1
|
Berns H, Weber D, Haas M, Bakey Z, Brislinger-Engelhardt MM, Schmidts M, Walentek P. A homozygous human WNT11 variant is associated with laterality, heart and renal defects. Dis Model Mech 2025; 18:dmm052211. [PMID: 40200693 PMCID: PMC12091873 DOI: 10.1242/dmm.052211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Wnt signaling plays important roles during vertebrate development, including left-right axis specification as well as heart and kidney organogenesis. We identified a homozygous human WNT11 variant in an infant with situs inversus totalis, complex heart defects and renal hypodysplasia, and used Xenopus embryos to functionally characterize this variant. WNT11c.814delG encodes a protein with reduced stability that lost signaling activity in vivo. This is remarkable, because the variant encodes a truncated ligand with nearly identical length and predicted structure to dominant-negative Wnts. Furthermore, we demonstrate that alteration of the truncated C-terminal end can restore stability and signaling activity similarly to Xenopus dominant-negative Wnt11b. Our study also suggests similar functions for WNT11 in human development as those described in model organisms. Therefore, biallelic WNT11 dysfunction should be considered a novel genetic cause of syndromal human phenotypes presenting with congenital heart defects and renal hypoplasia, with or without laterality defects. The work presented here enhances our understanding of human development and structure-function relationships in Wnt ligands.
Collapse
Affiliation(s)
- Henrike Berns
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Damian Weber
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Maximilian Haas
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Zeineb Bakey
- Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Breisacherstrasse 62, 79106 Freiburg, Germany
- Human Genetics Department, Radboud University Medical Center Nijmegen and Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Magdalena Maria Brislinger-Engelhardt
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Breisacherstrasse 62, 79106 Freiburg, Germany
- Human Genetics Department, Radboud University Medical Center Nijmegen and Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Gong D, Liu R, Cui Y, Rhodes M, Bae JW, Beechem JM, Hwang WL. Integrated spatial morpho-transcriptomics predicts functional traits in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642933. [PMID: 40161804 PMCID: PMC11952565 DOI: 10.1101/2025.03.12.642933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Analyses of patient-derived cell lines have greatly enhanced discovery of molecular biomarkers and therapeutic targets. However, characterization of cellular morphological properties is limited. We studied cell morphologies of human pancreatic adenocarcinoma (PDAC) cell lines and their associations with drug sensitivity, gene expression, and functional properties. By integrating live cell and spatial mRNA imaging, we identified KRAS inhibitor-induced morphological changes specific for drug-resistant cells that correlated with gene expression changes. We then categorized a large panel of patient-derived PDAC cell lines into morphological (e.g., polygonal, irregular, spheroid) and organizational (e.g., tightly aggregated, multilayered, dispersed) subtypes and found differences in gene expression, therapeutic targeting potential, and metastatic proclivity. In human PDAC tissues, we identified prognostic expression signatures associated with distinct cancer cell organization patterns. In summary, we highlight the potential of cell morphological information in rapid, cost-effective assays to aid precision oncology efforts leveraging patient-derived in vitro models and tissues.
Collapse
|
3
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
4
|
Chen G, Chen J, Qi L, Yin Y, Lin Z, Wen H, Zhang S, Xiao C, Bello SF, Zhang X, Nie Q, Luo W. Bulk and single-cell alternative splicing analyses reveal roles of TRA2B in myogenic differentiation. Cell Prolif 2024; 57:e13545. [PMID: 37705195 PMCID: PMC10849790 DOI: 10.1111/cpr.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Alternative splicing (AS) disruption has been linked to disorders of muscle development, as well as muscular atrophy. However, the precise changes in AS patterns that occur during myogenesis are not well understood. Here, we employed isoform long-reads RNA-seq (Iso-seq) and single-cell RNA-seq (scRNA-seq) to investigate the AS landscape during myogenesis. Our Iso-seq data identified 61,146 full-length isoforms representing 11,682 expressed genes, of which over 52% were novel. We identified 38,022 AS events, with most of these events altering coding sequences and exhibiting stage-specific splicing patterns. We identified AS dynamics in different types of muscle cells through scRNA-seq analysis, revealing genes essential for the contractile muscle system and cytoskeleton that undergo differential splicing across cell types. Gene-splicing analysis demonstrated that AS acts as a regulator, independent of changes in overall gene expression. Two isoforms of splicing factor TRA2B play distinct roles in myogenic differentiation by triggering AS of TGFBR2 to regulate canonical TGF-β signalling cascades differently. Our study provides a valuable transcriptome resource for myogenesis and reveals the complexity of AS and its regulation during myogenesis.
