1
|
Guo Y, Tian Y, Xia P, Zhou X, Hu X, Guo Z, Ji P, Yuan X, Fu D, Yin K, Shen R, Wang D. Exploring the Function of OPTN From Multiple Dimensions. Cell Biochem Funct 2024; 42:e70029. [PMID: 39670654 DOI: 10.1002/cbf.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is an essential intracellular degradation system responsible for delivering cytoplasmic components to lysosomes. Within this intricate process, optineurin (OPTN), an autophagy receptor, has attracted extensive attention due to its multifaceted roles in the autophagy process. OPTN is regulated by various posttranslational modifications and actively participates in numerous signaling pathways and cellular processes. By exploring the regulatory mechanism of OPTN posttranslational modification, we can further understand the critical role of protein posttranslational modification in biological progress, such as autophagy. Additionally, OPTN is implicated in many human diseases, including rheumatoid arthritis, osteoporosis, and infectious diseases. And we delve into the inflammatory pathways regulated by OPTN and clarify how it regulates inflammatory diseases and cancer. We aim to enhance the understanding of OPTN's multifaceted functions in cellular processes and its implications in the pathogenesis of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyue Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Daosen Fu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Jin J, Huang R, Chang Y, Yi X. Roles and mechanisms of optineurin in bone metabolism. Biomed Pharmacother 2024; 172:116258. [PMID: 38350370 DOI: 10.1016/j.biopha.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Optineurin (OPTN) is a widely expressed multifunctional articulatory protein that participates in cellular or mitochondrial autophagy, vesicular transport, and endoplasmic reticulum (ER) stress via interactions with various proteins. Skeletal development is a complex biological process that requires the participation of various osteoblasts, such as bone marrow mesenchymal stem cells (BMSCs), and osteogenic, osteoclastic, and chondrogenic cells. OPTN was recently found to be involved in the regulation of osteoblast activity, which affects bone metabolism. OPTN inhibits osteoclastogenesis via signaling pathways, including NF-κB, IFN-β, and NRF2. OPTN can promote the differentiation of BMSCs toward osteogenesis and inhibit lipogenic differentiation by delaying BMSC senescence and autophagy. These effects are closely related to the development of bone metabolism disorders, such as Paget's disease of bone, rheumatoid arthritis, and osteoporosis. Therefore, this review aims to explore the role and mechanism of OPTN in the regulation of bone metabolism and related bone metabolic diseases. Our findings will provide new targets and strategies for the prevention and treatment of bone metabolic diseases.
Collapse
Affiliation(s)
- Junjie Jin
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, Liaoning 110115, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian 116029, China
| | - Yixing Chang
- Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Xuejie Yi
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang , Liaoning 110115, China.
| |
Collapse
|
3
|
Hu X, Foster BL, Zhao B, Tseng HC, Wu YC, Ko CC. Optineurin regulates osteoblast function in an age-dependent fashion in a mouse model of Paget's disease of bone. Bone 2023; 177:116929. [PMID: 37802379 PMCID: PMC10591808 DOI: 10.1016/j.bone.2023.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Paget's disease of bone (PDB) is a degenerative disorder affecting the skull and bones. Hyperactive osteoclasts (OCs) initiate bone degradation in the early stage, followed by increased bone formation by osteoblasts (OBs) in trabecular bones during the advanced stage. This OB-OC uncoupling results in bone deformations and irregular trabecular bone patterns. Current mouse models poorly replicate the advanced-stage characteristics of PDB. Optineurin (Gene: OPTN in humans, Optn in mice, protein: OPTN) has been implicated in PDB by genetic analyses. We identified PDB-like cortical lesions associated with OC hyperactivation in an Optn knockout (Optn-/-) mouse model. However, the effects of OPTN dysfunction on OBs and trabecular bone in advanced PDB remain unclear. In this study, we used the Optn-/- mouse model to investigate trabecular bone abnormalities and OB activity in PDB. Micro-computed tomography analysis revealed severe pagetic alterations in craniofacial bones and femurs of aged Optn-/- mice, resembling clinical manifestations of PDB. Altered OB activity was observed in aged Optn-/- mice, implicating compensatory OB response in trabecular bone anomalies. To elucidate the role of OC-OB interactions in PDB, we conducted in vitro experiments using OC conditioned media (CM) to examine the effects on OB osteogenic potential. We found OC CM restored compromised osteogenic induction of Optn-/- bone marrow stromal cells (BMSCs) from young mice, suggesting OCs maintain OB activity through secreted factors. Strikingly, OC CM from aged Optn-/- mice significantly enhanced osteogenic capability of Optn-/- BMSCs, providing evidence for increased OB activity in advanced stages of PDB. We further identified TGF-β/BMP signaling pathway in mediating the effects of OC CM on OBs. Our findings provide insights into Optn's role in trabecular bone abnormalities and OB activity in PDB. This enhances understanding of PDB pathogenesis and may contribute to potential therapeutic strategies for PDB and related skeletal disorders.
