthesia and Intensive Care, Sаhlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Mattias Danielson
- Department of Anesthesia and Intensive Care, Sаhlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Jonatan Oras
- Department of Anesthesia and Intensive Care, Sаhlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Andreas Wiklund
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; Capio Artro Clinic, Stockholm, Sweden
| | - Lars I Eriksson
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Marta Gómez-Galán
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Wang R, Li J, Li X, Guo Y, Chen P, Peng T. Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer's disease. Rev Neurosci 2025:revneuro-2025-0013. [PMID: 40366727 DOI: 10.1515/revneuro-2025-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is marked by cognitive decline, neuroinflammation, and neuronal loss. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression, influencing key pathways involved in neuroinflammation and neurodegeneration in AD. This review delves into the multifaceted role of exercise in modulating miRNA expression and its interplay with the gut microbiome, proposing a comprehensive framework for neuroprotection in AD. By synthesizing current research, we elucidate how exercise-induced changes in miRNA profiles can mitigate inflammatory responses, promote neurogenesis, and reduce amyloid-beta and tau pathologies. Additionally, we explore the gut-brain axis, highlighting how exercise-driven alterations in gut microbiota composition can further influence miRNA expression, thereby enhancing cognitive function and reducing neuroinflammatory markers. This holistic approach underscores the potential of targeting exercise-regulated miRNAs and gut microbiome interactions as a novel, noninvasive therapeutic strategy to decelerate AD progression and improve quality of life for patients. This approach aims to decelerate disease progression and improve patient outcomes, offering a promising avenue for enhancing the effectiveness of AD management.
Collapse
Affiliation(s)
- Rui Wang
- College of Physical Education, Guizhou Normal University, GuiYang 550025, China
| | - Juan Li
- Hanyang University Erica, AnSan 15588, Korea
| | - Xiaochen Li
- School of Physical Education, Huaibei Normal University, HuaiBei 235000, China
| | - Yan Guo
- Sichuan University Jinjiang College, ChengDu 610000, China
| | - Pei Chen
- School of Physical Education, Huaibei Normal University, HuaiBei 235000, China
| | - Tian Peng
- Department of Physical Education, 12377 Zhejiang University of Science and Technology , HangZhou 310023, China
| |
Collapse
|
3
|
Jenkins PM, Bender KJ. Axon initial segment structure and function in health and disease. Physiol Rev 2025; 105:765-801. [PMID: 39480263 DOI: 10.1152/physrev.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
At the simplest level, neurons are structured to integrate synaptic input and perform computational transforms on that input, converting it into an action potential (AP) code. This process, converting synaptic input into AP output, typically occurs in a specialized region of the axon termed the axon initial segment (AIS). The AIS, as its name implies, is often contained to the first section of axon abutted to the soma and is home to a dizzying array of ion channels, attendant scaffolding proteins, intracellular organelles, extracellular proteins, and, in some cases, synapses. The AIS serves multiple roles as the final arbiter for determining if inputs are sufficient to evoke APs, as a gatekeeper that physically separates the somatodendritic domain from the axon proper, and as a regulator of overall neuronal excitability, dynamically tuning its size to best suit the needs of parent neurons. These complex roles have received considerable attention from experimentalists and theoreticians alike. Here, we review recent advances in our understanding of the AIS and its role in neuronal integration and polarity in health and disease.
Collapse
Affiliation(s)
- Paul M Jenkins
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Kevin J Bender
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States
| |
Collapse
|
4
|
Benitez MJ, Retana D, Ordoñez-Gutiérrez L, Colmena I, Goméz MJ, Álvarez R, Ciorraga M, Dopazo A, Wandosell F, Garrido JJ. Transcriptomic alterations in APP/PS1 mice astrocytes lead to early postnatal axon initial segment structural changes. Cell Mol Life Sci 2024; 81:444. [PMID: 39485512 PMCID: PMC11530419 DOI: 10.1007/s00018-024-05485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Alzheimer´s disease (AD) is characterized by neuronal function loss and degeneration. The integrity of the axon initial segment (AIS) is essential to maintain neuronal function and output. AIS alterations are detected in human post-mortem AD brains and mice models, as well as, neurodevelopmental and mental disorders. However, the mechanisms leading to AIS deregulation in AD and the extrinsic glial origin are elusive. We studied early postnatal differences in AIS cellular/molecular mechanisms in wild-type or APP/PS1 mice and combined neuron-astrocyte co-cultures. We observed AIS integrity alterations, reduced ankyrinG expression and shortening, in APP/PS1 mice from P21 and loss of AIS integrity at 21 DIV in wild-type and APP/PS1 neurons in the presence of APP/PS1 astrocytes. AnkyrinG decrease is due to mRNAs and protein reduction of retinoic acid synthesis enzymes Rdh1 and Aldh1b1, as well as ADNP (Activity-dependent neuroprotective protein) in APP/PS1 astrocytes. This effect was mimicked by wild-type astrocytes expressing ADNP shRNA. In the presence of APP/PS1 astrocytes, wild-type neurons AIS is recovered by inhibition of retinoic acid degradation, and Adnp-derived NAP peptide (NAPVSIPQ) addition or P2X7 receptor inhibition, both regulated by retinoic acid levels. Moreover, P2X7 inhibitor treatment for 2 months impaired AIS disruption in APP/PS1 mice. Our findings extend current knowledge on AIS regulation, providing data to support the role of astrocytes in early postnatal AIS modulation. In conclusion, AD onset may be related to very early glial cell alterations that induce AIS and neuronal function changes, opening new therapeutic approaches to detect and avoid neuronal function loss.
Collapse
Affiliation(s)
- María José Benitez
- Instituto Cajal, CSIC, Madrid, Spain
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Lara Ordoñez-Gutiérrez
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Colmena
- Instituto Cajal, CSIC, Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
| | | | - Rebeca Álvarez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Wandosell
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan José Garrido
- Instituto Cajal, CSIC, Madrid, Spain.
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Liu CD, Peng Q, Wang SY, Deng Y, Li ZY, Xu ZH, Wu L, Zhang YD, Duan R. Circ_0008146 Exacerbates Ferroptosis via Regulating the miR-342-5p/ACSL4 Axis After Cerebral Ischemic/Reperfusion. J Inflamm Res 2024; 17:4957-4973. [PMID: 39077373 PMCID: PMC11284150 DOI: 10.2147/jir.s464655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Purpose Acute ischemic stroke (AIS) has seriously threatened people's health worldwide and there is an urge need for early diagnosis and effective treatment of AIS. This research intended to clarify the regulatory role of circ_0008146/miR-342-5p/ACSL4 axis in AIS. Methods High-throughput small RNA sequencing analysis was adapted to identify differentially expressed miRNAs between the AIS and control group. The circ_0008146, miR-342-5p, and ACSL4 levels were detected by qRT-PCR. Middle cerebral artery occlusion/reperfusion (MCAO/R) models were constructed in C57BL/6J mice. Assay kits were used to determine Fe2+ levels and a battery of oxidative stress and lipid peroxidation indicators, including ROS, MDA, LPO, SOD and GSH/GSSG ratio. The protein levels of ACSL4 were measured by Western blot. The behavioral function was assessed using neurobehavioral tests. TTC staining was employed to visualize infarction size. Nissl staining was adapted to detect histopathological changes. Receiver operating characteristic curve and correlation analysis were applied to investigate the clinical value and association of miR-342-5p and ACSL4. Results A total of 44 AIS patients and 49 healthy controls were enrolled in our study. The small RNA sequencing unveiled a significant decrease in miR-342-5p levels in AIS patients. MiR-342-5p inhibited oxidative stress and RSL3-induced ferroptosis after cerebral ischemic/reperfusion injury in vivo by targeting ferroptosis-related gene ACSL4. Circ_0008146 acted as a sponge of miR-342-5p, and overexpression of circ_0008146 increased neurological deficits and brain injury in mice. Circ_0008146 contributed to ferroptosis in cerebral infarction via sponging miR-342-5p to regulate ACSL4. Plasma miR-342-5p and ACSL4 demonstrated significant correlation and good diagnostic value for AIS patients. Conclusion This study provides the first in vivo evidence to show that circ_0008146 exacerbates neuronal ferroptosis after AIS via the miR-342-5p/ACSL4 axis. Furthermore, miR-342-5p/ACSL4 axis holds promise as a viable therapeutic target and practical biomarkers for AIS patients.
