1
|
Narayanaswamy S, Technau U. Self-organization of an organizer: Whole-body regeneration from reaggregated cells in cnidarians. Cells Dev 2025:204024. [PMID: 40180217 DOI: 10.1016/j.cdev.2025.204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Cnidarians like the freshwater polyp Hydra and the sea anemone Nematostella, are famous for their enormous capacity to regenerate missing head or feet upon bisection. Classical transplantation experiments have demonstrated that the hypostome, the oral tip of the freshwater polyp Hydra, acts as an axial organizer. Likewise, transplantation of the blastopore lip of an early Nematostella gastrula stage embryo to an aboral position leads to ectopic head formation. Following molecular analyses have shown that Wnt signaling is the key component of this organizer activity. Moreover, when dissociated and reaggregated head (and foot) organizer centres are re-established by self-organization. Similarly, "gastruloids", i.e. aggregates of dissociated early gastrula stage embryos, are able to self-organize. Here, we review the past and recent molecular and theoretical work in the field to explain this phenomenon. While Turing-type reaction-diffusion models involving morphogens like Wnt dominated the field for many years, recent work emphasized the importance of biophysical cues in symmetry breaking and establishment of the organizers in aggregates. The comparison with Nematostella aggregates suggests that the principles of self-organization in cnidarians is not universal.
Collapse
Affiliation(s)
- Sanjay Narayanaswamy
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ulrich Technau
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
2
|
Knabl P, Mörsdorf D, Genikhovich G. A whole-body atlas of BMP signaling activity in an adult sea anemone. BMC Biol 2025; 23:49. [PMID: 39984987 PMCID: PMC11846459 DOI: 10.1186/s12915-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND BMP signaling is responsible for the second body axis patterning in Bilateria and in the bilaterally symmetric members of the bilaterian sister clade Cnidaria-corals and sea anemones. However, medusozoan cnidarians (jellyfish, hydroids) are radially symmetric, and yet their genomes contain BMP signaling components. This evolutionary conservation suggests that BMP signaling must have other functions not related to axial patterning, which keeps BMP signaling components under selective pressure. RESULTS To find out what these functions might be, we generated a detailed whole-body atlas of BMP activity in the sea anemone Nematostella. In the adult polyp, we discover an unexpected diversity of domains with BMP signaling activity, which is especially prominent in the head, as well as across the neuro-muscular and reproductive parts of the gastrodermis. In accordance, analysis of two medusozoan species, the true jellyfish Aurelia and the box jellyfish Tripedalia, revealed similarly broad and diverse BMP activity. CONCLUSIONS Our study reveals multiple, distinct domains of BMP signaling in Anthozoa and Medusozoa, supporting the versatile nature of the BMP pathway across Cnidaria. Most prominently, BMP signaling appears to be involved in tentacle formation, neuronal development, and gameto- or gonadogenesis.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - David Mörsdorf
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Li J, Zhan Z, Li Y, Sun Y, Zhou T, Xu K. Chromosome-level genome assembly of a deep-sea Venus flytrap sea anemone sheds light upon adaptations to an extremely oligotrophic environment. Mol Ecol 2024; 33:e17504. [PMID: 39166453 DOI: 10.1111/mec.17504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The Venus flytrap sea anemone Actinoscyphia liui inhabits the nutrient-limited deep ocean in the tropical western Pacific. Compared with most other sea anemones, it has undergone a distinct modification of body shape similar to that of the botanic flytrap. However, the molecular mechanism by which such a peculiar sea anemone adapts to a deep-sea oligotrophic environment is unknown. Here, we report the chromosomal-level genome of A. liui constructed from PacBio and Hi-C data. The assembled genome is 522 Mb in size and exhibits a continuous scaffold N50 of 58.4 Mb. Different from most other sea anemones, which typically possess 14-18 chromosomes per haplotype, A. liui has only 11. The reduced number of chromosomes is associated with chromosome fusion, which likely represents an adaptive strategy to economize energy in oligotrophic deep-sea environments. Comparative analysis with other deep-sea sea anemones revealed adaptive evolution in genes related to cellular autophagy (TMBIM6, SESN1, SCOCB and RPTOR) and mitochondrial energy metabolism (MDH1B and KAD2), which may aid in A. liui coping with severe food scarcity. Meanwhile, the genome has undergone at least two rounds of expansion in gene families associated with fast synaptic transmission, facilitating rapid responses to water currents and prey. Positive selection was detected on putative phosphorylation sites of muscle contraction-related proteins, possibly further improving feeding efficiency. Overall, the present study provides insights into the molecular adaptation to deep-sea oligotrophic environments and sheds light upon potential effects of a novel morphology on the evolution of Cnidaria.
Collapse
Affiliation(s)
- Junyuan Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Zifeng Zhan
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
5
|
Webster NB, Meyer NP. Capitella teleta gets left out: possible evolutionary shift causes loss of left tissues rather than increased neural tissue from dominant-negative BMPR1. Neural Dev 2024; 19:4. [PMID: 38698415 PMCID: PMC11067212 DOI: 10.1186/s13064-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.
Collapse
Affiliation(s)
- Nicole B Webster
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
- Biology Department, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|
6
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
7
|
Lefebvre M, Colen J, Claussen N, Brauns F, Raich M, Mitchell N, Fruchart M, Vitelli V, Streichan SJ. Learning a conserved mechanism for early neuroectoderm morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573058. [PMID: 38187670 PMCID: PMC10769415 DOI: 10.1101/2023.12.22.573058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Morphogenesis is the process whereby the body of an organism develops its target shape. The morphogen BMP is known to play a conserved role across bilaterian organisms in determining the dorsoventral (DV) axis. Yet, how BMP governs the spatio-temporal dynamics of cytoskeletal proteins driving morphogenetic flow remains an open question. Here, we use machine learning to mine a morphodynamic atlas of Drosophila development, and construct a mathematical model capable of predicting the coupled dynamics of myosin, E-cadherin, and morphogenetic flow. Mutant analysis shows that BMP sets the initial condition of this dynamical system according to the following signaling cascade: BMP establishes DV pair-rule-gene patterns that set-up an E-cadherin gradient which in turn creates a myosin gradient in the opposite direction through mechanochemical feedbacks. Using neural tube organoids, we argue that BMP, and the signaling cascade it triggers, prime the conserved dynamics of neuroectoderm morphogenesis from fly to humans.