Collapse
Affiliation(s)
- Xiangxiang Hu
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA.
| | - Brian L Foster
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yi-Chu Wu
- Division of Periodontology, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Banaganapalli B, Fallatah I, Alsubhi F, Shetty PJ, Awan Z, Elango R, Shaik NA. Paget's disease: a review of the epidemiology, etiology, genetics, and treatment. Front Genet 2023; 14:1131182. [PMID: 37180975 PMCID: PMC10169728 DOI: 10.3389/fgene.2023.1131182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Paget's disease of bone (PDB) is the second most prevalent metabolic bone disorder worldwide, with a prevalence rate of 1.5%-8.3%. It is characterized by localized areas of accelerated, disorganized, and excessive bone production and turnover. Typically, PDB develops in the later stages of life, particularly in the late 50s, and affects men more frequently than women. PDB is a complex disease influenced by both genetic and environmental factors. PDB has a complex genetic basis involving multiple genes, with SQSTM1 being the gene most frequently associated with its development. Mutations affecting the UBA domain of SQSTM1 have been detected in both familial and sporadic PDB cases, and these mutations are often associated with severe clinical expression. Germline mutations in other genes such as TNFRSF11A, ZNF687 and PFN1, have also been associated with the development of the disease. Genetic association studies have also uncovered several PDB predisposing risk genes contributing to the disease pathology and severity. Epigenetic modifications of genes involved in bone remodelling and regulation, including RANKL, OPG, HDAC2, DNMT1, and SQSTM1, have been implicated in the development and progression of Paget's disease of bone, providing insight into the molecular basis of the disease and potential targets for therapeutic intervention. Although PDB has a tendency to cluster within families, the variable severity of the disease across family members, coupled with decreasing incidence rates, indicates that environmental factors may also play a role in the pathophysiology of PDB. The precise nature of these environmental triggers and how they interact with genetic determinants remain poorly understood. Fortunately, majority of PDB patients can achieve long-term remission with an intravenous infusion of aminobisphosphonates, such as zoledronic acid. In this review, we discuss aspects like clinical characteristics, genetic foundation, and latest updates in PDB research.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim Fallatah
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fai Alsubhi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Preetha Jayasheela Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Rabjohns EM, Rampersad RR, Ghosh A, Hurst K, Eudy AM, Brozowski JM, Lee HH, Ren Y, Mirando A, Gladman J, Bowser JL, Berg K, Wani S, Ralston SH, Hilton MJ, Tarrant TK. Aged G Protein-Coupled Receptor Kinase 3 (Grk3)-Deficient Mice Exhibit Enhanced Osteoclastogenesis and Develop Bone Lesions Analogous to Human Paget's Disease of Bone. Cells 2023; 12:981. [PMID: 37048054 PMCID: PMC10093054 DOI: 10.3390/cells12070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Paget's Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative regulator of G protein-coupled receptor (GPCR) signaling. GRK3 is known to regulate GPCR function in osteoblasts and preosteoblasts, but its regulatory function in osteoclasts is not well defined. Here, we report that Grk3 expression increases during osteoclast differentiation in both human and mouse primary cells and established cell lines. We also show that aged mice deficient in Grk3 develop bone lesions similar to those seen in human PDB and other Paget's Disease mouse models. We show that a deficiency in Grk3 expression enhances osteoclastogenesis in vitro and proliferation of hematopoietic osteoclast precursors in vivo but does not affect the osteoclast-mediated bone resorption function or cellular senescence pathway. Notably, we also observe decreased Grk3 expression in peripheral blood mononuclear cells of patients with PDB compared with age- and gender-matched healthy controls. Our data suggest that GRK3 has relevance to the regulation of osteoclast differentiation and that it may have relevance to the pathogenesis of PDB and other metabolic bone diseases associated with osteoclast activation.