Collapse
Affiliation(s)
- Cai-Dong Liu
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Shi-Yao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Zhong-Yuan Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Zhao-Han Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Ying-Dong Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| |
Collapse
|
6
|
Wen Q, Wittens MMJ, Engelborghs S, van Herwijnen MHM, Tsamou M, Roggen E, Smeets B, Krauskopf J, Briedé JJ. Beyond CSF and Neuroimaging Assessment: Evaluating Plasma miR-145-5p as a Potential Biomarker for Mild Cognitive Impairment and Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1042-1054. [PMID: 38407050 PMCID: PMC10921410 DOI: 10.1021/acschemneuro.3c00740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. New strategies for the early detection of MCI and sporadic AD are crucial for developing effective treatment options. Current techniques used for diagnosis of AD are invasive and/or expensive, so they are not suitable for population screening. Cerebrospinal fluid (CSF) biomarkers such as amyloid β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau181 (P-tau181) levels are core biomarkers for early diagnosis of AD. Several studies have proposed the use of blood-circulating microRNAs (miRNAs) as potential novel early biomarkers for AD. We therefore applied a novel approach to identify blood-circulating miRNAs associated with CSF biomarkers and explored the potential of these miRNAs as biomarkers of AD. In total, 112 subjects consisting of 28 dementia due to AD cases, 63 MCI due to AD cases, and 21 cognitively healthy controls were included. We identified seven Aβ1-42-associated plasma miRNAs, six P-tau181-associated plasma miRNAs, and nine Aβ1-42-associated serum miRNAs. These miRNAs were involved in AD-relevant biological processes, such as PI3K/AKT signaling. Based on this signaling pathway, we constructed an miRNA-gene target network, wherein miR-145-5p has been identified as a hub. Furthermore, we showed that miR-145-5p performs best in the prediction of both AD and MCI. Moreover, miR-145-5p also improved the prediction performance of the mini-mental state examination (MMSE) score. The performance of this miRNA was validated using different datasets including an RT-qPCR dataset from plasma samples of 23 MCI cases and 30 age-matched controls. These findings indicate that blood-circulating miRNAs that are associated with CSF biomarkers levels and specifically plasma miR-145-5p alone or combined with the MMSE score can potentially be used as noninvasive biomarkers for AD or MCI screening in the general population, although studies in other AD cohorts are necessary for further validation.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Sebastiaan Engelborghs
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Marcel H. M. van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maria Tsamou
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Erwin Roggen
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Bert Smeets
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Julian Krauskopf
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
7
|
Vijayan M, Reddy PH. Unveiling the Role of Novel miRNA PC-5P-12969 in Alleviating Alzheimer's Disease. J Alzheimers Dis 2024; 98:1329-1348. [PMID: 38552115 DOI: 10.3233/jad-231281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background The intricate and complex molecular mechanisms that underlie the progression of Alzheimer's disease (AD) have prompted a concerted and vigorous research endeavor aimed at uncovering potential avenues for therapeutic intervention. Objective This study aims to elucidate the role of miRNA PC-5P-12969 in the pathogenesis of AD. Methods We assessed the differential expression of miRNA PC-5P-12969 in postmortem AD brains, AD animal and cell models using real-time reverse-transcriptase RT-PCR, we also checked the gene and protein expression of GSK3α and APP. Results Our investigation revealed a notable upregulation of miRNA PC-5P-12969 in postmortem brains of AD patients, in transgenic mouse models of AD, and in mutant APP overexpressing-HT22 cells. Additionally, our findings indicate that overexpression of miRNA PC-5P-12969 exerts a protective effect on cell survival, while concurrently mitigating apoptotic cell death. Further-more, we established a robust and specific interaction between miRNA PC-5P-12969 and GSK3α. Our luciferase reporter assays provided confirmation of the binding between miRNA PC-5P-12969 and the 3'-UTR of the GSK3α gene. Manipulation of miRNA PC-5P-12969 levels in cellular models of AD yielded noteworthy alterations in the gene and protein expression levels of both GSK3α and APP. Remarkably, the manipulation of miRNA PC-5P-12969 levels yielded significant enhancements in mitochondrial respiration and ATP production, concurrently with a reduction in mitochondrial fragmentation, thus unveiling a potential regulatory role of miRNA PC-5P-12969 in these vital cellular processes. Conclusions In summary, this study sheds light on the crucial role of miRNA PC-5P-12969 and its direct interaction with GSK3α in the context of AD.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
8
|
Vasconcelos CFM, Ribas VT, Petrs-Silva H. Shared Molecular Pathways in Glaucoma and Other Neurodegenerative Diseases: Insights from RNA-Seq Analysis and miRNA Regulation for Promising Therapeutic Avenues. Cells 2023; 12:2155. [PMID: 37681887 PMCID: PMC10486375 DOI: 10.3390/cells12172155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Advances in RNA-sequencing technologies have led to the identification of molecular biomarkers for several diseases, including neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's diseases and Amyotrophic Lateral Sclerosis. Despite the nature of glaucoma as a neurodegenerative disorder with several similarities with the other above-mentioned diseases, transcriptional data about this disease are still scarce. microRNAs are small molecules (~17-25 nucleotides) that have been found to be specifically expressed in the CNS as major components of the system regulating the development signatures of neurodegenerative diseases and the homeostasis of the brain. In this review, we sought to identify similarities between the functional mechanisms and the activated pathways of the most common neurodegenerative diseases, as well as to discuss how those mechanisms are regulated by miRNAs, using RNA-Seq as an approach to compare them. We also discuss therapeutically suitable applications for these disease hallmarks in clinical future studies.
Collapse
Affiliation(s)
- Carlos Franciney Moreira Vasconcelos
- University of Medicine of Göttingen, 37075 Göttingen, Germany
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vinicius Toledo Ribas
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Best MN, Lim Y, Ferenc NN, Kim N, Min L, Wang DB, Sharifi K, Wasserman AE, McTavish SA, Siller KH, Jones MK, Jenkins PM, Mandell JW, Bloom GS. Extracellular Tau Oligomers Damage the Axon Initial Segment. J Alzheimers Dis 2023:JAD221284. [PMID: 37182881 DOI: 10.3233/jad-221284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD) brain, neuronal polarity and synaptic connectivity are compromised. A key structure for regulating polarity and functions of neurons is the axon initial segment (AIS), which segregates somatodendritic from axonal proteins and initiates action potentials. Toxic tau species, including extracellular oligomers (xcTauOs), spread tau pathology from neuron to neuron by a prion-like process, but few other cell biological effects of xcTauOs have been described. OBJECTIVE Test the hypothesis that AIS structure is sensitive to xcTauOs. METHODS Cultured wild type (WT) and tau knockout (KO) mouse cortical neurons were exposed to xcTauOs, and quantitative western blotting and immunofluorescence microscopy with anti-TRIM46 monitored effects on the AIS. The same methods were used to compare TRIM46 and two other resident AIS proteins in human hippocampal tissue obtained from AD and age-matched non-AD donors. RESULTS Without affecting total TRIM46 levels, xcTauOs reduce the concentration of TRIM46 within the AIS and cause AIS shortening in cultured WT, but not TKO neurons. Lentiviral-driven tau expression in tau KO neurons rescues AIS length sensitivity to xcTauOs. In human AD hippocampus, the overall protein levels of multiple resident AIS proteins are unchanged compared to non-AD brain, but TRIM46 concentration within the AIS and AIS length are reduced in neurons containing neurofibrillary tangles. CONCLUSION xcTauOs cause partial AIS damage in cultured neurons by a mechanism dependent on intracellular tau, thereby raising the possibility that the observed AIS reduction in AD neurons in vivo is caused by xcTauOs working in concert with endogenous neuronal tau.