Collapse
|
8
|
Abstract
Toll signaling plays a crucial role in pathogen defense throughout the animal kingdom. It was discovered, however, for its function in dorsoventral (DV) axis formation in Drosophila. In all other insects studied so far, but not outside the insects, Toll is also required for DV patterning. However, in insects more distantly related to Drosophila, Toll's patterning role is frequently reduced and substituted by an expanded influence of BMP signaling, the pathway implicated in DV axis formation in all major metazoan lineages. This suggests that Toll was integrated into an ancestral BMP-based patterning system at the base of the insects or during insect evolution. The observation that Toll signaling has an immune function in the extraembryonic serosa, an early differentiating tissue of most insect embryos, suggests a scenario of how Toll was co-opted from an ancestral immune function for its new role in axis formation.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Zoology-Developmental Biology, Biocenter, University of Cologne, Cologne, Germany;
| |
Collapse
|
9
|
He S, Shao W, Chen SC, Wang T, Gibson MC. Spatial transcriptomics reveals a cnidarian segment polarity program in Nematostella vectensis. Curr Biol 2023:S0960-9822(23)00676-0. [PMID: 37315559 DOI: 10.1016/j.cub.2023.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
During early animal evolution, the emergence of axially polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here, we demonstrate the molecular basis for segment polarization in developing larvae of the sea anemone Nematostella vectensis. Utilizing spatial transcriptomics, we first constructed a 3D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both bone morphogenetic protein (BMP) signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at the larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles (RMs) in primary polyps. These results demonstrate the molecular basis for segment polarity in a non-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
10
|
He S, Shao W, Chen S(C, Wang T, Gibson MC. Spatial transcriptomics reveals a conserved segment polarity program that governs muscle patterning in Nematostella vectensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523347. [PMID: 36711919 PMCID: PMC9882047 DOI: 10.1101/2023.01.09.523347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During early animal evolution, the emergence of axially-polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here we demonstrate the molecular basis for segment polarization in developing larvae of the pre-bilaterian sea anemone Nematostella vectensis . Utilizing spatial transcriptomics, we first constructed a 3-D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both BMP signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles in primary polyps. These results demonstrate the molecular basis for segment polarity in a pre-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago. Highlights Nematostella endomesodermal tissue forms metameric segments and displays a transcriptomic profile similar to that observed in bilaterian mesoderm Construction of a comprehensive 3-D gene expression atlas enables systematic dissection of segmental identity in endomesoderm Lbx and Uncx , two conserved homeobox-containing genes, establish segment polarity in Nematostella The Cnidarian-Bilaterian common ancestor likely possessed the genetic toolkit to generate polarized metameric structures.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Current Address: Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Current Address: Research Computing, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Matthew C. Gibson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| |
Collapse
|
11
|
Martynov AV, Korshunova TA. Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Various evaluations of the last common bilaterian ancestor (lcba) currently suggest that it resembled either a microscopic, non-segmented motile adult; or, on the contrary, a complex segmented adult motile urbilaterian. These fundamental inconsistencies remain largely unexplained. A majority of multidisciplinary data regarding sedentary adult ancestral bilaterian organization is overlooked. The sedentary-pelagic model is supported now by a number of novel developmental, paleontological and molecular phylogenetic data: (1) data in support of sedentary sponges, in the adult stage, as sister to all other Metazoa; (2) a similarity of molecular developmental pathways in both adults and larvae across sedentary sponges, cnidarians, and bilaterians; (3) a cnidarian-bilaterian relationship, including a unique sharing of a bona fide Hox-gene cluster, of which the evolutionary appearance does not connect directly to a bilaterian motile organization; (4) the presence of sedentary and tube-dwelling representatives of the main bilaterian clades in the early Cambrian; (5) an absence of definite taxonomic attribution of Ediacaran taxa reconstructed as motile to any true bilaterian phyla; (6) a similarity of tube morphology (and the clear presence of a protoconch-like apical structure of the Ediacaran sedentary Cloudinidae) among shells of the early Cambrian, and later true bilaterians, such as semi-sedentary hyoliths and motile molluscs; (7) recent data that provide growing evidence for a complex urbilaterian, despite a continuous molecular phylogenetic controversy. The present review compares the main existing models and reconciles the sedentary model of an urbilaterian and the model of a larva-like lcba with a unified sedentary(adult)-pelagic(larva) model of the lcba.
