1
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination. Nat Commun 2023; 14:6758. [PMID: 37875465 PMCID: PMC10598272 DOI: 10.1038/s41467-023-42429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The adaptive regulation of fear memories is a crucial neural function that prevents inappropriate fear expression. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic nucleus reuniens (NR) is necessary to extinguish contextual fear and innervates hippocampal CA1. However, the role of the NR-CA1 pathway in contextual fear is unknown. We developed a head-restrained virtual reality CFC paradigm, and demonstrate that mice can acquire and extinguish context-dependent fear responses. We found that inhibiting the NR-CA1 pathway following CFC lengthens the duration of fearful freezing epochs, increases fear generalization, and delays fear extinction. Using in vivo imaging, we recorded NR-axons innervating CA1 and found that NR-axons become tuned to fearful freezing following CFC. We conclude that the NR-CA1 pathway actively suppresses fear by disrupting contextual fear memory retrieval in CA1 during fearful freezing behavior, a process that also reduces fear generalization and accelerates extinction.
Collapse
Affiliation(s)
- Heather C Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA
| | - Mark E J Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA.
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
2
|
Zuzina AB, Vinarskaya AK, Balaban PM. DNA Methylation Inhibition Reversibly Impairs the Long-Term Context Memory Maintenance in Helix. Int J Mol Sci 2023; 24:14068. [PMID: 37762369 PMCID: PMC10531757 DOI: 10.3390/ijms241814068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
This work aims to study the epigenetic mechanisms of regulating long-term context memory in the gastropod mollusk: Helix. We have shown that RG108, an inhibitor of DNA methyltransferase (DNMT), impaired long-term context memory in snails, and this impairment can be reversed within a limited time window: no more than 48 h. Research on the mechanisms through which the long-term context memory impaired by DNMT inhibition could be reinstated demonstrated that this effect depends on several biochemical mechanisms: nitric oxide synthesis, protein synthesis, and activity of the serotonergic system. Memory recovery did not occur if at least one of these mechanisms was impaired. The need for the joint synergic activity of several biochemical systems for a successful memory rescue confirms the assumption that the memory recovery process depends on the process of active reconsolidation, and is not simply a passive weakening of the effect of RG108 over time. Finally, we showed that the reactivation of the impaired memory by RG108, followed by administration of histone deacetylase inhibitor sodium butyrate, led to memory recovery only within a narrow time window: no more than 48 h after memory disruption.
Collapse
Affiliation(s)
| | | | - Pavel M. Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia; (A.B.Z.); (A.K.V.)
| |
Collapse
|
3
|
Budriesi P, Tintorelli R, Correa J, Villar ME, Marchal P, Giurfa M, Viola H. A behavioral tagging account of kinase contribution to memory formation after spaced aversive training. iScience 2023; 26:107278. [PMID: 37520708 PMCID: PMC10372744 DOI: 10.1016/j.isci.2023.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long-term memory (LTM) can be induced by repeated spaced training trials. Using the weak inhibitory avoidance (wIA) task, we showed that one wIA session does not lead to a 24-h LTM, whereas two identical wIA sessions spaced by 15 min to 6 h induce a 24-h LTM. This LTM promotion depends both on hippocampal protein synthesis and the activity of several kinases. In agreement with the behavioral tagging (BT) hypothesis, our results suggest that the two training sessions induce transient learning tags and lead, via a cooperative effect, to the synthesis of plasticity-related proteins (PRPs) that become available and captured by the tag from the second session. Although ERKs1/2 are needed for PRPs synthesis and CaMKs are required for tag setting, PKA participates in both processes. We conclude that the BT mechanism accounts for the molecular constraints underlying the classic effect of spaced learning on LTM formation.
Collapse
Affiliation(s)
- Pablo Budriesi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Correa
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Villar
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Paul Marchal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Poe Lab, Integrative Biology and Physiology department, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
- Institut Universitaire de France (IUF), Paris, France
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado” (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Kenna M, Marek R, Sah P. Insights into the encoding of memories through the circuitry of fear. Curr Opin Neurobiol 2023; 80:102712. [PMID: 37003106 DOI: 10.1016/j.conb.2023.102712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023]
Abstract
Associative learning induces physical changes to a network of cells, known as the memory engram. Fear is widely used as a model to understand the circuit motifs that underpin associative memories. Recent advances suggest that the distinct circuitry engaged by different conditioned stimuli (e.g. tone vs. context) can provide insights into what information is being encoded in the fear engram. Moreover, as the fear memory matures, the circuitry engaged indicates how information is remodelled after learning and hints at potential mechanisms for consolidation. Finally, we propose that the consolidation of fear memories involves plasticity of engram cells through coordinated activity between brain regions, and the inherent characteristics of the circuitry may mediate this process.