Collapse
Affiliation(s)
- Merci N Best
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Yunu Lim
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Nina N Ferenc
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Nayoung Kim
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dora Bigler Wang
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Kamyar Sharifi
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Anna E Wasserman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Sloane A McTavish
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Karsten H Siller
- Research Computing, University of Virginia, Charlottesville, VA, USA
| | - Marieke K Jones
- Claude Moore Health Sciences Library, University of Virginia, Charlottesville, VA, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James W Mandell
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Chmielewska N, Wawer A, Wicik Z, Osuch B, Maciejak P, Szyndler J. miR-9a-5p expression is decreased in the hippocampus of rats resistant to lamotrigine: A behavioural, molecular and bioinformatics assessment. Neuropharmacology 2023; 227:109425. [PMID: 36709037 DOI: 10.1016/j.neuropharm.2023.109425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
The major obstacle in developing new treatment strategies for refractory epilepsy is the complexity and poor understanding of its mechanisms. Utilizing the model of lamotrigine-resistant seizures, we evaluated whether changes in the expression of sodium channel subunits are responsible for the diminished responsiveness to lamotrigine (LTG) and if miRNAs, may also be associated. Male rats were administered LTG (5 mg/kg) before each stimulation during kindling acquisition. Challenge stimulation following LTG exposure (30 mg/kg) was performed to confirm resistance in fully kindled rats. RT-PCR was used to measure the mRNA levels of sodium channel subunits (SCN1A, SCN2A, and SCN3A) and miRNAs (miR-155-5p, miR-30b-5p, miR-137-3p, miR-342-5p, miR-301a-3p, miR-212-3p, miR-9a-5p, and miR-133a-3p). Western blot analysis was utilized to measure Nav1.2 protein, and bioinformatics tools were used to perform target prediction and enrichment analysis for miR-9a-5p, the only affected miRNA according to the responsiveness to LTG. Amygdala kindling seizures downregulated Nav1.2, miR-137-3p, miR-342-5p, miR-155-5p, and miR-9a-5p as well as upregulated miR-212-3p. miR-9a-5p was the only molecule decreased in rats resistant to LTG. The bioinformatic assessment and disease enrichment analysis revealed that miR-9a-5p targets expressed with high confidence in the hippocampus are the most significantly associated with epilepsy. Due to the miR-9a-5p dysregulation, major pathways affected are neurotrophic processes, neurotransmission, inflammatory response, cell proliferation and apoptosis. Interaction network analysis identified LTG target SCN2A as interacting with highest number of genes regulated by miR-9-5p. Further studies are needed to propose specific genes and miRNAs responsible for diminished responsiveness to LTG. miR-9a-5p targets, like KCNA4, KCNA2, CACNB2, SCN4B, KCNC1, should receive special attention in them.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland.
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Bartosz Osuch
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| |
Collapse
|
11
|
Boal AM, McGrady NR, Holden JM, Risner ML, Calkins DJ. Retinal ganglion cells adapt to ionic stress in experimental glaucoma. Front Neurosci 2023; 17:1142668. [PMID: 37051140 PMCID: PMC10083336 DOI: 10.3389/fnins.2023.1142668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionIdentification of early adaptive and maladaptive neuronal stress responses is an important step in developing targeted neuroprotective therapies for degenerative disease. In glaucoma, retinal ganglion cells (RGCs) and their axons undergo progressive degeneration resulting from stress driven by sensitivity to intraocular pressure (IOP). Despite therapies that can effectively manage IOP many patients progress to vision loss, necessitating development of neuronal-based therapies. Evidence from experimental models of glaucoma indicates that early in the disease RGCs experience altered excitability and are challenged with dysregulated potassium (K+) homeostasis. Previously we demonstrated that certain RGC types have distinct excitability profiles and thresholds for depolarization block, which are associated with sensitivity to extracellular K+.MethodsHere, we used our inducible mouse model of glaucoma to investigate how RGC sensitivity to K+ changes with exposure to elevated IOP.ResultsIn controls, conditions of increased K+ enhanced membrane depolarization, reduced action potential generation, and widened action potentials. Consistent with our previous work, 4 weeks of IOP elevation diminished RGC light-and current-evoked responses. Compared to controls, we found that IOP elevation reduced the effects of increased K+ on depolarization block threshold, with IOP-exposed cells maintaining greater excitability. Finally, IOP elevation did not alter axon initial segment dimensions, suggesting that structural plasticity alone cannot explain decreased K+ sensitivity.DiscussionThus, in response to prolonged IOP elevation RGCs undergo an adaptive process that reduces sensitivity to changes in K+ while diminishing excitability. These experiments give insight into the RGC response to IOP stress and lay the groundwork for mechanistic investigation into targets for neuroprotective therapy.
Collapse
|
12
|
Zhu H, Zhang Y, Zhu Y. MiR-342-5p protects neurons from cerebral ischemia induced-apoptosis through regulation of Akt/NF-κB pathways by targeting CCAR2. J Stroke Cerebrovasc Dis 2023; 32:106901. [PMID: 36434857 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Ischemic stroke causes high morbidity, mortality and health burden in the world. MiR-342-5p was associated with Alzheimer's disease and cardio-protection. Herein, we aimed to reveal effects of miR-342-5p on cerebral ischemia injury as well as novel targets for stroke. MATERIALS AND METHODS AgomiR-342-5p was intracerebroventricularly injected into the middle cerebral artery occlusion (MCAO) mouse models to evaluate functions of miR-342-5p on cerebral ischemia. RT-qPCR and western blot assays were used to evaluate genes expression. Oxygen-glucose deprivation (OGD) was used as an in vitro model for ischemia. Viability and apoptosis ratio of neurons was evaluated by CCK-8, LDH release detection, and flow cytometry. The potential targets of miR-342-5p were predicted by Targetscan, and their interaction was confirmed by luciferase assay. RESULTS The intervention of miR-342-5p effectively attenuated ischemic injury in MCAO mice. MiR-342-5p overexpression could protect neurons against OGD-induced injury, as revealed by increased cell viability and BCL2 expression, and decreased LDH release, apoptosis ratio, and BAX expression in OGD-induced neurons. Mechanically, miR-342-5p could directly bound with CCAR2 to inhibit its expression. Overexpressing CARR2 aggravated the OGD-induced injury of neurons, which was partly restrained by overexpressing miR-342-5p reversed. Furthermore, miR-342-5p/CARR2 axis regulates Akt/NF-κB signaling pathway in vitro as well as in vivo cerebral ischemia models. CONCLUSIONS MiR-342-5p inhibited neuron apoptosis by regulating Akt/NF-kB signaling pathway via CCAR2 suppression. Our findings revealed the neuroprotection of miR-342-5p in cerebral ischemia.
Collapse
Affiliation(s)
- Haochun Zhu
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| | - Yanhua Zhang
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| | - Yanling Zhu
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| |
Collapse
|
13
|
Circulating Small Extracellular Vesicle-Derived miR-342-5p Ameliorates Beta-Amyloid Formation via Targeting Beta-site APP Cleaving Enzyme 1 in Alzheimer's Disease. Cells 2022; 11:cells11233830. [PMID: 36497090 PMCID: PMC9741225 DOI: 10.3390/cells11233830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/12/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder with progressive cognitive impairment in the elderly. Beta-amyloid (Aβ) formation and its accumulation in the brain constitute one of the pathological hallmarks of AD. Until now, how to modulate Aβ formation in hippocampal neurons remains a big challenge. Herein, we investigated whether the exosomal transfer of microRNA (miR) relates to amyloid pathology in the recipient neuron cells. We isolated circulating small extracellular vesicles (sEVs) from AD patients and healthy controls, determined the miR-342-5p level in the sEVs by RT-PCR, and evaluated its diagnostic performance in AD. Then, we took advantage of biomolecular assays to estimate the role of miR-342-5p in modulating the amyloid pathway, including amyloid precursor protein (APP), beta-site APP cleaving enzyme 1 (BACE1), and Aβ42. Furthermore, we subjected HT22 cells to the sEVs from the hippocampal tissues of transgenic APP mice (Exo-APP) or C57BL/6 littermates (Exo-CTL), and the Exo-APP enriched with miR-342-5p mimics or the control to assess the effect of the sEVs' delivery of miR-342-5p on Aβ formation. We observed a lower level of miR-342-5p in the circulating sEVs from AD patients compared with healthy controls. MiR-342-5p participated in Aβ formation by modulating BACE1 expression, specifically binding its 3'-untranslated region (UTR) sequence. Exo-APP distinctly promoted Aβ42 formation in the recipient cells compared to Exo-CTL. Intriguingly, miR-342-5p enrichment in Exo-APP ameliorated amyloid pathology in the recipient cells. Our study indicated that miR-342-5p was dysregulated in human circulating sEVs from AD patients; sEV transfer of miR-342-5p ameliorates Aβ formation by modulating BACE1 expression. These findings highlight the promising potential of exosomal miRNAs in AD clinical therapy.