Collapse
Affiliation(s)
- Genghua Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Qi
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yunqian Yin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Zetong Lin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Huaqiang Wen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Chuanyun Xiao
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Semiu Folaniyi Bello
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiquan Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinghua Nie
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Wen Luo
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
5
|
Zimmerman KD, Chan J, Glenn JP, Birnbaum S, Li C, Nathanielsz PW, Olivier M, Cox LA. Moderate maternal nutrient reduction in pregnancy alters fatty acid oxidation and RNA splicing in the nonhuman primate fetal liver. J Dev Orig Health Dis 2023; 14:381-388. [PMID: 36924159 PMCID: PMC10202844 DOI: 10.1017/s204017442300003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Fetal liver tissue collected from a nonhuman primate (NHP) baboon model of maternal nutrient reduction (MNR) at four gestational time points (90, 120, 140, and 165 days gestation [dG], term in the baboon is ∼185 dG) was used to quantify MNR effects on the fetal liver transcriptome. 28 transcripts demonstrated different expression patterns between MNR and control livers during the second half of gestation, a developmental period when the fetus undergoes rapid weight gain and fat accumulation. Differentially expressed transcripts were enriched for fatty acid oxidation and RNA splicing-related pathways. Increased RNA splicing activity in MNR was reflected in greater abundances of transcript splice variant isoforms in the MNR group. It can be hypothesized that the increase in splice variants is deployed in an effort to adapt to the poor in utero environment and ensure near-normal development and energy metabolism. This study is the first to study developmental programming across four critical gestational stages during primate fetal liver development and reveals a potentially novel cellular response mechanism mediating fetal programming in response to MNR.
Collapse
Affiliation(s)
- Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeremy P. Glenn
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Shifra Birnbaum
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Cun Li
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Peter W. Nathanielsz
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| |
Collapse
|
6
|
Naing YT, Sun L. The Role of Splicing Factors in Adipogenesis and Thermogenesis. Mol Cells 2023; 46:268-277. [PMID: 37170770 PMCID: PMC10183792 DOI: 10.14348/molcells.2023.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023] Open
Abstract
Obesity is a significant global health risk that can cause a range of serious metabolic problems, such as type 2 diabetes and cardiovascular diseases. Adipose tissue plays a pivotal role in regulating energy and lipid storage. New research has underlined the crucial role of splicing factors in the physiological and functional regulation of adipose tissue. By generating multiple transcripts from a single gene, alternative splicing allows for a greater diversity of the proteome and transcriptome, which subsequently influence adipocyte development and metabolism. In this review, we provide an outlook on the part of splicing factors in adipogenesis and thermogenesis, and investigate how the different spliced isoforms can affect the development and function of adipose tissue.