Collapse
Affiliation(s)
- Matthew Kenna
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Roger Marek
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
5
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. Direct Thalamic Inputs to Hippocampal CA1 Transmit a Signal That Suppresses Ongoing Contextual Fear Memory Retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534420. [PMID: 37034812 PMCID: PMC10081195 DOI: 10.1101/2023.03.27.534420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Memory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.
Collapse
Affiliation(s)
- Heather C. Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
| | - Mark E. J. Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
6
|
Kobayashi KS, Matsuo N. Persistent representation of the environment in the hippocampus. Cell Rep 2023; 42:111989. [PMID: 36640328 DOI: 10.1016/j.celrep.2022.111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
In the hippocampus, environmental changes elicit rearrangement of active neuronal ensembles or remapping of place cells. However, it remains elusive how the brain ensures a consistent representation of a certain environment itself despite salient events occurring there. Here, we longitudinally tracked calcium dynamics of dorsal hippocampal CA1 neurons in mice subjected to contextual fear conditioning and extinction training. Overall population activities were significantly changed by fear conditioning and were responsive to footshocks and freezing. However, a small subset of neurons, termed environment cells, were consistently active in a specific environment irrespective of experiences. A decoder modeling study showed that these cells, but not place cells, were able to predict the environment to which the mouse was exposed. Environment cells might underlie the constancy of cognition for distinct environments across time and events. Additionally, our study highlights the functional heterogeneity of cells in the hippocampus.
Collapse
Affiliation(s)
- Kyogo S Kobayashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naoki Matsuo
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Learning and memory: Shuffling memory traces by relearning. Curr Biol 2021; 31:R1588-R1591. [PMID: 34932971 DOI: 10.1016/j.cub.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Memory engram cells are a subpopulation of neurons activated during learning, and are necessary and sufficient for memory recall. New findings show that relearning induces the turnover of the memory engram cell population involved in fear memory recall.
Collapse
|
8
|
Cho HY, Shin W, Lee HS, Lee Y, Kim M, Oh JP, Han J, Jeong Y, Suh B, Kim E, Han JH. Turnover of fear engram cells by repeated experience. Curr Biol 2021; 31:5450-5461.e4. [PMID: 34687608 DOI: 10.1016/j.cub.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
A sparse population of neurons active during a learning event has been identified as memory engram cells. However, cells that are recruited to support memory when experience is repeated have been scarcely explored. Evidence from previous studies provides contradictory views. To address these questions, we employed learning-dependent cell labeling in the lateral amygdala (LA) and applied electrophysiological recording, spine imaging, and optogenetic tools to the labeled neurons with or without retraining. We found that engram cells established from original fear learning became dispensable for memory retrieval specifically with relearning, and this correlated with a reduction of synaptic transmission and loss of dendritic spines in these neurons. Despite such decreased connectivity, direct activation of these neurons resulted in fear-memory recall. We further identified that repeated memory was encoded in neurons active during relearning. These results suggest a shift in neuronal ensembles encoding fear memory in the LA by relearning through disconnection of the existing engram neurons established from original experience.
Collapse
Affiliation(s)
- Hye-Yeon Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Han-Sol Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Yeji Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Mujun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Jung-Pyo Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Junho Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Yire Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Boin Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jin-Hee Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea; KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
9
|
Han DH, Park P, Choi DI, Bliss TVP, Kaang BK. The essence of the engram: Cellular or synaptic? Semin Cell Dev Biol 2021; 125:122-135. [PMID: 34103208 DOI: 10.1016/j.semcdb.2021.05.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Memory is composed of various phases including cellular consolidation, systems consolidation, reconsolidation, and extinction. In the last few years it has been shown that simple association memories can be encoded by a subset of the neuronal population called engram cells. Activity of these cells is necessary and sufficient for the recall of association memory. However, it is unclear which molecular mechanisms allow cellular engrams to encode the diverse phases of memory. Further research is needed to examine the possibility that it is the synapses between engram cells (the synaptic engram) that constitute the memory. In this review we summarize recent findings on cellular engrams with a focus on different phases of memory, and discuss the distinct molecular mechanism required for cellular and synaptic engrams.