Collapse
Affiliation(s)
- Emily M. Rabjohns
- Division of Rheumatology and Immunology, Duke University Department of Medicine, Durham, NC 27710, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rishi R. Rampersad
- Division of Rheumatology and Immunology, Duke University Department of Medicine, Durham, NC 27710, USA
| | - Arin Ghosh
- College of Arts and Sciences, Duke University, Durham, NC 27510, USA
| | - Katlyn Hurst
- College of Arts and Sciences, Duke University, Durham, NC 27510, USA
| | - Amanda M. Eudy
- Division of Rheumatology and Immunology, Duke University Department of Medicine, Durham, NC 27710, USA
| | - Jaime M. Brozowski
- Division of Rheumatology and Immunology, Duke University Department of Medicine, Durham, NC 27710, USA
| | - Hyun Ho Lee
- Division of Rheumatology and Immunology, Duke University Department of Medicine, Durham, NC 27710, USA
| | - Yinshi Ren
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
- Scottish Rite Hospital, Dallas, TX 75219, USA
- Department of Orthopedics, Duke University, Durham, NC 27710, USA
| | - Anthony Mirando
- Department of Orthopedics, Duke University, Durham, NC 27710, USA
| | - Justin Gladman
- Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Jessica L. Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn Berg
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sachin Wani
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Stuart H. Ralston
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Teresa K. Tarrant
- Division of Rheumatology and Immunology, Duke University Department of Medicine, Durham, NC 27710, USA
- Durham Veterans Hospital, Durham, NC 27710, USA
| |
Collapse
|
6
|
Hu X, Wong SW, Liang K, Wu TH, Wang S, Wang L, Liu J, Yamauchi M, Foster BL, Ting JPY, Zhao B, Tseng HC, Ko CC. Optineurin regulates NRF2-mediated antioxidant response in a mouse model of Paget's disease of bone. SCIENCE ADVANCES 2023; 9:eade6998. [PMID: 36706179 PMCID: PMC9882986 DOI: 10.1126/sciadv.ade6998] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Degenerative diseases affecting the nervous and skeletal systems affect the health of millions of elderly people. Optineurin (OPTN) has been associated with numerous neurodegenerative diseases and Paget's disease of bone (PDB), a degenerative bone disease initiated by hyperactive osteoclastogenesis. In this study, we found age-related increase in OPTN and nuclear factor E2-related factor 2 (NRF2) in vivo. At the molecular level, OPTN could directly interact with both NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) for up-regulating antioxidant response. At the cellular level, deletion of OPTN resulted in increased intracellular reactive oxygen species and increased osteoclastogenic potential. At the tissue level, deletion of OPTN resulted in substantially increased oxidative stress derived from leukocytes that further stimulate osteoclastogenesis. Last, curcumin attenuated hyperactive osteoclastogenesis induced by OPTN deficiency in aged mice. Collectively, our findings reveal an OPTN-NRF2 axis maintaining bone homeostasis and suggest that antioxidants have therapeutic potential for PDB.