Collapse
Affiliation(s)
- Alexander V. Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia,
| | - Tatiana A. Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
12
|
Kremnev SV. Evolutionary and Ontogenetic Plasticity of Conserved Signaling Pathways in Animals’ Development. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
14
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
15
|
Evo-Devo of Urbilateria and its larval forms. Dev Biol 2022; 487:10-20. [DOI: 10.1016/j.ydbio.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
|
16
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
17
|
Presnell JS, Wirsching E, Weis VM. Tentacle patterning during Exaiptasia diaphana pedal lacerate development differs between symbiotic and aposymbiotic animals. PeerJ 2022; 10:e12770. [PMID: 35047238 PMCID: PMC8757374 DOI: 10.7717/peerj.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/19/2021] [Indexed: 01/07/2023] Open
Abstract
Exaiptasia diaphana, a tropical sea anemone known as Aiptasia, is a tractable model system for studying the cellular, physiological, and ecological characteristics of cnidarian-dinoflagellate symbiosis. Aiptasia is widely used as a proxy for coral-algal symbiosis, since both Aiptasia and corals form a symbiosis with members of the family Symbiodiniaceae. Laboratory strains of Aiptasia can be maintained in both the symbiotic (Sym) and aposymbiotic (Apo, without algae) states. Apo Aiptasia allow for the study of the influence of symbiosis on different biological processes and how different environmental conditions impact symbiosis. A key feature of Aiptasia is the ease of propagating both Sym and Apo individuals in the laboratory through a process called pedal laceration. In this form of asexual reproduction, small pieces of tissue rip away from the pedal disc of a polyp, then these lacerates eventually develop tentacles and grow into new polyps. While pedal laceration has been described in the past, details of how tentacles are formed or how symbiotic and nutritional state influence this process are lacking. Here we describe the stages of development in both Sym and Apo pedal lacerates. Our results show that Apo lacerates develop tentacles earlier than Sym lacerates, while over the course of 20 days, Sym lacerates end up with a greater number of tentacles. We describe both tentacle and mesentery patterning during lacerate development and show that they form through a single pattern in early stages regardless of symbiotic state. In later stages of development, Apo lacerate tentacles and mesenteries progress through a single pattern, while variable patterns were observed in Sym lacerates. We discuss how Aiptasia lacerate mesentery and tentacle patterning differs from oral disc regeneration and how these patterning events compare to postembryonic development in Nematostella vectensis, another widely-used sea anemone model. In addition, we demonstrate that Apo lacerates supplemented with a putative nutrient source developed an intermediate number of tentacles between un-fed Apo and Sym lacerates. Based on these observations, we hypothesize that pedal lacerates progress through two different, putatively nutrient-dependent phases of development. In the early phase, the lacerate, regardless of symbiotic state, preferentially uses or relies on nutrients carried over from the adult polyp. These resources are sufficient for lacerates to develop into a functional polyp. In the late phase of development, continued growth and tentacle formation is supported by nutrients obtained from either symbionts and/or the environment through heterotrophic feeding. Finally, we advocate for the implementation of pedal lacerates as an additional resource in the Aiptasia model system toolkit for studies of cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Jason S. Presnell
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Elizabeth Wirsching
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America,Department of Biology, Western Washington University, Bellingham, WA, United States of America
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
18
|
Orlov EE, Nesterenko AM, Korotkova DD, Parshina EA, Martynova NY, Zaraisky AG. Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos. Dev Cell 2021; 57:95-111.e12. [PMID: 34919801 DOI: 10.1016/j.devcel.2021.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/01/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023]
Abstract
How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species.
Collapse
Affiliation(s)
- Eugeny E Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Federal Center of Brain Research and Neurotechnology, Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Elena A Parshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
19
|
Arnold CP, Lozano AM, Mann FG, Nowotarski SH, Haug JO, Lange JJ, Seidel CW, Alvarado AS. Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals. Nat Commun 2021; 12:6706. [PMID: 34795249 PMCID: PMC8602322 DOI: 10.1038/s41467-021-26986-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hox genes are highly conserved transcription factors renowned for their roles in the segmental patterning of the embryonic anterior-posterior (A/P) axis. We report functions for Hox genes in A/P tissue segmentation and transverse fission behavior underlying asexual reproduction in adult planarian flatworms, Schmidtea mediterranea. Silencing of each of the Hox family members identifies 5 Hox genes required for asexual reproduction. Among these, silencing of hox3 genes results in supernumerary fission segments, while silencing of post2b eliminates segmentation altogether. The opposing roles of hox3 and post2b in segmentation are paralleled in their respective regulation of fission behavior. Silencing of hox3 increases the frequency of fission behavior initiation while silencing of post2b eliminates fission behavior entirely. Furthermore, we identify a network of downstream effector genes mediating Hox gene functions, providing insight into their respective mechanisms of action. In particular, we resolve roles for post2b and effector genes in the functions of the marginal adhesive organ in fission behavior regulation. Collectively, our study establishes adult stage roles for Hox genes in the regulation of tissue segmentation and behavior associated with asexual reproduction.
Collapse
|
20
|
Tan S, Huan P, Liu B. Molluscan dorsal-ventral patterning relying on BMP2/4 and Chordin provides insights into spiralian development and evolution. Mol Biol Evol 2021; 39:6424002. [PMID: 34751376 PMCID: PMC8789067 DOI: 10.1093/molbev/msab322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal–ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
21
|
Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells 2021; 10:cells10102692. [PMID: 34685672 PMCID: PMC8534814 DOI: 10.3390/cells10102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.
Collapse
|
22
|
Lebedeva T, Aman AJ, Graf T, Niedermoser I, Zimmermann B, Kraus Y, Schatka M, Demilly A, Technau U, Genikhovich G. Cnidarian-bilaterian comparison reveals the ancestral regulatory logic of the β-catenin dependent axial patterning. Nat Commun 2021; 12:4032. [PMID: 34188050 PMCID: PMC8241978 DOI: 10.1038/s41467-021-24346-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/30/2021] [Indexed: 11/09/2022] Open
Abstract
In animals, body axis patterning is based on the concentration-dependent interpretation of graded morphogen signals, which enables correct positioning of the anatomical structures. The most ancient axis patterning system acting across animal phyla relies on β-catenin signaling, which directs gastrulation, and patterns the main body axis. However, within Bilateria, the patterning logic varies significantly between protostomes and deuterostomes. To deduce the ancestral principles of β-catenin-dependent axial patterning, we investigate the oral–aboral axis patterning in the sea anemone Nematostella—a member of the bilaterian sister group Cnidaria. Here we elucidate the regulatory logic by which more orally expressed β-catenin targets repress more aborally expressed β-catenin targets, and progressively restrict the initially global, maternally provided aboral identity. Similar regulatory logic of β-catenin-dependent patterning in Nematostella and deuterostomes suggests a common evolutionary origin of these processes and the equivalence of the cnidarian oral–aboral and the bilaterian posterior–anterior body axes. The authors show in Nematostella that the more orally expressed β-catenin targets repress the more aborally expressed β-catenin targets, thus patterning the oral-aboral axis. This likely represents the common mechanism of β-catenin-dependent axial patterning shared by Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Andrew J Aman
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Thomas Graf
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Isabell Niedermoser
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Yulia Kraus
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow, Russia
| | - Magdalena Schatka
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Adrien Demilly
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.