Collapse
Affiliation(s)
- Dae Hee Han
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Pojeong Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Il Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tim V P Bliss
- Group leader emeritus, The Francis Crick Institute, 1 Midland Rd, Somers Town, London NW1 1AT, UK
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Lemaire JJ, Pontier B, Chaix R, El Ouadih Y, Khalil T, Sinardet D, Achim V, Postelnicu A, Coste J, Germain V, Sarret C, Sontheimer A. Neural correlates of consciousness and related disorders: From phenotypic descriptors of behavioral and relative consciousness to cortico-subcortical circuitry. Neurochirurgie 2021; 68:212-222. [PMID: 34051246 DOI: 10.1016/j.neuchi.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/13/2021] [Accepted: 05/09/2021] [Indexed: 01/01/2023]
Abstract
We report a review of medical aspects of the consciousness. The behavioral dimension, phenotypic descriptors, relative consciousness and neural correlates of consciousness and related disorders were addressed successively in a holistic and chronological approach. Consciousness is relative, specific to each individual across time and space. Historically defined as the perception of the self and the environment, it cannot be separated from behaviors, entailing an idea of conscious behavior with metapractic and metagnostic aspects. Observation of spontaneous and evoked overt behavior distinguishes three main types of disorder of consciousness (DoC): coma, vegetative state or unresponsive wakefulness, and minimally conscious or relationally impoverished state. Modern functional exploration techniques, such as imaging, increase the understanding of DoCs and consciousness. Whether consciousness is a superior function and/or an instrumental function is discussed. Neural correlates can be subdivided into two wakefulness pathways (superior thalamic cholinergic and inferior extra-thalamic), and cortico-subcortical circuitry. The deep brain structures are those described in the well-known sensorimotor, associative and limbic loops, as illustrated in the mesolimbic model of DoC. The cortices can be segregated into several overlapping networks: (1) a global workspace including thalamo-cortical loops; (2) the default mode network (DMN) and related intrinsic connectivity networks (i.e., central executive, medial DMN and salience networks); (3) a 3-fold network comprising the fronto-parietal control system and its dorsal and ventral attentional sub-networks, the fronto-parietal executive control network, and the cingulo-opercular salience network; (4) the internal and external cortices, respectively medial, turned toward the self, and lateral, turned toward the environment. The network dynamics is the reflection of consciousness, notably anticorrelations such as the decrease in activity of the posterior cingulate-precuneus regions during attentional tasks. Thanks to recent advances in DoC pathophysiology, further significative therapeutic progress is expected, taking into account the societal context. This depends notably on the dissemination of medical knowledge and its transfer to a wider public.
Collapse
Affiliation(s)
- J-J Lemaire
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France.
| | - B Pontier
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - R Chaix
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Y El Ouadih
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - T Khalil
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - D Sinardet
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - V Achim
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - A Postelnicu
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - J Coste
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - V Germain
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - C Sarret
- Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - A Sontheimer
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| |
Collapse
|
11
|
Engram Size Varies with Learning and Reflects Memory Content and Precision. J Neurosci 2021; 41:4120-4130. [PMID: 33888604 PMCID: PMC8176757 DOI: 10.1523/jneurosci.2786-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Memories are rarely acquired under ideal conditions, rendering them vulnerable to profound omissions, errors, and ambiguities. Consistent with this, recent work using context fear conditioning has shown that memories formed after inadequate learning time display a variety of maladaptive properties, including overgeneralization to similar contexts. However, the neuronal basis of such poor learning and memory imprecision remains unknown. Using c-fos to track neuronal activity in male mice, we examined how these learning-dependent changes in context fear memory precision are encoded in hippocampal ensembles. We found that the total number of c-fos-encoding cells did not correspond with learning history but instead more closely reflected the length of the session immediately preceding c-fos measurement. However, using a c-fos-driven tagging method (TRAP2 mouse line), we found that the degree of learning and memory specificity corresponded with neuronal activity in a subset of dentate gyrus cells that were active during both learning and recall. Comprehensive memories acquired after longer learning intervals were associated with more double-labeled cells. These were preferentially reactivated in the conditioning context compared with a similar context, paralleling behavioral discrimination. Conversely, impoverished memories acquired after shorter learning intervals were associated with fewer double-labeled cells. These were reactivated equally in both contexts, corresponding with overgeneralization. Together, these findings provide two surprising conclusions. First, engram size varies with learning. Second, larger engrams support better neuronal and behavioral discrimination. These findings are incorporated into a model that describes how neuronal activity is influenced by previous learning and present experience, thus driving behavior. SIGNIFICANCE STATEMENT Memories are not always formed under ideal circumstances. This is especially true in traumatic situations, such as car accidents, where individuals have insufficient time to process what happened around them. Such memories have the potential to overgeneralize to irrelevant situations, producing inappropriate fear and contributing to disorders, such as post-traumatic stress disorder. However, it is unknown how such poorly formed fear memories are encoded within the brain. We find that restricting learning time results in fear memories that are encoded by fewer hippocampal cells. Moreover, these fewer cells are inappropriately reactivated in both dangerous and safe contexts. These findings suggest that fear memories formed at brief periods overgeneralize because they lack the detail-rich information necessary to support neuronal discrimination.