Collapse
Affiliation(s)
- Xiangxiang Hu
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Sing-Wai Wong
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Kaixin Liang
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Tai-Hsien Wu
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Sheng Wang
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Lufei Wang
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research; Department of Orthodontics, College and Hospital of Stomatology, Guangxi Medical University; Nanning, Guangxi 530021, China
| | - Jie Liu
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian L. Foster
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Jenny P.-Y. Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Henry C. Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M, Pirrotta F, Abate V, Calabrese M, Falchetti A. Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol 2022; 10:932065. [PMID: 36035996 PMCID: PMC9412102 DOI: 10.3389/fcell.2022.932065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Studies over the past two decades have led to major advances in the pathogenesis of Paget’s disease of bone (PDB) and particularly on the role of genetic factors. Germline mutations of different genes have been identified, as a possible cause of this disorder, and most of the underlying pathways are implicated in the regulation of osteoclast differentiation and function, whereas other are involved in cell autophagy mechanisms. In particular, about 30 different germline mutations of the Sequestosome 1 gene (SQSTM1) have been described in a significant proportion of familial and sporadic PDB cases. The majority of SQSTM1 mutations affect the ubiquitin-binding domain of the protein and are associated to a more severe clinical expression of the disease. Also, germline mutations in the ZNF687 and PFN1 genes have been associated to severe, early onset, polyostotic PDB with increased susceptibly to neoplastic degeneration, particularly giant cell tumor. Mutations in the VCP (Valosin Containing Protein) gene cause the autosomal dominant syndrome “Inclusion Body Myopathy, PDB, Fronto-temporal Dementia,” characterized by pagetic manifestations, associated with myopathy, amyotrophic lateral sclerosis and fronto-temporal dementia. Moreover, germline mutations in the TNFRSF11A gene, which encodes for RANK, were associated with rare syndromes showing some histopathological, radiological, and clinical overlap with PDB and in two cases of early onset PDB-like disease. Likewise, genome wide association studies performed in unrelated PDB cases identified other potential predisposition genes and/or susceptibility loci. Thus, it is likely that polygenic factors are involved in the PDB pathogenesis in many individuals and that modifying genes may contribute in refining the clinical phenotype. Moreover, the contribution of somatic mutations of SQSTM1 gene and/or epigenetic mechanisms in the pathogenesis of skeletal pagetic abnormalities and eventually neoplastic degeneration, cannot be excluded. Indeed, clinical and experimental observations indicate that genetic susceptibility might not be a sufficient condition for the clinical development of PDB without the concomitant intervention of viral infection, in primis paramixoviruses, and/or other environmental factors (e.g., pesticides, heavy metals or tobacco exposure), at least in a subset of cases. This review summarizes the most important advances that have been made in the field of cellular and molecular biology PDB over the past decades.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Daniela Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Cavati
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Christian Mingiano
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Roberta Cosso
- Unit of Rehabilitation Medicine, San Giuseppe Hospital, Istituto Auxologico Italiano, Piancavallo, Italy
| | - Maria Materozzi
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Filippo Pirrotta
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marco Calabrese
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Alberto Falchetti
- Experimental Research Laboratory on Bone Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milano, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| |
Collapse
|
8
|
Diboun I, Wani S, Ralston SH, Albagha OME. Epigenetic DNA Methylation Signatures Associated With the Severity of Paget's Disease of Bone. Front Cell Dev Biol 2022; 10:903612. [PMID: 35769265 PMCID: PMC9235511 DOI: 10.3389/fcell.2022.903612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Paget's disease of bone (PDB) is characterized by focal areas of dysregulated bone turnover resulting in increased bone loss and abnormal bone formation with variable severity. PDB has a complex etiology and both genetics and environmental factors have been implicated. A recent study has identified many differentially methylated loci in PDB compared to healthy subjects. However, associations between DNA methylation profiles and disease severity of PDB have not been investigated. Objectives: To investigate the association between DNA methylation signals and PDB severity. Methods: Using 232 well-characterized PDB subjects from the PRISM trial, a disease severity score was devised based on the clinical features of PDB. DNA methylation profiling was performed using