| |
Collapse
|
23
|
Fujita S, Kuranaga E, Nakajima YI. Regeneration Potential of Jellyfish: Cellular Mechanisms and Molecular Insights. Genes (Basel) 2021; 12:758. [PMID: 34067753 PMCID: PMC8156412 DOI: 10.3390/genes12050758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/20/2023] Open
Abstract
Medusozoans, the Cnidarian subphylum, have multiple life stages including sessile polyps and free-swimming medusae or jellyfish, which are typically bell-shaped gelatinous zooplanktons that exhibit diverse morphologies. Despite having a relatively complex body structure with well-developed muscles and nervous systems, the adult medusa stage maintains a high regenerative ability that enables organ regeneration as well as whole body reconstitution from the part of the body. This remarkable regeneration potential of jellyfish has long been acknowledged in different species; however, recent studies have begun dissecting the exact processes underpinning regeneration events. In this article, we introduce the current understanding of regeneration mechanisms in medusae, particularly focusing on cellular behaviors during regeneration such as wound healing, blastema formation by stem/progenitor cells or cell fate plasticity, and the organism-level patterning that restores radial symmetry. We also discuss putative molecular mechanisms involved in regeneration processes and introduce a variety of novel model jellyfish species in the effort to understand common principles and diverse mechanisms underlying the regeneration of complex organs and the entire body.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
| | - Yu-ichiro Nakajima
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Miyagi, Japan
| |
Collapse
|
24
|
Madamanchi A, Mullins MC, Umulis DM. Diversity and robustness of bone morphogenetic protein pattern formation. Development 2021; 148:dev192344. [PMID: 33795238 PMCID: PMC8034876 DOI: 10.1242/dev.192344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pattern formation by bone morphogenetic proteins (BMPs) demonstrates remarkable plasticity and utility in several contexts, such as early embryonic development, tissue patterning and the maintenance of stem cell niches. BMPs pattern tissues over many temporal and spatial scales: BMP gradients as short as 1-2 cell diameters maintain the stem cell niche of the Drosophila germarium over a 24-h cycle, and BMP gradients of several hundred microns establish dorsal-ventral tissue specification in Drosophila, zebrafish and Xenopus embryos in timescales between 30 min and several hours. The mechanisms that shape BMP signaling gradients are also incredibly diverse. Although ligand diffusion plays a dominant role in forming the gradient, a cast of diffusible and non-diffusible regulators modulate gradient formation and confer robustness, including scale invariance and adaptability to perturbations in gene expression and growth. In this Review, we document the diverse ways that BMP gradients are formed and refined, and we identify the core principles that they share to achieve reliable performance.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Umulis
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Pechmann M, Kenny NJ, Pott L, Heger P, Chen YT, Buchta T, Özüak O, Lynch J, Roth S. Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network. eLife 2021; 10:e68287. [PMID: 33783353 PMCID: PMC8051952 DOI: 10.7554/elife.68287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus, an evolutionarily distant outgroup, Toll has, like in Drosophila, a direct patterning role for the ventral half of the embryo. In addition, Toll polarises BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila. Our data suggest two surprising hypotheses: (1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or (2) a Drosophila-like system arose early in insect evolution and was extensively altered in multiple independent lineages.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | | | - Laura Pott
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Peter Heger
- Regional Computing Centre (RRZK), University of CologneKölnGermany
| | - Yen-Ta Chen
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Thomas Buchta
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Orhan Özüak
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Jeremy Lynch
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Siegfried Roth
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| |
Collapse
|
26
|
Krishnapati LS, Khade S, Trimbake D, Patwardhan R, Nadimpalli SK, Ghaskadbi S. Differential expression of BMP inhibitors gremlin and noggin in Hydra suggests distinct roles during budding and patterning of tentacles. Dev Dyn 2020; 249:1470-1485. [PMID: 33245611 DOI: 10.1002/dvdy.238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mechanisms regulating BMP and Wnt pathways and their interactions are not well studied in Hydra. RESULTS We report identification of BMP inhibitor gremlin, comparison of its expression with that of noggin and possible antagonism between Wnt and BMP signaling in Hydra. Gremlin is expressed in body column with high levels in budding region and in early buds. Noggin, on the other hand, is expressed in the hypostome, base of tentacles, lower body column, and basal disc. During budding, noggin is expressed at the sites of tentacle emergence. This was confirmed in ectopic tentacles in polyps treated with alsterpaullone (ALP), a GSK-3β inhibitor that leads to upregulation of Wnt pathway. RT-PCR data show that upregulation of Wnt is accompanied by downregulation of bmp 5-8b though noggin and gremlin remain unaltered till 24 hours. CONCLUSIONS Different expression patterns of gremlin and noggin suggest their roles in budding and patterning of tentacles, respectively. Further, bmp 5-8b inhibition by activated Wnt signaling does not directly involve noggin and gremlin in Hydra. Our data suggest that Wnt/BMP antagonism may have evolved early for defining the oral-aboral axis, while the involvement of BMP antagonists during axial patterning is a recent evolutionary acquisition within the Bilateria lineage.