Collapse
|
12
|
Miry O, Li J, Chen L. The Quest for the Hippocampal Memory Engram: From Theories to Experimental Evidence. Front Behav Neurosci 2021; 14:632019. [PMID: 33519396 PMCID: PMC7843437 DOI: 10.3389/fnbeh.2020.632019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
More than a century after Richard Semon's theoretical proposal of the memory engram, technological advancements have finally enabled experimental access to engram cells and their functional contents. In this review, we summarize theories and their experimental support regarding hippocampal memory engram formation and function. Specifically, we discuss recent advances in the engram field which help to reconcile two main theories for how the hippocampus supports memory formation: The Memory Indexing and Cognitive Map theories. We also highlight the latest evidence for engram allocation mechanisms through which memories can be linked or separately encoded. Finally, we identify unanswered questions for future investigations, through which a more comprehensive understanding of memory formation and retrieval may be achieved.
Collapse
Affiliation(s)
- Omid Miry
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jie Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Tiunova AA, Bezryadnov DV, Gaeva DR, Solodovnikov VS, Anokhin KV. Memory reacquisition deficit: Chicks fail to relearn pharmacologically disrupted associative response. Behav Brain Res 2020; 390:112695. [PMID: 32407820 DOI: 10.1016/j.bbr.2020.112695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/15/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
It is generally assumed that if memory is disrupted by pharmacological inhibitors during its consolidation, it can be later acquired afresh. In our experiments, we trained day-old chicks in a one-trial passive avoidance task and interfered with memory formation using protein synthesis inhibitor anisomycin or NMDA receptor antagonist MK-801. Second training was then given to amnestic animals with either the same conditioning stimulus (retraining) or a new one (novel training). Retraining with the same stimulus failed to produce efficient memory at all the examined between-training and training-to-test intervals, while a new conditioned stimulus was learned successfully. We suggest that this memory reacquisition deficit may result from the failure of associative memory co-allocation mechanisms.
Collapse
Affiliation(s)
- A A Tiunova
- P. K. Anokhin Research Institute of Normal Physiology, 125315, Moscow, Russia.
| | - D V Bezryadnov
- P. K. Anokhin Research Institute of Normal Physiology, 125315, Moscow, Russia
| | - D R Gaeva
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - V S Solodovnikov
- P. K. Anokhin Research Institute of Normal Physiology, 125315, Moscow, Russia
| | - K V Anokhin
- P. K. Anokhin Research Institute of Normal Physiology, 125315, Moscow, Russia; Lomonosov Moscow State University, 119991, Moscow,Russia
| |
Collapse
|
14
|
Takamiya S, Yuki S, Hirokawa J, Manabe H, Sakurai Y. Dynamics of memory engrams. Neurosci Res 2019; 153:22-26. [PMID: 30940458 DOI: 10.1016/j.neures.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
In this update article, we focus on "memory engrams", which are traces of long-term memory in the brain, and emphasizes that they are not static but dynamic. We first introduce the major findings in neuroscience and psychology reporting that memory engrams are sometimes diffuse and unstable, indicating that they are dynamically modified processes of consolidation and reconsolidation. Second, we introduce and discuss the concepts of cell assembly and engram cell, the former has been investigated by psychological experiments and behavioral electrophysiology and the latter is defined by recent combination of activity-dependent cell labelling with optogenetics to show causal relationships between cell population activity and behavioral changes. Third, we discuss the similarities and differences between the cell assembly and engram cell concepts to reveal the dynamics of memory engrams. We also discuss the advantages and problems of live-cell imaging, which has recently been developed to visualize multineuronal activities. The last section suggests the experimental strategy and background assumptions for future research of memory engrams. The former encourages recording of cell assemblies from different brain regions during memory consolidation-reconsolidation processes, while the latter emphasizes the multipotentiality of neurons and regions that contribute to dynamics of memory engrams in the working brain.