Collapse
|
14
|
Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy. Mol Neurobiol 2022; 59:4730-4746. [DOI: 10.1007/s12035-022-02878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
15
|
Kang X, Zhang ZP, Song CG, Liu L, Zhao Y, Du JL, Lai YB, Cao XL, Ye WM, Zhang YF, Zheng MH, Zeng YH, Sun XL, Wu SX, Gao F. γ-secretase inhibitor disturbs the morphological development of differentiating neurons through affecting Notch/miR-342-5p. Neurosci Lett 2022; 778:136603. [DOI: 10.1016/j.neulet.2022.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|
16
|
The largest isoform of Ankyrin-G is required for lattice structure of the axon initial segment. Biochem Biophys Res Commun 2021; 578:28-34. [PMID: 34534742 DOI: 10.1016/j.bbrc.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disease and a common dementia in elderly individuals. Previous studies found a strong correlation between axon initial segment (AIS) defects and AD, but it remains unclear whether AD itself changes the arrangement of AIS components, and the mechanisms by which adaptor proteins and ion channels in the AIS are disturbed in AD are not well understood. With super-resolution structured illumination microscopy (SIM) revealing axonal structures, here we imaged the lattice structure of completely assembled AIS in APP/PS1 neurons. By analyzing the images with Gaussian fitting and 1D mean autocorrelation, we found dual spacings (∼200 nm and ∼370 nm) of Ankyrin-G (AnkG), Nav1.2 and βIV-spectrin in AD model APP/PS1 mice due to the low-expressed 480-kDa AnkG. To identify the roles of each AnkG isoform, two isoforms were separately expressed in neurons from AnkG conditional knockout mice. Mice rescued with 270-kDa AnkG displayed dual spacings of AnkG components in cultured neurons and impaired in spatial memory, while transgenic mice expressing 480-kDa AnkG showed a normal molecular distribution in the AIS and normal cognitive performance. Our findings provide new insight into the mechanisms underlying impaired cognition associated with neurodegenerative diseases such as AD.
Collapse
|
17
|
The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71:101425. [PMID: 34384901 DOI: 10.1016/j.arr.2021.101425] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
In the past two decades, advances in sequencing technology and analysis of the human and mouse genome have led to the discovery of many non-protein-coding RNAs (ncRNAs) including: microRNA, small-interfering RNAs, piwi-associated small RNAs, transfer RNA-derived small RNAs, long-non-coding RNAs and circular RNAs. Compared with healthy controls, levels of some ncRNAs are significantly altered in the central nervous system and blood of patients affected by neurodegenerative disorders like Alzheimer's disease (AD). Although the mechanisms are still not fully elucidated, studies have revealed that these highly conserved ncRNAs are important modulators of gene expression, amyloid-β production, tau phosphorylation, inflammation, synaptic plasticity and neuronal survival, all features considered central to AD pathogenesis. Despite considerable difficulties due to their large heterogeneity, and the complexity of their regulatory pathways, research in this rapidly growing field suggests that ncRNAs hold great potential as biomarkers and therapeutic targets against AD. Herein, we summarize the current knowledge regarding the neurobiology of ncRNA in the context of AD pathophysiology.
Collapse
|
18
|
Dakterzada F, David Benítez I, Targa A, Lladó A, Torres G, Romero L, de Gonzalo-Calvo D, Moncusí-Moix A, Tort-Merino A, Huerto R, Sánchez-de-la-Torre M, Barbé F, Piñol-Ripoll G. Reduced Levels of miR-342-5p in Plasma Are Associated With Worse Cognitive Evolution in Patients With Mild Alzheimer's Disease. Front Aging Neurosci 2021; 13:705989. [PMID: 34497505 PMCID: PMC8421031 DOI: 10.3389/fnagi.2021.705989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background Progressive cognitive decline is the most relevant clinical symptom of Alzheimer’s disease (AD). However, the rate of cognitive decline is highly variable between patients. Synaptic deficits are the neuropathological event most correlated with cognitive impairment in AD. Considering the important role of microRNAs (miRNAs) in regulating synaptic plasticity, our objective was to identify the plasma miRNAs associated with the rate of cognitive decline in patients with mild AD. Methods We analyzed 754 plasma miRNAs from 19 women diagnosed with mild AD using TaqMan low-density array cards. The patients were grouped based on the rate of decline in the MMSE score after 2 years [<4 points (N = 11) and ≥4 points (N = 8)]. The differentially expressed miRNAs between the two groups were validated in an independent cohort of men and women (N = 53) with mild AD using RT-qPCR. Results In the discovery cohort, 17 miRNAs were differentially expressed according to the fold change between patients with faster declines in cognition and those with slower declines. miR-342-5p demonstrated differential expression between the groups and a good correlation with the rate of cognitive decline in the validation cohort (r = −0.28; p = 0.026). This miRNA had a lower expression level in patients who suffered from more severe decline than in those who were cognitively more stable after 2 years (p = 0.049). Conclusion Lower levels of miR-342-5p in plasma were associated with faster cognitive decline in patients with mild AD after 2 years of follow-up.