Collapse
Affiliation(s)
- Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
7
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
8
|
Houston DW, Elliott KL, Coppenrath K, Wlizla M, Horb ME. Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. Development 2022; 149:dev200552. [PMID: 35946588 PMCID: PMC9515810 DOI: 10.1242/dev.200552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Asymmetric signalling centres in the early embryo are essential for axis formation in vertebrates. These regions (e.g. amphibian dorsal morula, mammalian anterior visceral endoderm) require stabilised nuclear β-catenin, but the role of localised Wnt ligand signalling activity in their establishment remains unclear. In Xenopus, dorsal β-catenin is initiated by vegetal microtubule-mediated symmetry breaking in the fertilised egg, known as 'cortical rotation'. Localised wnt11b mRNA and ligand-independent activators of β-catenin have been implicated in dorsal β-catenin activation, but the extent to which each contributes to axis formation in this paradigm remains unclear. Here, we describe a CRISPR-mediated maternal-effect mutation in Xenopus laevis wnt11b.L. We find that wnt11b is maternally required for robust dorsal axis formation and for timely gastrulation, and zygotically for left-right asymmetry. Importantly, we show that vegetal microtubule assembly and cortical rotation are reduced in wnt11b mutant eggs. In addition, we show that activated Wnt coreceptor Lrp6 and Dishevelled lack behaviour consistent with roles in early β-catenin stabilisation, and that neither is regulated by Wnt11b. This work thus implicates Wnt11b in the distribution of putative dorsal determinants rather than in comprising the determinants themselves. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Douglas W. Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA 52242-1324, USA
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA 52242-1324, USA
| | - Kelsey Coppenrath
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Marko E. Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
9
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
10
|
He B, Wei C, Cai Q, Zhang P, Shi S, Peng X, Zhao Z, Yin W, Tu G, Peng W, Tao Y, Wang X. Switched alternative splicing events as attractive features in lung squamous cell carcinoma. Cancer Cell Int 2022; 22:5. [PMID: 34986865 PMCID: PMC8734344 DOI: 10.1186/s12935-021-02429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing (AS) plays important roles in transcriptome and proteome diversity. Its dysregulation has a close affiliation with oncogenic processes. This study aimed to evaluate AS-based biomarkers by machine learning algorithms for lung squamous cell carcinoma (LUSC) patients. Method The Cancer Genome Atlas (TCGA) database and TCGA SpliceSeq database were utilized. After data composition balancing, Boruta feature selection and Spearman correlation analysis were used for differentially expressed AS events. Random forests and a nested fivefold cross-validation were applied for lymph node metastasis (LNM) classifier building. Random survival forest combined with Cox regression model was performed for a prognostic model, based on which a nomogram was developed. Functional enrichment analysis and Spearman correlation analysis were also conducted to explore underlying mechanisms. The expression of some switch-involved AS events along with parent genes was verified by qRT-PCR with 20 pairs of normal and LUSC tissues. Results We found 16 pairs of splicing events from same parent genes which were strongly related to the splicing switch (intrapair correlation coefficient = − 1). Next, we built a reliable LNM classifier based on 13 AS events as well as a nice prognostic model, in which switched AS events behaved prominently. The qRT-PCR presented consistent results with previous bioinformatics analysis, and some AS events like ITIH5-10715-AT and QKI-78404-AT showed remarkable detection efficiency for LUSC. Conclusion AS events, especially switched ones from the same parent genes, could provide new insights into the molecular diagnosis and therapeutic drug design of LUSC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02429-2.
Collapse
Affiliation(s)
- Boxue He
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Cong Wei
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qidong Cai
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shuai Shi
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiong Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Yin
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Guangxu Tu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weilin Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongguang Tao
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China. .,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
11
|
Proteomic Analysis of Exosomes during Cardiogenic Differentiation of Human Pluripotent Stem Cells. Cells 2021; 10:cells10102622. [PMID: 34685602 PMCID: PMC8533815 DOI: 10.3390/cells10102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Efforts to direct the specification of human pluripotent stem cells (hPSCs) to therapeutically important somatic cell types have focused on identifying proper combinations of soluble cues. Yet, whether exosomes, which mediate intercellular communication, play a role in the differentiation remains unexplored. We took a first step toward addressing this question by subjecting hPSCs to stage-wise specification toward cardiomyocytes (CMs) in scalable stirred-suspension cultures and collecting exosomes. Samples underwent liquid chromatography (LC)/mass spectrometry (MS) and subsequent proteomic analysis revealed over 300 unique proteins from four differentiation stages including proteins such as PPP2CA, AFM, MYH9, MYH10, TRA2B, CTNNA1, EHD1, ACTC1, LDHB, and GPC4, which are linked to cardiogenic commitment. There was a significant correlation of the protein composition of exosomes with the hPSC line and stage of commitment. Differentiating hPSCs treated with exosomes from hPSC-derived CMs displayed improved efficiency of CM formation compared to cells without exogenously added vesicles. Collectively, these results demonstrate that exosomes from hPSCs induced along the CM lineage contain proteins linked to the specification process with modulating effects and open avenues for enhancing the biomanufacturing of stem cell products for cardiac diseases.
