1
|
Driscoll S, Merkuri F, Chain FJJ, Fish JL. Splicing is dynamically regulated during limb development. Sci Rep 2024; 14:19944. [PMID: 39198579 PMCID: PMC11358489 DOI: 10.1038/s41598-024-68608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Modifications to highly conserved developmental gene regulatory networks are thought to underlie morphological diversification in evolution and contribute to human congenital malformations. Relationships between gene expression and morphology have been extensively investigated in the limb, where most of the evidence for alterations to gene regulation in development consists of pre-transcriptional mechanisms that affect expression levels, such as epigenetic alterations to regulatory sequences and changes to cis-regulatory elements. Here we report evidence that alternative splicing (AS), a post-transcriptional process that modifies and diversifies mRNA transcripts, is dynamic during limb development in two mammalian species. We evaluated AS patterns in mouse (Mus musculus) and opossum (Monodelphis domestica) across the three key limb developmental stages: the ridge, bud, and paddle. Our data show that splicing patterns are dynamic over developmental time and suggest differences between the two mammalian taxa. Additionally, multiple key limb development genes, including Fgf8, are differentially spliced across the three stages in both species, with expression levels of the conserved splice variants, Fgf8a and Fgf8b, changing across developmental time. Our data demonstrates that AS is a critical mediator of mRNA diversity in limb development and provides an additional mechanism for evolutionary tweaking of gene dosage.
Collapse
Affiliation(s)
- Sean Driscoll
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
2
|
Song C, Xie K, Chen H, Xu S, Mao H. Wheat ESCRT-III protein TaSAL1 regulates male gametophyte transmission and controls tillering and heading date. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2372-2384. [PMID: 38206130 DOI: 10.1093/jxb/erae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.
Collapse
Affiliation(s)
- Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaidi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Hao Y, Song Y, Chen F, Tang J. Whole genome resequencing reveals candidate genes for postaxial polydactyly in Large White pigs. Anim Genet 2024; 55:277-281. [PMID: 38282540 DOI: 10.1111/age.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Polydactyly is a genetic abnormality that affects both pig welfare and industry profits. Despite efforts to explore the genetic basis of pig polydactyly, progress remains limited. In this study, we analyzed a group of Large White pigs with postaxial polydactyly, including 29 cases and 79 controls from 24 families. High-depth sequencing was performed on 20 pigs, while low-depth sequencing was improved through imputation for the remaining pigs. A genome-wide association study (GWAS) and genetic differentiation were conducted using the resequencing dataset, resulting in the identification of 48 significantly associated SNPs and 27 candidate regions. The genetic differentiation regions on chromosomes 5 and 18, which harbored GWAS-identified SNPs, were delineated as confidence regions. The confidence region at Chr18: 1.850-1.925 Mb covers the fifth intron of LMBR1, a gene that contains an important regulatory element for SHH, known as ZRS. Mutations in this ZRS have been found to cause polydactyly in animals and humans. Therefore, we propose LMBR1 as a prospective candidate gene for postaxial polydactyly. These findings emphasize the importance of exploring the role of ZRS within LMBR1 in the pathogenesis of polydactyly in pigs.