Illumina Infinium HumanMethylation 450K array. Results: We identified 100 CpG methylation sites significantly associated with PDB severity at FDR <0.05. Additionally, methylation profiles in 11 regions showed Bonferroni-significant association with disease severity including six islands (located in VCL, TBX5, CASZ1, ULBP2, NUDT15 and SQSTM1), two gene bodies (CXCR6 and DENND1A), and 3 promoter regions (RPL27, LINC00301 and VPS29). Moreover, FDR-significant effects from region analysis implicated genes with genetic variants previously associated with PDB severity, including RIN3 and CSF1. A multivariate predictor model featuring the top severity-associated CpG sites revealed a significant correlation (R = 0.71, p = 6.9 × 10-16) between observed and predicted PDB severity scores. On dichotomizing the severity scores into low and high severity, the model featured an area under curve (AUC) of 0.80, a sensitivity of 0.74 and a specificity of 0.68. Conclusion: We identified several CpG methylation markers that are associated with PDB severity in this pioneering study while also highlighting the novel molecular pathways associated with disease progression. Further work is warranted to affirm the suitability of our model to predict the severity of PDB in newly diagnosed patients or patients with family history of PDB.
Collapse
Affiliation(s)
- Ilhame Diboun
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Genetics and Bioinformatics Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Sachin Wani
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart H. Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar M. E. Albagha
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Wani S, Daroszewska A, Salter DM, van ‘t Hof RJ, Ralston SH, Albagha OME. The Paget's disease of bone risk gene PML is a negative regulator of osteoclast differentiation and bone resorption. Dis Model Mech 2022; 15:dmm049318. [PMID: 35229101 PMCID: PMC9066519 DOI: 10.1242/dmm.049318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
Paget's disease of bone (PDB) is characterized by focal increases in bone remodelling. Genome-wide association studies identified a susceptibility locus for PDB tagged by rs5742915, which is located within the PML gene. Here, we have assessed the candidacy of PML as the predisposing gene for PDB at this locus. We found that the PDB-risk allele of rs5742915 was associated with lower PML expression and that PML expression in blood cells from individuals with PDB was lower than in controls. The differentiation, survival and resorptive activity of osteoclasts prepared from Pml-/- mice was increased compared with wild type. Furthermore, the inhibitory effect of IFN-γ on osteoclast formation from Pml-/- was significantly blunted compared with wild type. Bone nodule formation was also increased in osteoblasts from Pml-/- mice when compared with wild type. Although microCT analysis of trabecular bone showed no differences between Pml-/- mice and wild type, bone histomorphometry showed that Pml-/- mice had high bone turnover with increased indices of bone resorption and increased mineral apposition rate. These data indicate that reduced expression of PML predisposes an individual to PDB and identify PML as a novel regulator of bone metabolism. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sachin Wani
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Anna Daroszewska
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Donald M. Salter
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rob J. van ‘t Hof
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Vanthof Scientific, Torun 87-100, Poland
| | - Stuart H. Ralston
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Omar M. E. Albagha
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
| |
Collapse
|
10
|
Knockdown of optineurin controls C2C12 myoblast differentiation via regulating myogenin and MyoD expressions. Differentiation 2021; 123:1-8. [PMID: 34844057 DOI: 10.1016/j.diff.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
Mutations in optineurin (OPTN) have been identified in a small proportion of sporadic and familial amyotrophic lateral sclerosis (ALS) cases. Recent evidences suggest that OPTN would be involved in not only the pathophysiological mechanisms of motor neuron death of ALS but also myofiber degeneration of sporadic inclusion body myositis. However, the detailed role of OPTN in muscle remains unclear. Initially, we showed that OPTN expression levels were significantly increased in the denervated muscles of mice, suggesting that OPTN may be involved in muscle homeostasis. To reveal the molecular role of OPTN in muscle atrophy, we used cultured C2C12 myotubes treated with tumor necrosis factor-like inducer of apoptosis (TWEAK) as an in vitro model of muscle atrophy. Our data showed that OPTN had no effect on the process of muscle atrophy in this model. On the other hand, we found that myogenic differentiation was affected by OPTN. Immunoblotting analysis showed that OPTN protein levels gradually decreased during C2C12 differentiation. Furthermore, OPTN knockdown inhibited C2C12 differentiation, accompanied by reduction of mRNA and protein expression levels of myogenin and MyoD. These findings suggested that OPTN may have a novel function in muscle homeostasis and play a role in the pathogenesis of neuromuscular diseases.