Collapse
Affiliation(s)
- Farida Dakterzada
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - Iván David Benítez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Adriano Targa
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut D'Investigacion Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - Leila Romero
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Adria Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut D'Investigacion Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Raquel Huerto
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Group of Precision Medicine in Chronic Diseases, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| |
Collapse
|
19
|
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021; 13:654978. [PMID: 34276336 PMCID: PMC8283767 DOI: 10.3389/fnagi.2021.654978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. AD is characterized by the production and aggregation of beta-amyloid (Aβ) peptides, hyperphosphorylated tau proteins that form neurofibrillary tangles (NFTs), and subsequent neuroinflammation, synaptic dysfunction, autophagy and oxidative stress. Non-coding RNAs (ncRNAs) can be used as potential therapeutic targets and biomarkers due to their vital regulatory roles in multiple biological processes involved in disease development. The involvement of ncRNAs in the pathogenesis of AD has been increasingly recognized. Here, we review the ncRNAs implicated in AD and elaborate on their main regulatory pathways, which might have contributions for discovering novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Zhao
- Institute of Biomedical Research, School for Life Science, Shandong University of Technology, Zibo, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Tang L, Xiang Q, Xiang J, Li J. lncRNA-Associated Competitive Endogenous RNA Regulatory Network in an Aβ 25-35-Induced AD Mouse Model Treated with Tripterygium Glycoside. Neuropsychiatr Dis Treat 2021; 17:1531-1541. [PMID: 34040378 PMCID: PMC8141406 DOI: 10.2147/ndt.s310271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tripterygium glycoside (TG) has been suggested to have protective effects on the diseases of the central nervous system including Alzheimer's disease (AD). The mechanisms involving lncRNA-associated competing endogenous RNAs (ceRNAs) were shown to play important roles in the development of AD. However, the ceRNA mechanism of TG in treating AD is still unknown. Thus, we aimed to explore the ceRNA mechanism in the treatment of AD with TG. METHODS A total of 32 C57BL/6J mice were administered 3 µL of Aβ25-35 (dual side, 1 mg/mL) by a single stereotactic injection in the brain to conduct AD mouse model. AD mouse models were randomly selected and divided into the AD+normal saline (NS) group (n=16) and the AD+TG group (n=16). The expression data of lncRNAs, mRNAs, and miRNAs in the hippocampus of mice from AD+NS group (n=3) and the AD+TG group (n=3) were obtained by microarray analysis. The MuTaME method was used to predict the ceRNA regulatory network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID database. A protein-protein interaction (PPI) network was constructed by using STRING software. RESULTS TG can significantly improve spatial memory and inhibit the production of p-tau in an Aβ25-35-induced AD mouse model. A total of 661 differentially expressed lncRNAs, 503 mRNAs, and 13 miRNAs were identified. A ceRNA network involving the top 200 mRNA-miRNA-lncRNA pairs with 16 lncRNAs, 11 miRNAs, and 52 mRNAs was visualized. And a PPI network complex filtered 26 gene nodes in DEGs was predicted. CONCLUSION We have identified 503 DEGs, 661 DElncRNAs, and 13 DEmiRNAs during treatment with TG in Aβ25-35-induced AD mouse model. A ceRNA network based on the DElncRNAs, DEmRNAs, and DEmiRNAs was conducted, which provided new insight into the lncRNA-mediated ceRNA regulatory mechanisms underlying the effects of TG in the treatment of AD.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, People’s Republic of China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, People’s Republic of China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, People’s Republic of China
- Academics Working Station, Changsha Medical College, Changsha, People’s Republic of China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, People’s Republic of China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, People’s Republic of China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, People’s Republic of China
- Academics Working Station, Changsha Medical College, Changsha, People’s Republic of China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, People’s Republic of China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, People’s Republic of China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, People’s Republic of China
- Academics Working Station, Changsha Medical College, Changsha, People’s Republic of China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, People’s Republic of China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, People’s Republic of China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, People’s Republic of China
- Academics Working Station, Changsha Medical College, Changsha, People’s Republic of China
- Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, 410100, People’s Republic of China
| |
Collapse
|
21
|
Circulating miR-342-5p serves as a diagnostic biomarker in patients with carotid artery stenosis and predicts the occurrence of the cerebral ischemic event. Ir J Med Sci 2021; 191:713-718. [PMID: 33844160 DOI: 10.1007/s11845-021-02623-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Carotid artery stenosis (CAS) is an important risk factor for cerebral ischemia events (CIE). Previous studies have shown that microRNAs (miRNAs) are involved in the occurrence and development of CAS. AIMS The purpose of this study was to reveal the clinical diagnostic value of miR-342-5p for asymptomatic CAS (ACAS) and to evaluate its predictive value for the occurrence of CIE in patients. METHODS A total of 92 ACAS patients and 86 healthy controls were enrolled as subjects. The expression level of serum miR-342-5p was detected by qRT-PCR. The receiver operating characteristic (ROC) curve was used to detect the diagnostic value of miR-342-5p in ACAS. Kaplan-Meier survival and Cox regression analysis assessed the predictive value of miR-342-5p for the occurrence of CIE in ACAS patients. RESULTS The level of serum miR-342-5p in ACAS patients was significantly higher than that in healthy controls (P < 0.05). ROC curve showed the high diagnostic value of serum miR-342-5p, which could distinguish ACAS patients from healthy controls. Multivariate Cox regression analysis confirmed that miR-342-5p was an independent predictor (HR = 5.512, 95%CI = 1.370-22.176, P = 0.016). What is more, Kaplan-Meier analysis confirmed that patients with high miR-342-5p expression develop more CIE (log-rank, P = 0.020). CONCLUSIONS miR-342-5p was significantly overexpressed in ACAS. And the upregulation of serum miR-342-5p is a valuable diagnostic biomarker and can predict the occurrence of CIE.
Collapse
|
22
|
Bhardwaj P, Kulasiri D, Samarasinghe S. Modeling protein-protein interactions in axon initial segment to understand their potential impact on action potential initiation. Neural Regen Res 2021; 16:700-706. [PMID: 33063731 PMCID: PMC8067952 DOI: 10.4103/1673-5374.295332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) region is crucial for action potential initiation due to the presence of high-density AIS protein voltage-gated sodium channels (Nav). Nav channels comprise several serine residues responsible for the recruitment of Nav channels into the structure of AIS through interactions with ankyrin-G (AnkG). In this study, a series of computational experiments are performed to understand the role of AIS proteins casein kinase 2 and AnkG on Nav channel recruitment into the AIS. The computational simulation results using Virtual cell software indicate that Nav channels with all serine sites available for phosphorylation bind to AnkG with strong affinity. At the low initial concentration of AnkG and casein kinase 2, the concentration of Nav channels reduces significantly, suggesting the importance of casein kinase 2 and AnkG in the recruitment of Nav channels.
Collapse
Affiliation(s)
- Piyush Bhardwaj
- Centre of Advanced Computational Solutions (C-fACS); Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre of Advanced Computational Solutions (C-fACS); Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre of Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
23
|
Cenni V, Capanni C, Mattioli E, Schena E, Squarzoni S, Bacalini MG, Garagnani P, Salvioli S, Franceschi C, Lattanzi G. Lamin A involvement in ageing processes. Ageing Res Rev 2020; 62:101073. [PMID: 32446955 DOI: 10.1016/j.arr.2020.101073] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge, University Hospital, Stockholm, Sweden
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Center Alma Mater Research Institute on Global Challenges and Climate Changes, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
24
|
Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSDF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020; 21:E4977. [PMID: 32674523 PMCID: PMC7403962 DOI: 10.3390/ijms21144977] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the most common neurodegenerative diseases, affecting middle-aged and elderly individuals worldwide. AD pathophysiology involves the accumulation of beta-amyloid plaques and neurofibrillary tangles in the brain, along with chronic neuroinflammation and neurodegeneration. Physical exercise (PE) is a beneficial non-pharmacological strategy and has been described as an ally to combat cognitive decline in individuals with AD. However, the molecular mechanisms that govern the beneficial adaptations induced by PE in AD are not fully elucidated. MicroRNAs are small non-coding RNAs involved in the post-transcriptional regulation of gene expression, inhibiting or degrading their target mRNAs. MicroRNAs are involved in physiological processes that govern normal brain function and deregulated microRNA profiles are associated with the development and progression of AD. It is also known that PE changes microRNA expression profile in the circulation and in target tissues and organs. Thus, this review aimed to identify the role of deregulated microRNAs in the pathophysiology of AD and explore the possible role of the modulation of microRNAs as a molecular mechanism involved in the beneficial actions of PE in AD.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleys´ Jequitinhonha and Mucuri, Minas Gerais 30000-000, Brazil;
| | - Roque Aras Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| |
Collapse
|
25
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Han M, Zhao Y, Song W, Wang C, Mu C, Li R. Changes in microRNAs Expression Profile of Mimetic Aging Mice Treated with Melanin from Sepiella japonica Ink. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5616-5622. [PMID: 32345009 DOI: 10.1021/acs.jafc.0c00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A natural melanin extracted from Sepiella japonica ink (MSJI) is a polymer with antioxidant properties. In this study, the effects of MSJI treatment on microRNAs differentially expressed during aging in mimetic mice were investigated. The results revealed that 8 miRNAs: mmu-miR-1971, mmu-miR-3070b-3p, mmu-miR-320-3p, mmu-miR-342-3p, mmu-miR-350-3p, mmu-miR-5132-5p, mmu-miR-697, and mmu-miR-712-5p showed significantly different expression between mice treated with MSJI gavage and aging mice. GO analysis and signaling pathway analysis revealed that the predicted target genes were involved in diverse biological processes such as steroid and cholesterol metabolism, xenobiotic, demethylation, and circadian regulation of gene expression, suggesting a potential role in antiaging. The dual-luciferase reporter gene assay confirmed the downregulation of mmu-miR-697 in HS samples and targeting of the Gpt2 which plays an important role in aging. This study supports the hypothesis that MSJI prolongs the cell cycle by acting as an antioxidant to delay decrepitude.