Collapse
Affiliation(s)
- Yongle Hao
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Yunlei Song
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Fei Chen
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Jiangxi, China
| |
Collapse
|
4
|
Hermosilla Aguayo V, Martin P, Tian N, Zheng J, Aho R, Losa M, Selleri L. ESCRT-dependent control of craniofacial morphogenesis with concomitant perturbation of NOTCH signaling. Dev Biol 2023; 503:25-42. [PMID: 37573008 DOI: 10.1016/j.ydbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Craniofacial development is orchestrated by transcription factor-driven regulatory networks, epigenetic modifications, and signaling pathways. Signaling molecules and their receptors rely on endo-lysosomal trafficking to prevent accumulation on the plasma membrane. ESCRT (Endosomal Sorting Complexes Required for Transport) machinery is recruited to endosomal membranes enabling degradation of such endosomal cargoes. Studies in vitro and in invertebrate models established the requirements of the ESCRT machinery in membrane remodeling, endosomal trafficking, and lysosomal degradation of activated membrane receptors. However, investigations during vertebrate development have been scarce. By ENU-induced mutagenesis, we isolated a mouse line, Vps25ENU/ENU, carrying a hypomorphic allele of the ESCRT-II component Vps25, with craniofacial anomalies resembling features of human congenital syndromes. Here, we assessed the spatiotemporal dynamics of Vps25 and additional ESCRT-encoding genes during murine development. We show that these genes are ubiquitously expressed although enriched in discrete domains of the craniofacial complex, heart, and limbs. ESCRT-encoding genes, including Vps25, are expressed in both cranial neural crest-derived mesenchyme and epithelium. Unlike constitutive ESCRT mutants, Vps25ENU/ENU embryos display late lethality. They exhibit hypoplastic lower jaw, stunted snout, dysmorphic ear pinnae, and secondary palate clefting. Thus, we provide the first evidence for critical roles of ESCRT-II in craniofacial morphogenesis and report perturbation of NOTCH signaling in craniofacial domains of Vps25ENU/ENU embryos. Given the known roles of NOTCH signaling in the developing cranium, and notably the lower jaw, we propose that the NOTCH pathway partly mediates the craniofacial defects of Vps25ENU/ENU mouse embryos.
Collapse
Affiliation(s)
- Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Martin
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nuo Tian
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James Zheng
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
6
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Endocytic Trafficking of the Notch Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:99-122. [DOI: 10.1007/978-3-319-89512-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
9
|
Konopacki FA, Wong HHW, Dwivedy A, Bellon A, Blower MD, Holt CE. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol 2016; 6:150218. [PMID: 27248654 PMCID: PMC4852451 DOI: 10.1098/rsob.150218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/13/2016] [Indexed: 01/08/2023] Open
Abstract
Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.
Collapse
Affiliation(s)
- Filip A Konopacki
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Anaïs Bellon
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael D Blower
- Department of Molecular Biology, Harvard Medical School, Simches Research Center, Boston, MA 02114, USA
| | - Christine E Holt
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
10
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
The many lives of SHH in limb development and evolution. Semin Cell Dev Biol 2016; 49:116-24. [DOI: 10.1016/j.semcdb.2015.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
|
12
|
Abstract
The ESCRT proteins are an ancient system that buds membranes and severs membrane necks from their inner face. Three "classical" functions of the ESCRTs have dominated research into these proteins since their discovery in 2001: the biogenesis of multivesicular bodies in endolysosomal sorting; the budding of HIV-1 and other viruses from the plasma membrane of infected cells; and the membrane abscission step in cytokinesis. The past few years have seen an explosion of novel functions: the biogenesis of microvesicles and exosomes; plasma membrane wound repair; neuron pruning; extraction of defective nuclear pore complexes; nuclear envelope reformation; plus-stranded RNA virus replication compartment formation; and micro- and macroautophagy. Most, and perhaps all, of the functions involve the conserved membrane-neck-directed activities of the ESCRTs, revealing a remarkably widespread role for this machinery through a broad swath of cell biology.
Collapse
Affiliation(s)
- James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| |
Collapse
|
13
|
Juan T, Fürthauer M. [The ESCRT complex: from endosomal transport to the development of multicellular organisms]. Biol Aujourdhui 2015; 209:111-124. [PMID: 26115716 DOI: 10.1051/jbio/2015009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Since its discovery more than 50 years ago, the endo-lysosomal system has emerged as a central integrator of different cellular activities. This vesicular trafficking apparatus governs processes as diverse as the transduction of stimuli by growth factor receptors, the recycling and secretion of signaling molecules and the regulation of cellular homeostasis through autophagy. Accordingly, dysfunctions of the vesicular transport machinery have been linked to a growing number of pathologies. In this review we take the "Endosomal Sorting Complex Required for Transport" (ESCRT) as an example to illustrate the multiple functions of an evolutionarily conserved endosomal transport machinery. We describe the major concepts that have emerged from the study of this machinery at the level of the development and the physiology of multi-cellular organisms. In particular, we highlight the essential contributions of ESCRT proteins on the regulation of three biological processes: the endocytic regulation of cell signaling, autophagy and its role in neuronal morphogenesis and finally the biogenesis and function of extracellular vesicles.
Collapse
|