Collapse
Affiliation(s)
- Lakshmi Surekha Krishnapati
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Laboratory for Protein Biochemistry and Glycobiology, Biochemistry Department, University of Hyderabad, Hyderabad, India
| | - Samiksha Khade
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Diptee Trimbake
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Rohan Patwardhan
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Siva Kumar Nadimpalli
- Laboratory for Protein Biochemistry and Glycobiology, Biochemistry Department, University of Hyderabad, Hyderabad, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
27
|
Rogers KW, ElGamacy M, Jordan BM, Müller P. Optogenetic investigation of BMP target gene expression diversity. eLife 2020; 9:58641. [PMID: 33174840 PMCID: PMC7728441 DOI: 10.7554/elife.58641] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling molecules activate distinct patterns of gene expression to coordinate embryogenesis, but how spatiotemporal expression diversity is generated is an open question. In zebrafish, a BMP signaling gradient patterns the dorsal-ventral axis. We systematically identified target genes responding to BMP and found that they have diverse spatiotemporal expression patterns. Transcriptional responses to optogenetically delivered high- and low-amplitude BMP signaling pulses indicate that spatiotemporal expression is not fully defined by different BMP signaling activation thresholds. Additionally, we observed negligible correlations between spatiotemporal expression and transcription kinetics for the majority of analyzed genes in response to BMP signaling pulses. In contrast, spatial differences between BMP target genes largely collapsed when FGF and Nodal signaling were inhibited. Our results suggest that, similar to other patterning systems, combinatorial signaling is likely to be a major driver of spatial diversity in BMP-dependent gene expression in zebrafish.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.,Heliopolis Biotechnology Ltd, London, United Kingdom
| | - Benjamin M Jordan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields. Dev Genes Evol 2020; 230:49-63. [PMID: 30972574 PMCID: PMC7128006 DOI: 10.1007/s00427-019-00631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Bilaterally symmetric body plans of vertebrates and arthropods are defined by a single set of two orthogonal axes, the anterior-posterior (or head-tail) and dorsal-ventral axes. In vertebrates, and especially amphibians, complete or partial doubling of the bilaterian body axes can be induced by two different types of embryological manipulations: transplantation of an organizer region or bi-sectioning of an embryo. Such axis doubling relies on the ability of embryonic fields to flexibly respond to the situation and self-regulate toward forming a whole body. This phenomenon has facilitated experimental efforts to investigate the mechanisms of vertebrate body axes formation. However, few studies have addressed the self-regulatory capabilities of embryonic fields associated with body axes formation in non-vertebrate bilaterians. The pioneer spider embryologist Åke Holm reported twinning of spider embryos induced by both types of embryological manipulations in 1952; yet, his experiments have not been replicated by other investigators, and access to spider or non-vertebrate twins has been limited. In this review, we provide a historical background on twinning experiments in spiders, and an overview of current twinning approaches in familiar spider species and related molecular studies. Moreover, we discuss the benefits of the spider model system for a deeper understanding of the ancestral mechanisms of body axes formation in arthropods, as well as in bilaterians.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | | | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
29
|
Fields C, Levin M. Does regeneration recapitulate phylogeny? Planaria as a model of body-axis specification in ancestral eumetazoa. Commun Integr Biol 2020; 13:27-38. [PMID: 32128026 PMCID: PMC7039665 DOI: 10.1080/19420889.2020.1729601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoan body plans combine well-defined primary, secondary, and in many bilaterians, tertiary body axes with structural asymmetries at multiple scales. Despite decades of study, how axis-defining symmetries and system-defining asymmetries co-emerge during both evolution and development remain open questions. Regeneration studies in asexual planaria have demonstrated an array of viable forms with symmetrized and, in some cases, duplicated body axes. We suggest that such forms may point toward an ancestral eumetazoan form with characteristics of both cnidarians and placazoa.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
30
|
Rahimi N, Averbukh I, Carmon S, Schejter ED, Barkai N, Shilo BZ. Dynamics of Spaetzle morphogen shuttling in the Drosophila embryo shapes gastrulation patterning. Development 2019; 146:146/21/dev181487. [PMID: 31719046 DOI: 10.1242/dev.181487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
Establishment of morphogen gradients in the early Drosophila embryo is challenged by a diffusible sextracellular milieu, and by rapid nuclear divisions that occur at the same time. To understand how a sharp gradient is formed within this dynamic environment, we followed the generation of graded nuclear Dorsal protein, the hallmark of pattern formation along the dorso-ventral axis, in live embryos. The dynamics indicate that a sharp extracellular gradient is formed through diffusion-based shuttling of the Spaetzle (Spz) morphogen that progresses through several nuclear divisions. Perturbed shuttling in wntD mutant embryos results in a flat activation peak and aberrant gastrulation. Re-entry of Dorsal into the nuclei at the final division cycle plays an instructive role, as the residence time of Dorsal in each nucleus is translated to the amount of zygotic transcript that will be produced, thereby guiding graded accumulation of specific zygotic transcripts that drive patterned gastrulation. We conclude that diffusion-based ligand shuttling, coupled with dynamic readout, establishes a refined pattern within the diffusible environment of early embryos.
Collapse
Affiliation(s)
- Neta Rahimi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Averbukh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
31
|
|
32
|
Abstract
The BMP signaling pathway has been shown to be involved in different aspects of embryonic development across diverse metazoan phyla. Comparative studies on the roles of the BMP signaling pathway provide crucial insights into the evolution of the animal body plans. In this chapter, we present the general workflow on how to investigate the roles of BMP signaling pathway during amphioxus embryonic development. As amphioxus are basal invertebrate chordates, studies on the BMP signaling pathway in amphioxus could elucidate the functional evolution of BMP pathway in the chordate group. Here, we describe methods for animal husbandry, spawning induction, and manipulation of the BMP signaling pathway during embryonic development through drug inhibitors and recombinant proteins. We also introduce an efficient method of using mesh baskets to handle amphioxus embryos for fluorescence immunostaining and multicolor fluorescence in situ hybridization and to assay the effects of manipulating BMP signaling pathway during amphioxus embryogenesis.