Collapse
Affiliation(s)
- Shogo Takamiya
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Kyoto, Japan
| | - Shoko Yuki
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Kyoto, Japan
| | - Junya Hirokawa
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Kyoto, Japan
| | - Hiroyuki Manabe
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Kyoto, Japan
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Kyoto, Japan.
| |
Collapse
|
15
|
Asok A, Kandel ER, Rayman JB. The Neurobiology of Fear Generalization. Front Behav Neurosci 2019; 12:329. [PMID: 30697153 PMCID: PMC6340999 DOI: 10.3389/fnbeh.2018.00329] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. When confronted with a potential threat, an animal must select an appropriate defensive response based on previous experiences that are not identical, weighing cues and contextual information that may predict safety or danger. Like other aspects of fear memory, generalization is mediated by the coordinated actions of prefrontal, hippocampal, amygdalar, and thalamic brain areas. In this review article, we describe the current understanding of the behavioral, neural, genetic, and biochemical mechanisms involved in the generalization of fear. Fear generalization is a hallmark of many anxiety and stress-related disorders, and its emergence, severity, and manifestation are sex-dependent. Therefore, to improve the dialog between human and animal studies as well as to accelerate the development of effective therapeutics, we emphasize the need to examine both sex differences and remote timescales in rodent models.
Collapse
Affiliation(s)
- Arun Asok
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Eric R. Kandel
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Howard Hughes Medical Institute (HHMI), Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
| | - Joseph B. Rayman
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
16
|
França TFA, Monserrat JM. How the Hippocampus Represents Memories: Making Sense of Memory Allocation Studies. Bioessays 2018; 40:e800068. [PMID: 30176065 DOI: 10.1002/bies.201800068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/15/2018] [Indexed: 01/11/2023]
Abstract
In recent years there has been a wealth of studies investigating how memories are allocated in the hippocampus. Some of those studies showed that it is possible to manipulate the identity of neurons recruited to represent a given memory without affecting the memory's behavioral expression. Those findings raised questions about how the hippocampus represents memories, with some researchers arguing that hippocampal neurons do not represent fixed stimuli. Herein, an alternative hypothesis is argued. Neurons in high-order brain regions can be tuned to multiple dimensions, forming complex, abstract representations. It is argued that such complex receptive fields allow those neurons to show some flexibility in their responses while still representing relatively fixed sets of stimuli. Moreover, it is pointed out that changes induced by artificial manipulation of cell assemblies are not completely redundant-the observed behavioral redundancy does not imply cognitive redundancy, as different, but similar, memories may induce the same behavior.
Collapse
Affiliation(s)
- Thiago F A França
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - José M Monserrat
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Sakurai Y, Osako Y, Tanisumi Y, Ishihara E, Hirokawa J, Manabe H. Multiple Approaches to the Investigation of Cell Assembly in Memory Research-Present and Future. Front Syst Neurosci 2018; 12:21. [PMID: 29887797 PMCID: PMC5980992 DOI: 10.3389/fnsys.2018.00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
In this review article we focus on research methodologies for detecting the actual activity of cell assemblies, which are populations of functionally connected neurons that encode information in the brain. We introduce and discuss traditional and novel experimental methods and those currently in development and briefly discuss their advantages and disadvantages for the detection of cell-assembly activity. First, we introduce the electrophysiological method, i.e., multineuronal recording, and review former and recent examples of studies showing models of dynamic coding by cell assemblies in behaving rodents and monkeys. We also discuss how the firing correlation of two neurons reflects the firing synchrony among the numerous surrounding neurons that constitute cell assemblies. Second, we review the recent outstanding studies that used the novel method of optogenetics to show causal relationships between cell-assembly activity and behavioral change. Third, we review the most recently developed method of live-cell imaging, which facilitates the simultaneous observation of firings of a large number of neurons in behaving rodents. Currently, all these available methods have both advantages and disadvantages, and no single measurement method can directly and precisely detect the actual activity of cell assemblies. The best strategy is to combine the available methods and utilize each of their advantages with the technique of operant conditioning of multiple-task behaviors in animals and, if necessary, with brain-machine interface technology to verify the accuracy of neural information detected as cell-assembly activity.