Collapse
|
12
|
Leclair NK, Brugiolo M, Urbanski L, Lawson SC, Thakar K, Yurieva M, George J, Hinson JT, Cheng A, Graveley BR, Anczuków O. Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis. Mol Cell 2020; 80:648-665.e9. [PMID: 33176162 PMCID: PMC7680420 DOI: 10.1016/j.molcel.2020.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
The RNA isoform repertoire is regulated by splicing factor (SF) expression, and alterations in SF levels are associated with disease. SFs contain ultraconserved poison exon (PE) sequences that exhibit greater identity across species than nearby coding exons, but their physiological role and molecular regulation is incompletely understood. We show that PEs in serine-arginine-rich (SR) proteins, a family of 14 essential SFs, are differentially spliced during induced pluripotent stem cell (iPSC) differentiation and in tumors versus normal tissues. We uncover an extensive cross-regulatory network of SR proteins controlling their expression via alternative splicing coupled to nonsense-mediated decay. We define sequences that regulate PE inclusion and protein expression of the oncogenic SF TRA2β using an RNA-targeting CRISPR screen. We demonstrate location dependency of RS domain activity on regulation of TRA2β-PE using CRISPR artificial SFs. Finally, we develop splice-switching antisense oligonucleotides to reverse the increased skipping of TRA2β-PE detected in breast tumors, altering breast cancer cell viability, proliferation, and migration.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Shane C Lawson
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - John Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Albert Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
13
|
Monteuuis G, Wong JJL, Bailey CG, Schmitz U, Rasko JEJ. The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Res 2020; 47:11497-11513. [PMID: 31724706 PMCID: PMC7145568 DOI: 10.1093/nar/gkz1068] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Intron retention (IR) is a form of alternative splicing that has long been neglected in mammalian systems although it has been studied for decades in non-mammalian species such as plants, fungi, insects and viruses. It was generally assumed that mis-splicing, leading to the retention of introns, would have no physiological consequence other than reducing gene expression by nonsense-mediated decay. Relatively recent landmark discoveries have highlighted the pivotal role that IR serves in normal and disease-related human biology. Significant technical hurdles have been overcome, thereby enabling the robust detection and quantification of IR. Still, relatively little is known about the cis- and trans-acting modulators controlling this phenomenon. The fate of an intron to be, or not to be, retained in the mature transcript is the direct result of the influence exerted by numerous intrinsic and extrinsic factors at multiple levels of regulation. These factors have altered current biological paradigms and provided unexpected insights into the transcriptional landscape. In this review, we discuss the regulators of IR and methods to identify them. Our focus is primarily on mammals, however, we broaden the scope to non-mammalian organisms in which IR has been shown to be biologically relevant.
Collapse
Affiliation(s)
- Geoffray Monteuuis
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Justin J L Wong
- Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.,Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Ulf Schmitz
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.,Computational Biomedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| |
Collapse
|
14
|
Banerjee M, Ferragut Cardoso AP, Lykoudi A, Wilkey DW, Pan J, Watson WH, Garbett NC, Rai SN, Merchant ML, States JC. Arsenite Exposure Displaces Zinc from ZRANB2 Leading to Altered Splicing. Chem Res Toxicol 2020; 33:1403-1417. [PMID: 32274925 DOI: 10.1021/acs.chemrestox.9b00515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 μM, 0-72 h; or 0-5 μM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Daniel W Wilkey
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Nichola C Garbett
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States.,Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky 40202, United States
| | - Michael L Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| |
Collapse
|
15
|
Tan TY, Sedmík J, Fitzgerald MP, Halevy RS, Keegan LP, Helbig I, Basel-Salmon L, Cohen L, Straussberg R, Chung WK, Helal M, Maroofian R, Houlden H, Juusola J, Sadedin S, Pais L, Howell KB, White SM, Christodoulou J, O'Connell MA. Bi-allelic ADARB1 Variants Associated with Microcephaly, Intellectual Disability, and Seizures. Am J Hum Genet 2020; 106:467-483. [PMID: 32220291 DOI: 10.1016/j.ajhg.2020.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
The RNA editing enzyme ADAR2 is essential for the recoding of brain transcripts. Impaired ADAR2 editing leads to early-onset epilepsy and premature death in a mouse model. Here, we report bi-allelic variants in ADARB1, the gene encoding ADAR2, in four unrelated individuals with microcephaly, intellectual disability, and epilepsy. In one individual, a homozygous variant in one of the double-stranded RNA-binding domains (dsRBDs) was identified. In the others, variants were situated in or around the deaminase domain. To evaluate the effects of these variants on ADAR2 enzymatic activity, we performed in vitro assays with recombinant proteins in HEK293T cells and ex vivo assays with fibroblasts derived from one of the individuals. We demonstrate that these ADAR2 variants lead to reduced editing activity on a known ADAR2 substrate. We also demonstrate that one variant leads to changes in splicing of ADARB1 transcript isoforms. These findings reinforce the importance of RNA editing in brain development and introduce ADARB1 as a genetic etiology in individuals with intellectual disability, microcephaly, and epilepsy.