Collapse
|
11
|
Liu ZZ, Hong CG, Hu WB, Chen ML, Duan R, Li HM, Yue T, Cao J, Wang ZX, Chen CY, Hu XK, Wu B, Liu HM, Tan YJ, Liu JH, Luo ZW, Zhang Y, Rao SS, Luo MJ, Yin H, Wang YY, Xia K, Xu L, Tang SY, Hu RG, Xie H. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy 2021. [PMID: 33143524 DOI: 10.1080/15548627.2020.18392-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; μCT: micro computed tomography.
Collapse
Affiliation(s)
- Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wen-Bao Hu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao-Ming Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Ming-Jie Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Xu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Rong-Gui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,Institue of Molecular Precision Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
12
|
Liu ZZ, Hong CG, Hu WB, Chen ML, Duan R, Li HM, Yue T, Cao J, Wang ZX, Chen CY, Hu XK, Wu B, Liu HM, Tan YJ, Liu JH, Luo ZW, Zhang Y, Rao SS, Luo MJ, Yin H, Wang YY, Xia K, Xu L, Tang SY, Hu RG, Xie H. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy 2021. [PMID: 33143524 DOI: 10.1080/15548627.2020.18392861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; μCT: micro computed tomography.
Collapse
Affiliation(s)
- Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wen-Bao Hu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao-Ming Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Ming-Jie Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Xu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Rong-Gui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China
- Institue of Molecular Precision Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
13
|
Mao Y, Deng SJ, Su YJ, Diao C, Peng Y, Ma JF, Cheng RC. The role of P62 in the development of human thyroid cancer and its possible mechanism. Cancer Genet 2021; 256-257:5-16. [PMID: 33780725 DOI: 10.1016/j.cancergen.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/24/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thyroid cancer is the most common malignancy in human endocrine system. Increasing evidence has indicated that p62 plays a key role in tumorigenesis. The roles and underlying molecular mechanisms of P62 in thyroid cancer, however, remain to be elucidated. METHODS The expression levels of P62 in thyroid tumor tissues and thyroid cancer cells were detected by western blotting and qRT-PCR. Then, the effects of up-regulation or down-regulation of P62 on thyroid cancer cell proliferation, migration, invasion, cell cycle and apoptosis were measured by CCK-8 assay, transwell assay, flow cytometry and transwell assay, respectively. In terms of the mechanism, P62 could stimulate thyroid cancer progression by the activation of nuclear factor-kappa B (NF-κB) signaling pathway. RESULTS P62 was highly expressed in thyroid tumor tissues. Furthermore, high expression of p62 was observed in PTC cell lines, and especially in the K1 and TPC-1 cells. In vitro, the up-regulation of p62 promoted cell proliferation, migration, and invasion of thyroid cancer cells, whereas the knockdown of p62 resulted in the opposite effect. Knock-down of P62 increased the number of cells in the G0/G1 phase but reduced it in the S and G2/M phase. Moreover, we confirmed that overexpression of p62 inactivated NF-κB pathway with sequencing analysis and bioinformatics analysis. CONCLUSION This research work suggested that p62 could promote PTC cell proliferation, migration, and invasion via NF-κB signaling pathway. Furthermore, p62 is a potential biomarker which might be closely related to the tumorigenesis in PTC. Its potential role as a therapeutic target for PTC is worthy of further study.