Collapse
|
33
|
Huang Y, Umulis DM. Scale invariance of BMP signaling gradients in zebrafish. Sci Rep 2019; 9:5440. [PMID: 30932076 PMCID: PMC6443670 DOI: 10.1038/s41598-019-41840-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
In both vertebrates and invertebrates, spatial patterning along the Dorsal-ventral (DV) embryonic axis depends on a morphogen gradient of Bone Morphogenetic Protein signaling. Scale invariance of DV patterning by BMPs has been found in both vertebrates and invertebrates, however the mechanisms that regulate gradient scaling remain controversial. To obtain quantitative data that can be used to address core questions of scaling, we introduce a method to tune the size of zebrafish embryos by reducing varying amounts of vegetal yolk. We quantified the BMP signaling gradient in wild-type and perturbed embryos and found that the system scales for reductions in cross-sectional perimeter of up to 30%. Furthermore, we found that the degree of scaling for intraspecies scaling within zebrafish is greater than that between Danioninae species.
Collapse
Affiliation(s)
- Yan Huang
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David M Umulis
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, Jager M, Condamine T, Pottin K, Romano S, Steger J, Sinigaglia C, Barreau C, Quiroga Artigas G, Ruggiero A, Fourrage C, Kraus JEM, Poulain J, Aury JM, Wincker P, Quéinnec E, Technau U, Manuel M, Momose T, Houliston E, Copley RR. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol 2019; 3:801-810. [PMID: 30858591 DOI: 10.1038/s41559-019-0833-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Coralie Horin
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sophie Peron
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Muriel Jager
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Thomas Condamine
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Karen Pottin
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Séverine Romano
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Julia Steger
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Chiara Sinigaglia
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242-INRA USC 1370, Lyon cedex 07, France
| | - Carine Barreau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Gonzalo Quiroga Artigas
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Antonella Ruggiero
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, Montpellier Cedex 5, France
| | - Cécile Fourrage
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Service de Génétique UMR 781, Hôpital Necker-APHP, Paris, France
| | - Johanna E M Kraus
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Quéinnec
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Michaël Manuel
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Tsuyoshi Momose
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| |
Collapse
|
35
|
He S, Del Viso F, Chen CY, Ikmi A, Kroesen AE, Gibson MC. An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science 2018; 361:1377-1380. [PMID: 30262503 DOI: 10.1126/science.aar8384] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 11/02/2022]
Abstract
Hox genes encode conserved developmental transcription factors that govern anterior-posterior (A-P) pattering in diverse bilaterian animals, which display bilateral symmetry. Although Hox genes are also present within Cnidaria, these simple animals lack a definitive A-P axis, leaving it unclear how and when a functionally integrated Hox code arose during evolution. We used short hairpin RNA (shRNA)-mediated knockdown and CRISPR-Cas9 mutagenesis to demonstrate that a Hox-Gbx network controls radial segmentation of the larval endoderm during development of the sea anemone Nematostella vectensis. Loss of Hox-Gbx activity also elicits marked defects in tentacle patterning along the directive (orthogonal) axis of primary polyps. On the basis of our results, we propose that an axial Hox code may have controlled body patterning and tissue segmentation before the evolution of the bilaterian A-P axis.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Cheng-Yi Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Aissam Ikmi
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Amanda E Kroesen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA. .,Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
|
37
|
|
38
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
39
|
Huang Y, Hatakeyama M, Shimmi O. Wing vein development in the sawfly Athalia rosae is regulated by spatial transcription of Dpp/BMP signaling components. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:408-415. [PMID: 29596913 DOI: 10.1016/j.asd.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Wing venation among insects serves as an excellent model to address how diversified patterns are produced. Previous studies suggest that evolutionarily conserved Decapentaplegic (Dpp)/Bone Morphogenetic Protein (BMP) signal plays a critical role in wing vein development in the dipteran Drosophila melanogaster and the hymenopteran sawfly Athalia rosae. In sawfly, dpp is ubiquitously expressed in the wing during prepupal stages, but Dpp/BMP signal is localized in the future vein cells. Since localized BMP signaling involves BMP binding protein Crossveinless (Cv), redistribution of BMP ligands appears to be crucial for sawfly wing vein formation. However, how ubiquitously expressed ligands lead to a localized signal remains to be addressed. Here, we found that BMP binding protein short gastrulation (Sog) is highly expressed in the intervein cells. Our data also reveal that BMP type I receptors thickveins (Tkv) and saxophone (Sax) are highly expressed in intervein cells and at lower levels in the vein progenitor cells. RNAi knockdown of Ar-tkv or Ar-sax indicates that both receptors are required for localized BMP signaling in the wing vein progenitor cells. Taken together, our data suggest that spatial transcription of core- and co-factors of the BMP pathway sustain localized BMP signaling during sawfly wing vein development.
Collapse
Affiliation(s)
- Yunxian Huang
- Institute of Biotechnology, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Masatsugu Hatakeyama
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi, Tsukuba, 305-8634, Japan.
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014, Helsinki, Finland.
| |
Collapse
|
40
|
Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018; 145:dev.162867. [PMID: 29739837 DOI: 10.1242/dev.162867] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023]
Abstract
For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.