Collapse
Affiliation(s)
- Tiong Yang Tan
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia.
| | - Jiří Sedmík
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic
| | - Mark P Fitzgerald
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rivka Sukenik Halevy
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic
| | - Ingo Helbig
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Felsenstein Medical Research Center, Petah Tikva 49100, Israel
| | - Lior Cohen
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva 49100, Israel
| | - Rachel Straussberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Pediatric Neurology Unit, Schneider Children's Medical Center of Israel, Petah Tikva 49100, Israel
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Mayada Helal
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Simon Sadedin
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia
| | - Lynn Pais
- Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katherine B Howell
- Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia; Department of Neurology, Royal Children's Hospital, Parkville 3052, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic.
| |
Collapse
|
16
|
Paraiso KD, Blitz IL, Zhou JJ, Cho KWY. Morpholinos Do Not Elicit an Innate Immune Response during Early Xenopus Embryogenesis. Dev Cell 2020; 49:643-650.e3. [PMID: 31112700 DOI: 10.1016/j.devcel.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
It has recently been reported that a common side effect of translation-blocking morpholino antisense oligonucleotides is the induction of a set of innate immune response genes in Xenopus embryos and that splicing-blocking morpholinos lead to unexpected off-target mis-splicing events. Here, we present an analysis of all publicly available Xenopus RNA sequencing (RNA-seq) data in a reexamination of the effects of translation-blocking morpholinos on the innate immune response. Our analysis does not support the authors' general conclusion, which was based on a limited number of RNA-seq datasets. Moreover, the strong induction of an immune response appears to be specific to the tbxt/tbxt2 morpholinos. The more comprehensive study presented here indicates that using morpholinos for targeted gene knockdowns remains of considerable value for the rapid identification of gene function.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
17
|
Large-Scale Profiling of RBP-circRNA Interactions from Public CLIP-Seq Datasets. Genes (Basel) 2020; 11:genes11010054. [PMID: 31947823 PMCID: PMC7016857 DOI: 10.3390/genes11010054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs are a special type of RNA that has recently attracted a lot of research interest in studying its formation and function. RNA binding proteins (RBPs) that bind circRNAs are important in these processes, but have been relatively less studied. CLIP-Seq technology has been invented and applied to profile RBP-RNA interactions on the genome-wide scale. While mRNAs are usually the focus of CLIP-Seq experiments, RBP-circRNA interactions could also be identified through specialized analysis of CLIP-Seq datasets. However, many technical difficulties are involved in this process, such as the usually short read length of CLIP-Seq reads. In this study, we created a pipeline called Clirc specialized for profiling circRNAs in CLIP-Seq data and analyzing the characteristics of RBP-circRNA interactions. In conclusion, to our knowledge, this is one of the first studies to investigate circRNAs and their binding partners through repurposing CLIP-Seq datasets, and we hope our work will become a valuable resource for future studies into the biogenesis and function of circRNAs.