Collapse
Affiliation(s)
- Ying Mao
- Kunming Medical University, Yunnan 650500, China; Thyroid and Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650032, China
| | | | - Yan-Jun Su
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Kunming Medical University, Yunnan 650032, China
| | - Chang Diao
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Kunming Medical University, Yunnan 650032, China
| | - Ying Peng
- Kunming Medical University, Yunnan 650500, China
| | - Jun-Feng Ma
- Thyroid and Breast Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650032, China.
| | - Ruo-Chuan Cheng
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Kunming Medical University, Yunnan 650032, China.
| |
Collapse
|
14
|
Alonso N, Wani S, Rose L, Van't Hof RJ, Ralston SH, Albagha OME. Insertion Mutation in Tnfrsf11a Causes a Paget's Disease-Like Phenotype in Heterozygous Mice and Osteopetrosis in Homozygous Mice. J Bone Miner Res 2021; 36:1376-1386. [PMID: 33724536 DOI: 10.1002/jbmr.4288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/11/2022]
Abstract
Early onset familial Paget's disease of bone (EoPDB), familial expansile osteolysis, and expansile skeletal hyperphosphatasia are related disorders caused by insertion mutations in exon 1 of the TNFRSF11A gene, which encodes receptor activator of nuclear factor κB (RANK) protein. To understand the mechanisms underlying these disorders, we developed a mouse model carrying the 75dup27 mutation which causes EoPDB. Mice heterozygous for the mutation (Tnfrsf11a75dup27/- ) developed a PDB-like disorder with focal osteolytic lesions in the hind limbs with increasing age. Treatment of these mice with zoledronic acid completely prevented the development of lesions. Studies in vitro showed that RANK ligand (RANKL)-induced osteoclast formation and signaling was impaired in bone marrow cells from Tnfrsf11a75dup27/- animals, but that osteoclast survival was increased independent of RANKL stimulation. Surprisingly, Tnfrsf11a75dup27/75dup27 homozygotes had osteopetrosis at birth, with complete absence of osteoclasts. Bone marrow cells from these mice failed to form osteoclasts in response to RANKL and macrophage colony-stimulating factor (M-CSF) stimulation. This intriguing study has shown that in heterozygous form, the 75dup27 mutation causes focal osteolytic lesions in vivo reminiscent of the human disorder and extends osteoclast survival independently of RANKL signaling. In homozygous form, however, the mutation causes osteopetrosis due to failure of osteoclast formation and insensitivity to RANKL stimulation. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Nerea Alonso
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sachin Wani
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lorraine Rose
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh, UK
| | - Rob J Van't Hof
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Stuart H Ralston
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Omar M E Albagha
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To provide an overview of the role of genes and loci that predispose to Paget's disease of bone and related disorders. RECENT FINDINGS Studies over the past ten years have seen major advances in knowledge on the role of genetic factors in Paget's disease of bone (PDB). Genome wide association studies have identified six loci that predispose to the disease whereas family based studies have identified a further eight genes that cause PDB. This brings the total number of genes and loci implicated in PDB to fourteen. Emerging evidence has shown that a number of these genes also predispose to multisystem proteinopathy syndromes where PDB is accompanied by neurodegeneration and myopathy due to the accumulation of abnormal protein aggregates, emphasising the importance of defects in autophagy in the pathogenesis of PDB. Genetic factors play a key role in the pathogenesis of PDB and the studies in this area have identified several genes previously not suspected to play a role in bone metabolism. Genetic testing coupled to targeted therapeutic intervention is being explored as a way of halting disease progression and improving outcome before irreversible skeletal damage has occurred.
Collapse
Affiliation(s)
- Navnit S Makaram
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
16
|
Diboun I, Wani S, Ralston SH, Albagha OM. Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status. eLife 2021; 10:65715. [PMID: 33929316 PMCID: PMC8184208 DOI: 10.7554/elife.65715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Paget's disease of bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB-associated changes in DNA methylation profiles in patients' blood. Meta-analysis of data from the discovery and cross-validation set, each comprising 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease.