Collapse
Affiliation(s)
- Meng Han
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
| | - Yun Zhao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
27
|
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20236055. [PMID: 31801298 PMCID: PMC6929013 DOI: 10.3390/ijms20236055] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies. Albeit often considered separately, microRNA networks and oxidative stress are inextricably entwined in neurodegenerative processes. Oxidative stress affects expression levels of multiple microRNAs and, conversely, microRNAs regulate many genes involved in an oxidative stress response. Both oxidative stress and microRNA regulatory networks also influence other processes linked to neurodegeneration, such as mitochondrial dysfunction, deregulation of proteostasis, and increased neuroinflammation, which ultimately lead to neuronal death. Modulating the levels of a relatively small number of microRNAs may therefore alleviate pathological oxidative damage and have neuroprotective activity. Here, we review the role of individual microRNAs in oxidative stress and related pathways in four neurodegenerative conditions: Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) disease, and amyotrophic lateral sclerosis (ALS). We also discuss the problems associated with the use of oversimplified cellular models and highlight perspectives of studying microRNA regulation and oxidative stress in human stem cell-derived neurons.
Collapse
Affiliation(s)
- Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Dmytro Gerasymchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Institute of Molecular Biology and Genetics, NASU, Kyiv 03143, Ukraine
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Correspondence: ; Tel.: +358-50-448-4545
| |
Collapse
|
28
|
Lee JA, Hwang SJ, Hong SC, Myung CH, Lee JE, Park JI, Hwang JS. Identification of MicroRNA Targeting Mlph and Affecting Melanosome Transport. Biomolecules 2019; 9:biom9070265. [PMID: 31288473 PMCID: PMC6681522 DOI: 10.3390/biom9070265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/13/2023] Open
Abstract
Melanosomes undergo a complex maturation process and migrate into keratinocytes. Melanophilin (Mlph), a protein complex involving myosin Va (MyoVa) and Rab27a, enables the movement of melanosomes in melanocytes. In this study, we found six miRNAs targeting Mlph in mouse using two programs (http://targetscan.org and DianaTools). When melan-a melanocytes were treated with six synthesized microRNAs, miR-342-5p, miR-1839-5p, and miR-3082-5p inhibited melanosome transport and induced melanosome aggregation around the nucleus. The other microRNAs, miR-5110, miR-3090-3p, and miR-186-5p, did not inhibit melanosome transport. Further, miR-342-5p, miR-1839-5p, and miR-3082-5p decreased Mlph expression. The effect of miR-342-5p was the strongest among the six synthesized miRNAs. It inhibited melanosome transport in melan-a melanocytes and reduced Mlph expression in mRNA and protein levels in a dose-dependent manner; however, it did not affect Rab27a and MyoVa expressions, which are associated with melanosome transport. To examine miR-342-5p specificity, we performed luciferase assays in a mouse melanocyte-transfected reporter vector including Mlph at the 3′-UTR (untranslated region). When treated with miR-342-5p, luciferase activity that had been reduced by approximately 50% was restored after inhibitor treatment. Therefore, we identified a novel miRNA affecting Mlph and melanosome transport, and these results can be used for understanding Mlph expression and skin pigmentation regulation.
Collapse
Affiliation(s)
- Jeong Ah Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Seok Joon Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Sung Chan Hong
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea.
| |
Collapse
|
29
|
Patel AA, Ganepola GA, Rutledge JR, Chang DH. The Potential Role of Dysregulated miRNAs in Alzheimer’s Disease Pathogenesis and Progression. J Alzheimers Dis 2019; 67:1123-1145. [DOI: 10.3233/jad-181078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ankur A. Patel
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - Ganepola A.P. Ganepola
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - John R. Rutledge
- Department of Oncology Special Program, The Daniel and Gloria Blumenthal Cancer Center, The Valley Hospital, Paramus, NJ, USA
| | - David H. Chang
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| |
Collapse
|
30
|
Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 2018; 29:161-182. [PMID: 28941357 DOI: 10.1515/revneuro-2017-0042] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
Abstract
Pathology of Alzheimer's disease (AD) goes far beyond neurotoxicity resulting from extracellular deposition of amyloid β (Aβ) plaques. Aberrant cleavage of amyloid precursor protein and accumulation of Aβ in the form of the plaque or neurofibrillary tangles are the known primary culprits of AD pathogenesis and target for various regulatory mechanisms. Hyper-phosphorylation of tau, a major component of neurofibrillary tangles, precipitates its aggregation and prevents its clearance. Lipid particles, apolipoproteins and lipoprotein receptors can act in favor or against Aβ and tau accumulation by altering neural membrane characteristics or dynamics of transport across the blood-brain barrier. Lipids also alter the oxidative/anti-oxidative milieu of the central nervous system (CNS). Irregular cell cycle regulation, mitochondrial stress and apoptosis, which follow both, are also implicated in AD-related neuronal loss. Dysfunction in synaptic transmission and loss of neural plasticity contribute to AD. Neuroinflammation is a final trail for many of the pathologic mechanisms while playing an active role in initiation of AD pathology. Alterations in the expression of microRNAs (miRNAs) in AD and their relevance to AD pathology have long been a focus of interest. Herein we focused on the precise pathomechanisms of AD in which miRNAs were implicated. We performed literature search through PubMed and Scopus using the search term: ('Alzheimer Disease') OR ('Alzheimer's Disease') AND ('microRNAs' OR 'miRNA' OR 'MiR') to reach for relevant articles. We show how a limited number of common dysregulated pathways and abnormal mechanisms are affected by various types of miRNAs in AD brain.
Collapse
Affiliation(s)
- Reihaneh Dehghani
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| | - Farzaneh Rahmani
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| |
Collapse
|
31
|
Barrio-Alonso E, Hernández-Vivanco A, Walton CC, Perea G, Frade JM. Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci Rep 2018; 8:14316. [PMID: 30254284 PMCID: PMC6156334 DOI: 10.1038/s41598-018-32708-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/14/2018] [Indexed: 11/09/2022] Open
Abstract
Cell cycle reentry followed by neuronal hyperploidy and synaptic failure are two early hallmarks of Alzheimer's disease (AD), however their functional connection remains unexplored. To address this question, we induced cell cycle reentry in cultured cortical neurons by expressing SV40 large T antigen. Cell cycle reentry was followed by hyperploidy in ~70% of cortical neurons, and led to progressive axon initial segment loss and reduced density of dendritic PSD-95 puncta, which correlated with diminished spike generation and reduced spontaneous synaptic activity. This manipulation also resulted in delayed cell death, as previously observed in AD-affected hyperploid neurons. Membrane depolarization by high extracellular potassium maintained PSD-95 puncta density and partially rescued both spontaneous synaptic activity and cell death, while spike generation remained blocked. This suggests that AD-associated hyperploid neurons can be sustained in vivo if integrated in active neuronal circuits whilst promoting synaptic dysfunction. Thus, cell cycle reentry might contribute to cognitive impairment in early stages of AD and neuronal death susceptibility at late stages.