Collapse
|
18
|
Alasady MJ, Mendillo ML. The Multifaceted Role of HSF1 in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:69-85. [PMID: 32297212 DOI: 10.1007/978-3-030-40204-4_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat Shock Factor 1 (HSF1), the master transcriptional regulator of the heat shock response (HSR), was first cloned more than 30 years ago. Most early research interrogating the role that HSF1 plays in biology focused on its cytoprotective functions, as a factor that promotes the survival of organisms by protecting against the proteotoxicity associated with neurodegeneration and other pathological conditions. However, recent studies have revealed a deleterious role of HSF1, as a factor that is co-opted by cancer cells to promote their own survival to the detriment of the organism. In cancer, HSF1 operates in a multifaceted manner to promote oncogenic transformation, proliferation, metastatic dissemination, and anti-cancer drug resistance. Here we review our current understanding of HSF1 activation and function in malignant progression and discuss the potential for HSF1 inhibition as a novel anticancer strategy. Collectively, this ever-growing body of work points to a prominent role of HSF1 in nearly every aspect of carcinogenesis.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
19
|
Gentsch GE, Spruce T, Owens NDL, Monteiro RS, Smith JC. The Innate Immune Response of Frog Embryos to Antisense Morpholino Oligomers Depends on Developmental Stage, GC Content and Dose. Dev Cell 2019; 49:506-507. [PMID: 31112697 DOI: 10.1016/j.devcel.2019.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George E Gentsch
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Spruce
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Nick D L Owens
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Rita S Monteiro
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
20
|
Transcriptome profiling in Rift Valley fever virus infected cells reveals modified transcriptional and alternative splicing programs. PLoS One 2019; 14:e0217497. [PMID: 31136639 PMCID: PMC6538246 DOI: 10.1371/journal.pone.0217497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense RNA virus belonging to the Phenuiviridae family that infects both domestic livestock and humans. The NIAID has designated RVFV as a Category A priority emerging pathogen due to the devastating public health outcomes associated with epidemic outbreaks. However, there is no licensed treatment or vaccine approved for human use. Therefore it is of great interest to understand RVFV pathogenesis in infected hosts in order to facilitate creation of targeted therapies and treatment options. Here we provide insight into the host-pathogen interface in human HEK293 cells during RVFV MP-12 strain infection using high-throughput mRNA sequencing technology. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes showed robust innate immune and cytokine-mediated inflammatory pathway activation as well as alterations in pathways associated with fatty acid metabolism and extracellular matrix receptor signaling. We also analyzed the promoter regions of DEGs for patterns in transcription factor binding sites, and found several that are known to act synergistically to impact apoptosis, immunity, metabolism, and cell growth and differentiation. Lastly, we noted dramatic changes in host alternative splicing patterns in genes associated with mRNA decay and surveillance, RNA transport, and DNA repair. This study has improved our understanding of RVFV pathogenesis and has provided novel insight into pathways and signaling modules important for RVFV diagnostics and therapeutic development.
Collapse
|
21
|
Ni H, Hu S, Chen X, Liu Y, Ni T, Cheng L. Tra2β silencing suppresses cell proliferation in laryngeal squamous cell carcinoma via inhibiting PI3K/AKT signaling. Laryngoscope 2018; 129:E318-E328. [PMID: 30597574 DOI: 10.1002/lary.27716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Hao‐Sheng Ni
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of OtorhinolaryngologyAffiliated Hospital of Nantong University Nantong China
| | - Song‐Qun Hu
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of OtorhinolaryngologyAffiliated Hospital of Nantong University Nantong China
| | - Xi Chen
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yi‐Fei Liu
- Department of PathologyAffiliated Hospital of Nantong University Nantong China
| | - Ting‐Ting Ni
- Department of OncologyNantong Tumor Hospital Nantong China
| | - Lei Cheng
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
22
|
Mitra M, Johnson EL, Swamy VS, Nersesian LE, Corney DC, Robinson DG, Taylor DG, Ambrus AM, Jelinek D, Wang W, Batista SL, Coller HA. Alternative polyadenylation factors link cell cycle to migration. Genome Biol 2018; 19:176. [PMID: 30360761 PMCID: PMC6203201 DOI: 10.1186/s13059-018-1551-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In response to a wound, fibroblasts are activated to migrate toward the wound, to proliferate and to contribute to the wound healing process. We hypothesize that changes in pre-mRNA processing occurring as fibroblasts enter the proliferative cell cycle are also important for promoting their migration. RESULTS RNA sequencing of fibroblasts induced into quiescence by contact inhibition reveals downregulation of genes involved in mRNA processing, including splicing and cleavage and polyadenylation factors. These genes also show differential exon use, especially increased intron retention in quiescent fibroblasts compared to proliferating fibroblasts. Mapping the 3' ends of transcripts reveals that longer transcripts from distal polyadenylation sites are more prevalent in quiescent fibroblasts and are associated with increased expression and transcript stabilization based on genome-wide transcript decay analysis. Analysis of dermal excisional wounds in mice reveals that proliferating cells adjacent to wounds express higher levels of cleavage and polyadenylation factors than quiescent fibroblasts in unwounded skin. Quiescent fibroblasts contain reduced levels of the cleavage and polyadenylation factor CstF-64. CstF-64 knockdown recapitulates changes in isoform selection and gene expression associated with quiescence, and results in slower migration. CONCLUSIONS Our findings support cleavage and polyadenylation factors as a link between cellular proliferation state and migration.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | | | - Vinay S Swamy