Collapse
Affiliation(s)
- Jacob F Warner
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Vincent Guerlais
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Hereroa Johnston
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Karine Nedoncelle
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| |
Collapse
|
41
|
Dunn FS, Liu AG, Donoghue PCJ. Ediacaran developmental biology. Biol Rev Camb Philos Soc 2018; 93:914-932. [PMID: 29105292 PMCID: PMC5947158 DOI: 10.1111/brv.12379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 01/23/2023]
Abstract
Rocks of the Ediacaran System (635-541 Ma) preserve fossil evidence of some of the earliest complex macroscopic organisms, many of which have been interpreted as animals. However, the unusual morphologies of some of these organisms have made it difficult to resolve their biological relationships to modern metazoan groups. Alternative competing phylogenetic interpretations have been proposed for Ediacaran taxa, including algae, fungi, lichens, rhizoid protists, and even an extinct higher-order group (Vendobionta). If a metazoan affinity can be demonstrated for these organisms, as advocated by many researchers, they could prove informative in debates concerning the evolution of the metazoan body axis, the making and breaking of axial symmetries, and the appearance of a metameric body plan. Attempts to decipher members of the enigmatic Ediacaran macrobiota have largely involved study of morphology: comparative analysis of their developmental phases has received little attention. Here we present what is known of ontogeny across the three iconic Ediacaran taxa Charnia masoni, Dickinsonia costata and Pteridinium simplex, together with new ontogenetic data and insights. We use these data and interpretations to re-evaluate the phylogenetic position of the broader Ediacaran morphogroups to which these taxa are considered to belong (rangeomorphs, dickinsoniomorphs and erniettomorphs). We conclude, based on the available evidence, that the affinities of the rangeomorphs and the dickinsoniomorphs lie within Metazoa.
Collapse
Affiliation(s)
- Frances S. Dunn
- School of Earth SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue, BristolBS8 1TQU.K.
- British Geological SurveyNicker Hill, Keyworth, NottinghamNG12 5GGU.K.
| | - Alexander G. Liu
- School of Earth SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue, BristolBS8 1TQU.K.
| | - Philip C. J. Donoghue
- School of Earth SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue, BristolBS8 1TQU.K.
| |
Collapse
|
42
|
Nodal and BMP dispersal during early zebrafish development. Dev Biol 2018; 447:14-23. [PMID: 29653088 DOI: 10.1016/j.ydbio.2018.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
Abstract
The secreted TGF-β superfamily signals Nodal and BMP coordinate the patterning of vertebrate embryos. Nodal specifies endoderm and mesoderm during germ layer formation, and BMP specifies ventral fates and patterns the dorsal/ventral axis. Five major models have been proposed to explain how the correct distributions of Nodal and BMP are achieved within tissues to orchestrate embryogenesis: source/sink, transcriptional determination, relay, self-regulation, and shuttling. Here, we discuss recent experiments probing these signal dispersal models, focusing on early zebrafish development.
Collapse
|
43
|
Kirillova A, Genikhovich G, Pukhlyakova E, Demilly A, Kraus Y, Technau U. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates. Proc Natl Acad Sci U S A 2018; 115:1813-1818. [PMID: 29440382 PMCID: PMC5828576 DOI: 10.1073/pnas.1711516115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Robust morphogenetic events are pivotal for animal embryogenesis. However, comparison of the modes of development of different members of a phylum suggests that the spectrum of developmental trajectories accessible for a species might be far broader than can be concluded from the observation of normal development. Here, by using a combination of microsurgery and transgenic reporter gene expression, we show that, facing a new developmental context, the aggregates of dissociated embryonic cells of the sea anemone Nematostella vectensis take an alternative developmental trajectory. The self-organizing aggregates rely on Wnt signals produced by the cells of the original blastopore lip organizer to form body axes but employ morphogenetic events typical for normal development of distantly related cnidarians to re-establish the germ layers. The reaggregated cells show enormous plasticity including the capacity of the ectodermal cells to convert into endoderm. Our results suggest that new developmental trajectories may evolve relatively easily when highly plastic embryonic cells face new constraints.
Collapse
Affiliation(s)
- Anastasia Kirillova
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Grigory Genikhovich
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
| | - Ekaterina Pukhlyakova
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Adrien Demilly
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Yulia Kraus
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
44
|
Morov AR, Ukizintambara T, Sabirov RM, Yasui K. Acquisition of the dorsal structures in chordate amphioxus. Open Biol 2017; 6:rsob.160062. [PMID: 27307516 PMCID: PMC4929940 DOI: 10.1098/rsob.160062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
Acquisition of dorsal structures, such as notochord and hollow nerve cord, is likely to have had a profound influence upon vertebrate evolution. Dorsal formation in chordate development thus has been intensively studied in vertebrates and ascidians. However, the present understanding does not explain how chordates acquired dorsal structures. Here we show that amphioxus retains a key clue to answer this question. In amphioxus embryos, maternal nodal mRNA distributes asymmetrically in accordance with the remodelling of the cortical cytoskeleton in the fertilized egg, and subsequently lefty is first expressed in a patch of blastomeres across the equator where wnt8 is expressed circularly and which will become the margin of the blastopore. The lefty domain co-expresses zygotic nodal by the initial gastrula stage on the one side of the blastopore margin and induces the expression of goosecoid, not-like, chordin and brachyury1 genes in this region, as in the oral ectoderm of sea urchin embryos, which provides a basis for the formation of the dorsal structures. The striking similarity in the gene regulations and their respective expression domains when comparing dorsal formation in amphioxus and the determination of the oral ectoderm in sea urchin embryos suggests that chordates derived from an ambulacrarian-type blastula with dorsoventral inversion.