Collapse
Affiliation(s)
- Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Heroux NA, Osborne BF, Miller LA, Kawan M, Buban KN, Rosen JB, Stanton ME. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 147:128-138. [PMID: 29222058 PMCID: PMC6314028 DOI: 10.1016/j.nlm.2017.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases (context preexposure, immediate-shock training, and retention). The current study examined changes in the expression of plasticity-associated immediate early genes (IEGs) during context and contextual fear memory formation on the preexposure and training days of the CPFE, respectively. Using adolescent Long-Evans rats, preexposure and training day expression of the IEGs c-Fos, Arc, Egr-1, and Npas4 in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (BLA) was analyzed using qPCR as an extension of previous studies from our lab examining Egr-1 via in situ hybridization (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014). In Expt. 1, context preexposure induced expression of c-Fos, Arc, Egr-1 and Npas4 significantly above that of home-cage (HC) controls in all three regions. In Expt. 2, immediate-shock was followed by a post-shock freezing test, resulting in increased mPFC c-Fos expression in a group preexposed to the training context but not a control group preexposed to an alternate context, indicating expression related to associative learning. This was not seen with other IEGs in mPFC or with any IEG in dHPC or BLA. Finally, when the post-shock freezing test was omitted in Expt. 3, training-related increases were observed in prefrontal c-Fos, Arc, Egr-1, and Npas4, hippocampal c-Fos, and amygdalar Egr-1 expression. These results indicate that context exposure in a post-shock freezing test re-engages IEG expression that may obscure associatively-induced expression during contextual fear conditioning. Additionally, these studies suggest a key role for long-term synaptic plasticity in the mPFC in supporting the CPFE.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Brittany F Osborne
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Lauren A Miller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Malak Kawan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Katelyn N Buban
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
19
|
Abstract
Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams "silent engrams" and the cells bearing them "silent engram cells." The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21-activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.
Collapse
|
20
|
Roy DS, Tonegawa S. Manipulating memory in space and time. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2017.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Organization of the Claustrum-to-Entorhinal Cortical Connection in Mice. J Neurosci 2017; 37:269-280. [PMID: 28077707 DOI: 10.1523/jneurosci.1360-16.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/17/2023] Open
Abstract
The claustrum, a subcortical structure situated between the insular cortex and striatum, is reciprocally connected with almost all neocortical regions. Based on this connectivity, the claustrum has been postulated to integrate multisensory information and, in turn, coordinate widespread cortical activity. Although studies have identified how sensory information is mapped onto the claustrum, the function of individual topographically arranged claustro-cortical pathways has been little explored. Here, we investigated the organization and function of identified claustro-cortical pathways in mice using multiple anatomical and optogenetic techniques. Retrograde and anterograde tracing demonstrated that the density of anterior claustrum-to-cortical projection differs substantially depending on the target cortical areas. One of the major targets was the medial entorhinal cortex (MEC) and the MEC-projecting claustral neurons were largely segregated from the neurons projecting to primary cortices M1, S1, or V1. Exposure to a novel environment induced c-Fos expression in a substantial number of MEC-projecting claustral neurons and some M1/S1/V1-projecting claustral neurons. Optogenetic silencing of the MEC-projecting claustral neurons during contextual fear conditioning impaired later memory retrieval without affecting basal locomotor activity or anxiety-related behavior. These results suggest that the dense, anterior claustro-MEC pathway that is largely separated from other claustro-cortical pathways is activated by novel context and modulates the MEC function in contextual memory. SIGNIFICANCE STATEMENT The claustrum is a poorly understood subcortical structure reciprocally connected with widespread neocortical regions. We investigated the organization and function of identified claustro-cortical projections in mice using pathway-specific approaches. Anatomical tracing showed that the density of anterior claustrum-to-cortical projection is dependent on the target cortical areas and that the medial entorhinal cortex (MEC) is one of the major projection targets. Novel context exposure activated multiple claustro-cortical pathways and a large fraction of the activated neurons projected to the MEC. Optogenetic silencing of the claustro-MEC pathway during contextual fear learning suppressed subsequent memory retrieval. These results suggest that the dense claustro-MEC pathway is activated by novel context and modulates MEC function in contextual memory.