- Department of Biochemistry, University of California, Los Angeles, Los Angeles, CA USA
| | - Lois E Nersesian
- Department of Chemical Engineering, University of California, Los Angeles, Los Angeles, CA USA
| | - David C Corney
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| | - David G Robinson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Daniel G Taylor
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA USA
| | - Aaron M Ambrus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA USA
| | - David Jelinek
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Sandra L Batista
- Department of Computer Science, University of Southern California, Los Angeles, CA USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| |
Collapse
|
23
|
Grainger S, Willert K. Mechanisms of Wnt signaling and control. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1422. [PMID: 29600540 PMCID: PMC6165711 DOI: 10.1002/wsbm.1422] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Abstract
The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| | - Karl Willert
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| |
Collapse
|
24
|
Gentsch GE, Spruce T, Monteiro RS, Owens NDL, Martin SR, Smith JC. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. Dev Cell 2018; 44:597-610.e10. [PMID: 29478923 PMCID: PMC5861998 DOI: 10.1016/j.devcel.2018.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects.
Collapse
Affiliation(s)
- George E Gentsch
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Spruce
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Rita S Monteiro
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Nick D L Owens
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen R Martin
- The Francis Crick Institute, Structural Biology Science Technology Platform, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
25
|
Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat Commun 2017; 8:15134. [PMID: 28480880 PMCID: PMC5424149 DOI: 10.1038/ncomms15134] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/02/2017] [Indexed: 01/07/2023] Open
Abstract
While intron retention (IR) is considered a widely conserved and distinct mechanism of gene expression control, its regulation is poorly understood. Here we show that DNA methylation directly regulates IR. We also find reduced occupancy of MeCP2 near the splice junctions of retained introns, mirroring the reduced DNA methylation at these sites. Accordingly, MeCP2 depletion in tissues and cells enhances IR. By analysing the MeCP2 interactome using mass spectrometry and RNA co-precipitation, we demonstrate that decreased MeCP2 binding near splice junctions facilitates IR via reduced recruitment of splicing factors, including Tra2b, and increased RNA polymerase II stalling. These results suggest an association between IR and a slower rate of transcription elongation, which reflects inefficient splicing factor recruitment. In summary, our results reinforce the interdependency between alternative splicing involving IR and epigenetic controls of gene expression. Intron retention is a conserved mechanism that controls gene expression but its regulation is poorly understood. Here, the authors provide evidence that DNA methylation regulates intron retention and find reduced MeCP2 occupancy and splicing factor recruitment near affected splice junctions.
Collapse
|
26
|
Noiret M, Méreau A, Angrand G, Bervas M, Gautier-Courteille C, Legagneux V, Deschamps S, Lerivray H, Viet J, Hardy S, Paillard L, Audic Y. Robust identification of Ptbp1-dependent splicing events by a junction-centric approach in Xenopus laevis. Dev Biol 2016; 426:449-459. [PMID: 27546377 DOI: 10.1016/j.ydbio.2016.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 10/25/2022]
Abstract
Regulation of alternative splicing is an important process for cell differentiation and development. Down-regulation of Ptbp1, a regulatory RNA-binding protein, leads to developmental skin defects in Xenopus laevis. To identify Ptbp1-dependent splicing events potentially related to the phenotype, we conducted RNAseq experiments following Ptbp1 depletion. We systematically compared exon-centric and junction-centric approaches to detect differential splicing events. We showed that the junction-centric approach performs far better than the exon-centric approach in Xenopus laevis. We carried out the same comparisons using simulated data in human, which led us to propose that the better performances of the junction-centric approach in Xenopus laevis essentially relies on an incomplete exonic annotation associated with a correct transcription unit annotation. We assessed the capacity of the exon-centric and junction-centric approaches to retrieve known and to discover new Ptbp1-dependent splicing events. Notably, the junction-centric approach identified Ptbp1-controlled exons in agfg1, itga6, actn4, and tpm4 mRNAs, which were independently confirmed. We conclude that the junction-centric approach allows for a more complete and informative description of splicing events, and we propose that this finding might hold true for other species with incomplete annotations.