Collapse
Affiliation(s)
- E Barrio-Alonso
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - A Hernández-Vivanco
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - C C Walton
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - G Perea
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - J M Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain.
| |
Collapse
|
32
|
Iranifar E, Seresht BM, Momeni F, Fadaei E, Mehr MH, Ebrahimi Z, Rahmati M, Kharazinejad E, Mirzaei H. Exosomes and microRNAs: New potential therapeutic candidates in Alzheimer disease therapy. J Cell Physiol 2018; 234:2296-2305. [DOI: 10.1002/jcp.27214] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Elmira Iranifar
- Torbat Heydariyeh University of Medical SciencesTorbat Heydariyeh Iran
| | | | - Fatemeh Momeni
- General Practitioner, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvaz Iran
| | - Elyas Fadaei
- Faculty of MedicineIslamic Azad University of NajafabadNajafabad Iran
| | - Maysam Havasi Mehr
- Department of PhysiologySchool of Medicine, Iran University of Medical SciencesTehran Iran
| | - Zahra Ebrahimi
- Department of Medical Biotechnology and Molecular SciencesSchool of Medicine, North Khorasan University of Medical SciencesBojnurd Iran
| | - Majid Rahmati
- Department of Medical BiotechnologySchool of Medicine, Shahroud University of Medical SciencesShahroud Iran
| | | | - Hamed Mirzaei
- Department of BiomaterialsTissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical SciencesIsfahan Iran
| |
Collapse
|
33
|
Zhang CL, Liu X, He QJ, Zheng H, Xu S, Xiong XD, Yuan Y, Ruan J, Li JB, Xing Y, Zhou Z, Deng S. miR‑342‑5p promotes Zmpste24‑deficient mouse embryonic fibroblasts proliferation by suppressing GAS2. Mol Med Rep 2017; 16:8944-8952. [PMID: 28990109 PMCID: PMC5779978 DOI: 10.3892/mmr.2017.7731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular senescence is an irreversible growth arrest of cells that maintain their metabolic activities. Premature senescence can be induced by different stress factors and occurs in mouse embryonic fibroblasts (MEFs) derived from Zmpste24 metalloproteinase-deficient mice, a progeria mouse model of Hutchinson-Gilford Progeria Syndrome. Previous studies have shown that miR-342-5p, an intronic microRNA (miRNA/miR) reportedly involved in ageing associated diseases, is downregulated in Zmpste24−/− MEFs. However, whether miR-342-5p is associated with the premature senescence phenotype of Zmpste24−/− MEFs remains unclear. Thus, the present study investigated the effects of miR-342-5p on cellular senescence and cell proliferation in Zmpste24−/− MEFs. The results showed that miR-342-5p overexpression ameliorated the cellular senescence phenotype to a certain extent, promoted cell proliferation and increased the G2+M cell cycle phase in Zmpste24−/− MEFs. Nonetheless, it was difficult to observe the opposite cell phenotypes in wild-type (WT) MEFs transfected with the miR-342-5p inhibitor. Growth-arrest-specific 2 (GAS2) was identified as a target gene of miR-342-5p in Zmpste24−/− MEFs. In addition, miR-342-5p was identified to be downregulated in WT MEFs during replicative senescence, while Gas2 was upregulated. Taken together, these findings suggest that downregulated miR-342-5p is involved in regulating cell proliferation and cell cycles in Zmpste24−/− MEFs by suppressing GAS2 in vitro.
Collapse
Affiliation(s)
- Chun-Long Zhang
- Laboratory of Forensic Medicine and Biomedical Information, College of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinguang Liu
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Qiu-Jing He
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Huiling Zheng
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shun Xu
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xing-Dong Xiong
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yuan Yuan
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jie Ruan
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiang-Bin Li
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yu Xing
- Laboratory of Forensic Medicine and Biomedical Information, College of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhongjun Zhou
- Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shixiong Deng
- Laboratory of Forensic Medicine and Biomedical Information, College of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
34
|
AnkG hemizygous mice present cognitive impairment and elevated anxiety/depressive-like traits associated with decreased expression of GABA receptors and postsynaptic density protein. Exp Brain Res 2017; 235:3375-3390. [PMID: 28821923 DOI: 10.1007/s00221-017-5056-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Recent genome-wide association studies (GWAS) of patient populations and genetic linkage assessments have demonstrated that the ankyrin-G (AnkG) gene is involved in neuropsychiatric disorders, including bipolar disorder, schizophrenia, and Alzheimer's disease, but it remains unclear how the genetic variants of AnkG contribute to neuropsychiatric disorders. Here, we generated AnkG hemizygous mice using the gene trapping approach. Homozygous AnkG was embryonically lethal. Western blotting and real-time polymerase chain reaction (qPCR) assessments of wild type (WT) and AnkG +/- mutant mice demonstrated a 50% reduction of ANKG levels, at the gene and protein levels, in AnkG hemizygous mice. In behavioral tests, AnkG hemizygous mice exhibited elevated anxiety- and depression-like traits, as well as cognitive impairment. Moreover, the expression levels of cognitive-related proteins (including metabotropic glutamate receptor subtype-1, brain-derived neurotrophic factor, postsynaptic density-95, GABA-B receptor, and GABA-A receptor alpha-1) were significantly decreased (P < 0.05), suggesting a possible role for AnkG in cognition. It is possible that the loss of AnkG in the brain disrupts the excitation/inhibition balance of neurotransmitters, hindering the synaptic plasticity of neurons, and consequently leading to abnormal behavioral symptoms. Therefore, AnkG possibly contributes to neuroprotection and normal brain function, and may constitute a new target for treating neuropsychiatric diseases, especially cognitive dysfunction.
Collapse
|
35
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
36
|
Prasad KN. Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease. Mech Ageing Dev 2017; 162:63-71. [DOI: 10.1016/j.mad.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022]
|
37
|
Ota M, Hori H, Sato N, Yoshida F, Hattori K, Teraishi T, Kunugi H. Effects of ankyrin 3 gene risk variants on brain structures in patients with bipolar disorder and healthy subjects. Psychiatry Clin Neurosci 2016; 70:498-506. [PMID: 27488254 DOI: 10.1111/pcn.12431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 07/01/2016] [Accepted: 07/31/2016] [Indexed: 01/26/2023]
Abstract
AIM The intronic single-nucleotide polymorphism rs10994336 of the ankyrin 3 gene (ANK3 ) is one of the genome-wide supported risk variants for bipolar disorder (BD), and the T-allele of rs10761482 is also reported to have relevance to BD. We investigated the effect of ANK3 rs10761482 genetic variation on brain structure. METHODS Subjects were 43 BD patients and 229 healthy volunteers. We evaluated the effects of ANK3 rs10761482 genetic variation on diagnosis, and of the genotype-by-diagnosis interaction on the brain structure and the degree of age-related brain atrophy on magnetic resonance imaging data evaluated by voxel-based morphometry. RESULTS BD patients showed significantly lower fractional anisotropy value in the bilateral parietal regions, left fronto-occipital fasciculus, and corpus callosum, compared to healthy subjects. Further, we found considerable decreases of fractional anisotropy in the forceps minor in non-T-allele BD patients compared with the T-carrier patient group. We also found significant lessening of age-related brain atrophy in the T-allele carrier groups compared with the non-T-allele carrier groups in the area around the cerebrospinal space, cingulate cortices, and cerebellum. CONCLUSION Our results suggest the influence of the ANK3 on age-related brain atrophy. The ankyrin 3 genotype may be associated with pathogenesis of age-related neurodegeneration, and, in part, of BD.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Fuyuko Yoshida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
38
|
Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity. Neural Plast 2016; 2016:6808293. [PMID: 27493806 PMCID: PMC4967436 DOI: 10.1155/2016/6808293] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/22/2016] [Indexed: 12/28/2022] Open
Abstract
The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability.