Collapse
|
22
|
Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. Nat Commun 2017; 8:15039. [PMID: 28382952 PMCID: PMC5384212 DOI: 10.1038/ncomms15039] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
Activity in hippocampal area CA1 is essential for consolidating episodic memories, but it is unclear how CA1 activity patterns drive memory formation. We find that in the hours following single-trial contextual fear conditioning (CFC), fast-spiking interneurons (which typically express parvalbumin (PV)) show greater firing coherence with CA1 network oscillations. Post-CFC inhibition of PV+ interneurons blocks fear memory consolidation. This effect is associated with loss of two network changes associated with normal consolidation: (1) augmented sleep-associated delta (0.5-4 Hz), theta (4-12 Hz) and ripple (150-250 Hz) oscillations; and (2) stabilization of CA1 neurons' functional connectivity patterns. Rhythmic activation of PV+ interneurons increases CA1 network coherence and leads to a sustained increase in the strength and stability of functional connections between neurons. Our results suggest that immediately following learning, PV+ interneurons drive CA1 oscillations and reactivation of CA1 ensembles, which directly promotes network plasticity and long-term memory formation.
Collapse
|
23
|
Yokoyama M, Matsuo N. Loss of Ensemble Segregation in Dentate Gyrus, but not in Somatosensory Cortex, during Contextual Fear Memory Generalization. Front Behav Neurosci 2016; 10:218. [PMID: 27872586 PMCID: PMC5097914 DOI: 10.3389/fnbeh.2016.00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022] Open
Abstract
The details of contextual or episodic memories are lost and generalized with the passage of time. Proper generalization may underlie the formation and assimilation of semantic memories and enable animals to adapt to ever-changing environments, whereas overgeneralization of fear memory evokes maladaptive fear responses to harmless stimuli, which is a symptom of anxiety disorders such as post-traumatic stress disorder (PTSD). To understand the neural basis of fear memory generalization, we investigated the patterns of neuronal ensemble reactivation during memory retrieval when contextual fear memory expression is generalized using transgenic mice that allowed us to visualize specific neuronal ensembles activated during memory encoding and retrieval. We found preferential reactivations of neuronal ensembles in the primary somatosensory cortex (SS), when mice were returned to the conditioned context to retrieve their memory 1 day after conditioning. In the hippocampal dentate gyrus (DG), exclusively separated ensemble reactivation was observed when mice were exposed to a novel context. These results suggest that the DG as well as the SS were likely to distinguish the two different contexts at the ensemble activity level when memory is not generalized at the behavioral level. However, 9 days after conditioning when animals exhibited generalized fear, the unique reactivation pattern in the DG, but not in the SS, was lost. Our results suggest that the alternations in the ensemble representation within the DG, or in upstream structures that link the sensory cortex to the hippocampus, may underlie generalized contextual fear memory expression.
Collapse
Affiliation(s)
- Marie Yokoyama
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University Kyoto, Japan
| | - Naoki Matsuo
- Career-Path Promotion Unit for Young Life Scientists, Kyoto UniversityKyoto, Japan; Department of Molecular and Behavioral Neuroscience, Graduate School of Medicine, Osaka UniversityOsaka, Japan; The Hakubi Center for Advanced Research, Kyoto UniversityKyoto, Japan
| |
Collapse
|
24
|
Matsuo N. Dynamic changes in hippocampal ensemble activities associated with contextual fear memory generalization. Nihon Yakurigaku Zasshi 2016; 148:185-189. [PMID: 27725566 DOI: 10.1254/fpj.148.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Jia LJ, Tang P, Brandon NR, Luo Y, Yu B, Xu Y. Effects of Propofol General Anesthesia on Olfactory Relearning. Sci Rep 2016; 6:33538. [PMID: 27628686 PMCID: PMC5024337 DOI: 10.1038/srep33538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
How general anesthesia interferes with sensory processing to cause amnesia remains unclear. Here, we show that activation of a learning-associated immediate early gene in rat olfactory cortices is uninterrupted by propofol, an intravenous general anesthetic with putative actions on the inhibitory GABAA receptors. Once learned under anesthesia, a novel odor can no longer re-activate the same high-level transcription programming during subsequent conscious relearning. Behavioral tests indicate that the animals’ ability to consciously relearn a pure odorant, first experienced under general anesthesia, is indeed compromised. In contrast, when a mixture of two novel odorants is first experienced under anesthesia and then relearned consciously in pairs with one of the components, the animals show a deficit in relearning only the component but not the mixture. Our results reveal a previously unknown mechanism of unconscious memory due to irreplaceable neuronal commitment under general anesthesia and support the notion that general anesthesia acts at stages beyond cellular coding to disrupt sensory integration for higher-order association.