Collapse
Affiliation(s)
- Arseniy R Morov
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Tharcisse Ukizintambara
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Rushan M Sabirov
- Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Kinya Yasui
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
45
|
Abstract
Bilaterality – the possession of two orthogonal body axes – is the name-giving trait of all bilaterian animals. These body axes are established during early embryogenesis and serve as a three-dimensional coordinate system that provides crucial spatial cues for developing cells, tissues, organs and appendages. The emergence of bilaterality was a major evolutionary transition, as it allowed animals to evolve more complex body plans. Therefore, how bilaterality evolved and whether it evolved once or several times independently is a fundamental issue in evolutionary developmental biology. Recent findings from non-bilaterian animals, in particular from Cnidaria, the sister group to Bilateria, have shed new light into the evolutionary origin of bilaterality. Here, we compare the molecular control of body axes in radially and bilaterally symmetric cnidarians and bilaterians, identify the minimal set of traits common for Bilateria, and evaluate whether bilaterality arose once or more than once during evolution.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
46
|
De Robertis EM, Moriyama Y, Colozza G. Generation of animal form by the Chordin/Tolloid/BMP gradient: 100 years after D'Arcy Thompson. Dev Growth Differ 2017; 59:580-592. [PMID: 28815565 DOI: 10.1111/dgd.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022]
Abstract
The classic book "On Growth and Form" by naturalist D'Arcy Thompson was published 100 years ago. To celebrate this landmark, we present experiments in the Xenopus embryo that provide a framework for understanding how simple, quantitative transformations of a morphogen gradient might have affected evolution and morphological diversity of organisms. D'Arcy Thompson proposed that different morphologies might be generated by modifying physical parameters in an underlying system of Cartesian coordinates that pre-existed in Nature and arose during evolutionary history. Chordin is a BMP antagonist secreted by the Spemann organizer located on the dorsal side of the gastrula. Chordin generates a morphogen gradient as first proposed by mathematician Alan Turing. The rate-limiting step of this dorsal-ventral (D-V) morphogen is the degradation of Chordin by the Tolloid metalloproteinase in the ventral side. Chordin is expressed at gastrula on the dorsal side where BMP signaling is low, while at the opposite side peak levels of BMP signaling are reached. In fishes, amphibians, reptiles and birds, high BMP signaling in the ventral region induces transcription of a secreted inhibitor of Tolloid called Sizzled. By depleting Sizzled exclusively in the ventral half of the embryo we were able to expand the ventro-posterior region in an otherwise normal embryo. Conversely, ventral depletion of Tolloid, which stabilizes Chordin, decreased ventral and tail structures, phenocopying the tolloid zebrafish mutation. We explain how historical constraints recorded in the language of DNA become subject to the universal laws of physics when an ancestral reaction-diffusion morphogen gradient dictates form.
Collapse
Affiliation(s)
- Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Yuki Moriyama
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Gabriele Colozza
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| |
Collapse
|
47
|
Zinski J, Bu Y, Wang X, Dou W, Umulis D, Mullins MC. Systems biology derived source-sink mechanism of BMP gradient formation. eLife 2017; 6:22199. [PMID: 28826472 PMCID: PMC5590806 DOI: 10.7554/elife.22199] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. Before an animal is born, a protein called BMP plays a key role in establishing the difference between the front and the back of the animal. Cells nearer the front of the embryo contain higher amounts of the BMP protein, whilst cells nearer the back have progressively lower levels of BMP. This gradient of BMP ‘concentration’ affects the identity of the cells, with the level of BMP in each cell dictating what parts of the body are made where. The prevailing view among scientists is that the BMP gradient is created by an opposing gradient of another protein called Chordin, which is found at high levels at the back of the embryo and lower levels near the front. Chordin inhibits BMP and the interaction between the two proteins establishes the gradients that create order across the embryo. Zinski et al. used computer models to investigate how the BMP gradient is created. Several possibilities were considered, including the effect of Chordin. Comparing the models to precise experimental measurements of BMP activity in zebrafish embryos suggested that a different mechanism known as a source-sink model, rather than the opposing Chordin gradient, may be responsible for the pattern of BMP found in the embryo. In this model, the BMP is produced at the front of the embryo and moves towards the back end by diffusion. At the back of the embryo, BMP is mopped up by Chordin, resulting in a constant gradient of BMP along the embryo. Many other processes that control how animals grow and develop rely on the formation of similar protein gradients, so these findings may also apply to other aspects of animal development. Understanding how animals grow and develop may help researchers to develop strategies to regrow tissues and organs in human patients.
Collapse
Affiliation(s)
- Joseph Zinski
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Ye Bu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Xu Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Wei Dou
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, United States
| | - Mary C Mullins
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
48
|
Antagonistic BMP-cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm. Proc Natl Acad Sci U S A 2017; 114:E5608-E5615. [PMID: 28652368 DOI: 10.1073/pnas.1701607114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral-aboral axis in Nematostella We also show functionally that the conserved "kernel" of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue.
Collapse
|
49
|
Abdol AM, Röttinger E, Jansson F, Kaandorp JA. A novel technique to combine and analyse spatial and temporal expression datasets: A case study with the sea anemone Nematostella vectensis to identify potential gene interactions. Dev Biol 2017; 428:204-214. [PMID: 28602952 DOI: 10.1016/j.ydbio.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/28/2017] [Accepted: 06/02/2017] [Indexed: 11/30/2022]
Abstract
Understanding genetic interactions during early development of a given organism, is the first step toward unveiling gene regulatory networks (GRNs) that govern a biological process of interest. Predicting such interactions from large expression datasets by performing targeted knock-down/knock-out approaches is a challenging task. We use the currently available expression datasets (in situ hybridization images & qPCR time series) for a basal anthozoan the sea anemone N. vectensis to construct continuous spatiotemporal gene expression patterns during its early development. Moreover, by combining cluster results from each dataset we develop a method that provides testable hypotheses about potential genetic interactions. We show that the analysis of spatial gene expression patterns reveals functional regions of the embryo during the gastrulation. The clustering results from qPCR time series unveils significant temporal events and highlights genes potentially involved in N. vectensis gastrulation. Furthermore, we introduce a method for merging the clustering results from spatial and temporal datasets by which we can group genes that are expressed in the same region and at the time. We demonstrate that the merged clusters can be used to identify GRN interactions involved in various processes and to predict possible activators or repressors of any gene in the dataset. Finally, we validate our methods and results by predicting the repressor effect of NvErg on NvBra in the central domain during the gastrulation that has recently been confirmed by functional analysis.
Collapse
Affiliation(s)
- Amir M Abdol
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Nice, France.
| | - Fredrik Jansson
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jaap A Kaandorp
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
50
|
|