Collapse
|
39
|
Zhang B, Wang LL, Ren RJ, Dammer EB, Zhang YF, Huang Y, Chen SD, Wang G. MicroRNA-146a represses LRP2 translation and leads to cell apoptosis in Alzheimer's disease. FEBS Lett 2016; 590:2190-200. [PMID: 27241555 DOI: 10.1002/1873-3468.12229] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
MicroRNA regulation of transcript expression has been reported in patients with Alzheimer's disease (AD). Here, we investigate the role of microRNA-146a (miRNA-146a), a brain-enriched miRNA, which is upregulated in AD patients. Through analysis of predicted targets of miRNA-146a, low-density lipoprotein receptor-related protein-2 (Lrp2), a member of the LDLR family that is known to play a protective role in AD, was identified. Overexpression of miRNA-146a in SH-SY5Y cells significantly decreased Lrp2 expression, resulting in a reduction of Akt activation and induction of proapoptotic caspase-3, thereby increasing cell apoptosis. Thus, specific miRNA-146a regulation may contribute to AD by downregulating the Lrp2/Akt pathway.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, China
| | - Li-Ling Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Eric B Dammer
- Department of Biochemistry and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong-Fang Zhang
- Research Laboratory of Cell Regulation, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Huang
- School of Medical Sciences, The University of New South Wales, Randwick, Australia
| | - Sheng-Di Chen
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, China
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
40
|
|
41
|
Ren RJ, Zhang YF, Dammer EB, Zhou Y, Wang LL, Liu XH, Feng BL, Jiang GX, Chen SD, Wang G, Cheng Q. Peripheral Blood MicroRNA Expression Profiles in Alzheimer’s Disease: Screening, Validation, Association with Clinical Phenotype and Implications for Molecular Mechanism. Mol Neurobiol 2015; 53:5772-81. [DOI: 10.1007/s12035-015-9484-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
42
|
Pan Y, Liu R, Terpstra E, Wang Y, Qiao F, Wang J, Tong Y, Pan B. Dysregulation and Diagnostic Potential of microRNA in Alzheimer’s Disease. J Alzheimers Dis 2015; 49:1-12. [DOI: 10.3233/jad-150451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoqian Pan
- Department of Veterinary Pathology, College of Animal Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruizhu Liu
- China-Japan Union Hospital Jilin University, Changchun, Jilin, China
| | - Erin Terpstra
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Yanqing Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Fangfang Qiao
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Jin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Lab of Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Pan
- Department of Veterinary Pathology, College of Animal Sciences, Henan Institute of Science and Technology, Xinxiang, China
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Lab of Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Li F, Wei G, Bai Y, Li Y, Huang F, Lin J, Hou Q, Deng R, Zhou JH, Zhang SX, Chen DF. MicroRNA-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin. Brain Res 2015; 1627:177-88. [PMID: 26423933 DOI: 10.1016/j.brainres.2015.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. The recent evidence in AD research suggests that alterations in the microRNA (miRNA) could contribute to risk for the disease. However, little is understood about the roles of miRNAs in cognitive impairment of early Alzheimer's disease (AD). Here, we used 5-month-old APP/PS1 mice, which mimic many of the salient features of the early stage of AD pathological process, to further investigate the roles of miRNAs in synaptic loss involved in learning and memory. We used miRNA expression microarrays on RNA extracted from the hippocampus of 5-month-old APP/PS1 mice and wild type mice. Real-time reverse transcription PCR was conducted to verify the candidate miRNAs discovered by microarray analysis. The data showed that miR-574 was increased significantly in the hippocampus of 5-month-old APP/PS1 mice, which were concomitant with that APP/PS1 mice at the same age displayed a significant synaptic loss and cognitive deficits. Bioinformatic analysis predicted that neuritin (Nrn1) mRNA is targeted by miR-574. Overexpression of miR-574 lowers the levels of neuritin and synaptic proteins expression in primary hippocampal neurons damage induced by Aβ25-35. And the expression of miR-574 was also up-regulated in the hippocampal neurons from APP/PS1 mice compared with WT littermates. In contrast, suppression of miR-574 by miR-574 inhibitor significantly results in higher levels of neuritin and synaptic proteins expression. Taken together, miR-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin.
Collapse
Affiliation(s)
- Fei Li
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Gang Wei
- Research & Development of New Drugs, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ye Bai
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yunjun Li
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Fengyuan Huang
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jian Lin
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qiuke Hou
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Rudong Deng
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jian Hong Zhou
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Sai Xia Zhang
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Dong Feng Chen
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
44
|
Song F, Han G, Bai Z, Peng X, Wang J, Lei H. Alzheimer's Disease: Genomics and Beyond. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:1-24. [PMID: 26315760 DOI: 10.1016/bs.irn.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a major form of senile dementia. Despite the critical roles of Aβ and tau in AD pathology, drugs targeting Aβ or tau have so far reached limited success. The advent of genomic technologies has made it possible to gain a more complete picture regarding the molecular network underlying the disease progression which may lead to discoveries of novel treatment targets. In this review, we will discuss recent progresses in AD research focusing on genome, transcriptome, epigenome, and related subjects. Advancements have been made in the finding of novel genetic risk factors, new hypothesis for disease mechanism, candidate biomarkers for early diagnosis, and potential drug targets. As an integration effort, we have curated relevant data in a database named AlzBase.
Collapse
Affiliation(s)
- Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Jiajia Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, PR China.
| |
Collapse
|
45
|
Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, Han S, Li J. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 2014; 1592:22-33. [DOI: 10.1016/j.brainres.2014.09.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 01/23/2023]
|
46
|
Molecular mechanism of regulation of villus cell Na-K-ATPase in the chronically inflamed mammalian small intestine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:702-11. [PMID: 25462166 DOI: 10.1016/j.bbamem.2014.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 11/24/2022]
Abstract
Na-K-ATPase located on the basolateral membrane (BLM) of intestinal epithelial cells provides a favorable intracellular Na+ gradient to promote all Na dependent co-transport processes across the brush border membrane (BBM). Down-regulation of Na-K-ATPase activity has been postulated to alter the absorption via Na-solute co-transporters in human inflammatory bowel disease (IBD). Further, the altered activity of a variety of Na-solute co-transporters in intact villus cells has been reported in animal models of chronic enteritis. But the molecular mechanism of down-regulation of Na-K-ATPase is not known. In the present study, using a rabbit model of chronic intestinal inflammation, which resembles human IBD, Na-K-ATPase in villus cells was shown to decrease. The relative mRNA abundance of α-1 and β-1 subunits was not altered in villus cells during chronic intestinal inflammation. Similarly, the protein levels of these subunits were also not altered in villus cells during chronic enteritis. However, the BLM concentration of α-1 and β-1 subunits was diminished in the chronically inflamed intestinal villus cells. An ankyrin-spectrin skeleton is necessary for the proper trafficking of Na-K-ATPase to the BLM of the cell. In the present study, ankyrin expression was markedly diminished in villus cells from the chronically inflamed intestine resulting in depolarization of ankyrin-G protein. The decrease of Na-K-ATPase activity was comparable to that seen in ankyrin knockdown IEC-18 cells. Therefore, altered localization of Na-K-ATPase as a result of transcriptional down-regulation of ankyrin-G mediates the down-regulation of Na-K-ATPase activity during chronic intestinal inflammation.
Collapse
|
47
|
Selective filtering defect at the axon initial segment in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 2014; 111:14271-6. [PMID: 25232037 DOI: 10.1073/pnas.1411837111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Axon pathology has been widely reported in Alzheimer's disease (AD) patients and AD mouse models. Herein we report that increased miR-342-5p down-regulates the expression of ankyrin G (AnkG), a protein known to play a critical role in establishing selective filtering machinery at the axon initial segment (AIS). Diminished AnkG expression leads to defective AIS filtering in cultured hippocampal neurons from AD mouse models, as monitored by selective exclusion of large macromolecules from the axons. Furthermore, AnkG-deficiency impairs AIS localization of Nav 1.6 channels and confines NR2B to the somatodendritic compartments. The expression of exogenous AnkG improved the cognitive performance of 12-mo-old APP/PS1 mice; thus, our data suggest that AnkG and impairment of AIS filtering may play important roles in AD pathology.
Collapse
|
48
|
MicroRNA and diseases: therapeutic potential as new generation of drugs. Biochimie 2014; 104:12-26. [PMID: 24859535 DOI: 10.1016/j.biochi.2014.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/08/2014] [Indexed: 01/01/2023]
Abstract
MicroRNA (miRNA) is a small non-coding regulatory RNA of 21-25 nucleotides (nts) in length. miRNA works as a post-transcriptional regulator of a specific mRNA by inducing degradation or translation repression resulting in gene silencing. A large number of miRNA have been reported and many more are yet to be discovered. Aberrant expression of miRNA has been linked to numerous diseases. Attempts have been made to attenuate miRNA misregulation under pathophysiological conditions. Additionally, the potential use of miRNA in the diagnosis and treatment of diseases has been studied. Several preclinical and clinical results have been obtained, and miRNA-based therapeutics are still under investigations. In this review, the role of miRNA in a variety of pathological conditions has been summarized. Recent findings from preclinical and clinical investigations examining the role of miRNA as diagnostic markers, and their potential as drug candidates, are also highlighted. The current results summarized in this review may elucidate new dimensions of miRNA therapeutic and diagnostic techniques for biomedical academic and industry research.
Collapse
|