Collapse
Affiliation(s)
- Li-Jie Jia
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nicole R Brandon
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Yoshii T, Hosokawa H, Matsuo N. Pharmacogenetic reactivation of the original engram evokes an extinguished fear memory. Neuropharmacology 2016; 113:1-9. [PMID: 27639988 DOI: 10.1016/j.neuropharm.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Fear memory extinction has several characteristic behavioral features, such as spontaneous recovery, renewal, and reinstatement, suggesting that extinction training does not erase the original association between the conditioned stimulus (CS) and the unconditioned stimulus (US). However, it is unclear whether reactivation of the original physical record of memory (i.e., memory trace) is sufficient to produce conditioned fear response after extinction. Here, we performed pharmacogenetic neuronal activation using transgenic mice expressing hM3Dq DREADD (designer receptor exclusively activated by designer drug) under the control of the activity-dependent c-fos gene promoter. Neuronal ensembles activated during fear-conditioned learning were tagged with hM3Dq and subsequently reactivated after extinction training. The mice exhibited significant freezing, even when the fear memory was no longer triggered by external CS, indicating that the artificial reactivation of a specific neuronal ensemble was sufficient to evoke the extinguished fear response. This freezing was not observed in non-fear-conditioned mice expressing hM3dq in the same brain areas. These results directly demonstrated that at least part of the original fear memory trace remains after extinction, and such residual plasticity might reflect the persistent memory.
Collapse
Affiliation(s)
- Takahiro Yoshii
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | | | - Naoki Matsuo
- Department of Molecular and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan; Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Minatohara K, Akiyoshi M, Okuno H. Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace. Front Mol Neurosci 2016; 8:78. [PMID: 26778955 PMCID: PMC4700275 DOI: 10.3389/fnmol.2015.00078] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022] Open
Abstract
In the brain, neuronal gene expression is dynamically changed in response to neuronal activity. In particular, the expression of immediate-early genes (IEGs) such as egr-1, c-fos, and Arc is rapidly and selectively upregulated in subsets of neurons in specific brain regions associated with learning and memory formation. IEG expression has therefore been widely used as a molecular marker for neuronal populations that undergo plastic changes underlying formation of long-term memory. In recent years, optogenetic and pharmacogenetic studies of neurons expressing c-fos or Arc have revealed that, during learning, IEG-positive neurons encode and store information that is required for memory recall, suggesting that they may be involved in formation of the memory trace. However, despite accumulating evidence for the role of IEGs in synaptic plasticity, the molecular and cellular mechanisms associated with this process remain unclear. In this review, we first summarize recent literature concerning the role of IEG-expressing neuronal ensembles in organizing the memory trace. We then focus on the physiological significance of IEGs, especially Arc, in synaptic plasticity, and describe our hypotheses about the importance of Arc expression in various types of input-specific circuit reorganization. Finally, we offer perspectives on Arc function that would unveil the role of IEG-expressing neurons in the formation of memory traces in the hippocampus and other brain areas.
Collapse
Affiliation(s)
- Keiichiro Minatohara
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Mika Akiyoshi
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Hiroyuki Okuno
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
28
|
Zhou DW, Mowrey DD, Tang P, Xu Y. Percolation Model of Sensory Transmission and Loss of Consciousness Under General Anesthesia. PHYSICAL REVIEW LETTERS 2015; 115:108103. [PMID: 26382705 PMCID: PMC4656020 DOI: 10.1103/physrevlett.115.108103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 06/05/2023]
Abstract
Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.
Collapse
Affiliation(s)
- David W. Zhou
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - David D. Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine
- Department of Structural Biology, University of Pittsburgh School of Medicine
| |
Collapse
|
29
|
|