Collapse
Affiliation(s)
- Maud Noiret
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Agnès Méreau
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Gaëlle Angrand
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Marion Bervas
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Carole Gautier-Courteille
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Vincent Legagneux
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Stéphane Deschamps
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Hubert Lerivray
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Justine Viet
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Serge Hardy
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Luc Paillard
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France
| | - Yann Audic
- Université de Rennes 1, Université Européenne de Bretagne, Biosit, Rennes 35000, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, Rennes 35000, France.
| |
Collapse
|
27
|
Ding Y, Colozza G, Zhang K, Moriyama Y, Ploper D, Sosa EA, Benitez MDJ, De Robertis EM. Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev Biol 2016; 426:176-187. [PMID: 27016259 PMCID: PMC5033668 DOI: 10.1016/j.ydbio.2016.02.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 12/31/2022]
Abstract
RNA sequencing has allowed high-throughput screening of differential gene expression in many tissues and organisms. Xenopus laevis is a classical embryological and cell-free extract model system, but its genomic sequence had been lacking due to difficulties arising from allotetraploidy. There is currently much excitement surrounding the release of the completed X. laevis genome (version 9.1) by the Joint Genome Institute (JGI), which provides a platform for genome-wide studies. Here we present a deep RNA-seq dataset of transcripts expressed in dorsal and ventral lips of the early Xenopus gastrula embryo using the new genomic information, which was further annotated by blast searches against the human proteome. Overall, our findings confirm previous results from differential screenings using other methods that uncovered classical dorsal genes such as Chordin, Noggin and Cerberus, as well as ventral genes such as Sizzled, Ventx, Wnt8 and Bambi. Complete transcriptome-wide tables of mRNAs suitable for data mining are presented, which include many novel dorsal- and ventral-specific genes. RNA-seq was very quantitative and reproducible, and allowed us to define dorsal and ventral signatures useful for gene set expression analyses (GSEA). As an example of a new gene, we present here data on an organizer-specific secreted protein tyrosine kinase known as Pkdcc (protein kinase domain containing, cytoplasmic) or Vlk (vertebrate lonesome kinase). Overexpression experiments indicate that Pkdcc can act as a negative regulator of Wnt/ β-catenin signaling independently of its kinase activity. We conclude that RNA-Seq in combination with the X. laevis complete genome now available provides a powerful tool for unraveling cell-cell signaling pathways during embryonic induction.
Collapse
Affiliation(s)
- Yi Ding
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Gabriele Colozza
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Kelvin Zhang
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Yuki Moriyama
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Diego Ploper
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Eric A Sosa
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Maria D J Benitez
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
28
|
Sabillo A, Ramirez J, Domingo CR. Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin Cell Dev Biol 2016; 51:80-91. [PMID: 26853935 DOI: 10.1016/j.semcdb.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Xenopus laevis offers unprecedented access to the intricacies of muscle development. The large, robust embryos make it ideal for manipulations at both the tissue and molecular level. In particular, this model system can be used to fate map early muscle progenitors, visualize cell behaviors associated with somitogenesis, and examine the role of signaling pathways that underlie induction, specification, and differentiation of muscle. Several characteristics that are unique to X. laevis include myogenic waves with distinct gene expression profiles and the late formation of dermomyotome and sclerotome. Furthermore, myogenesis in the metamorphosing frog is biphasic, facilitating regeneration studies. In this review, we describe the morphogenetic movements that shape the somites and discuss signaling and transcriptional regulation during muscle development and regeneration. With recent advances in gene editing tools, X. laevis remains a premier model organism for dissecting the complex mechanisms underlying the specification, cell behaviors, and formation of the musculature system.
Collapse
Affiliation(s)
- Armbien Sabillo
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Julio Ramirez
- Department of Biology, San Francisco State University, CA 94132, USA
| | - Carmen R Domingo
- Department of Biology, San Francisco State University, CA 94132, USA.
| |
Collapse
|