Collapse
Affiliation(s)
- Ilhame Diboun
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sachin Wani
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar Me Albagha
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Deficiency of optineurin enhances osteoclast differentiation by attenuating the NRF2-mediated antioxidant response. Exp Mol Med 2021; 53:667-680. [PMID: 33864025 PMCID: PMC8102640 DOI: 10.1038/s12276-021-00596-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Abnormally increased resorption contributes to bone degenerative diseases such as Paget's disease of bone (PDB) through unclear mechanisms. Recently, the optineurin (OPTN) gene has been implicated in PDB, and global OPTN knockout mice (Optn-/-) were shown to exhibit increased formation of osteoclasts (osteoclastogenesis). Growing evidence, including our own, has demonstrated that intracellular reactive oxygen species (ROS) stimulated by receptor activator of nuclear factor kappa-B ligand (RANKL) can act as signaling molecules to promote osteoclastogenesis. Here, we report that OPTN interacts with nuclear factor erythroid-derived factor 2-related factor 2 (NRF2), the master regulator of the antioxidant response, defining a pathway through which RANKL-induced ROS could be regulated for osteoclastogenesis. In this study, monocytes from Optn-/- and wild-type (Optn+/+) mice were utilized to differentiate into osteoclasts, and both qRT-PCR and tartrate-resistant acid phosphatase (TRAP) staining showed that the Optn-/- monocytes exhibited enhanced osteoclastogenesis compared to the Optn+/+ cells. CellROX® staining, qRT-PCR, and Western blotting indicated that OPTN deficiency reduced the basal expression of Nrf2, inhibited the expression of NRF2-responsive antioxidants, and increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclastogenesis. Coimmunoprecipitation (co-IP) showed direct interaction, and immunofluorescence staining showed perinuclear colocalization of the OPTN-NRF2 granular structures during differentiation. Finally, curcumin and the other NRF2 activators attenuated the hyperactive osteoclastogenesis induced by OPTN deficiency. Collectively, our findings reveal a novel OPTN-mediated mechanism for regulating the NRF2-mediated antioxidant response in osteoclasts and extend the therapeutic potential of OPTN in the aging process resulting from ROS-triggered oxidative stress, which is associated with PDB and many other degenerative diseases.
Collapse
|
18
|
Qiu Y, Wang J, Li H, Yang B, Wang J, He Q, Weng Q. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease. Autophagy 2021; 18:73-85. [PMID: 33783320 DOI: 10.1080/15548627.2021.1908722] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a highly conserved process in eukaryotic cells. It plays a critical role in cellular homeostasis by delivering cytoplasmic cargos to lysosomes for selective degradation. OPTN (optineurin), a well-recognized autophagy receptor, has received considerable attention due to its multiple roles in the autophagic process. OPTN is associated with many human disorders that are closely related to autophagy, such as rheumatoid arthritis, osteoporosis, and nephropathy. Here, we review the function of OPTN as an autophagy receptor at different stages of autophagy, focusing on cargo recognition, autophagosome formation, autophagosome maturation, and lysosomal quality control. OPTN tends to be protective in most autophagy associated diseases, though the molecular mechanism of OPTN regulation in these diseases is not well understood. A comprehensive review of the function of OPTN in autophagy provides valuable insight into the pathogenesis of human diseases related to OPTN and facilitates the discovery of potential key regulators and novel therapeutic targets for disease intervention in patients with autophagic diseases.Abbreviations: ATG: autophagy-related; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; HACE1: HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; MYO6: myosin VI; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: IκB kinase; LIR: LC3-interacting region; LZ: leucine zipper; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NFKB/NF-κB: nuclear factor kappa B subunit; OPTN: optineurin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RTECs: renal tubular epithelial cells; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TOM1: target of myb1 membrane trafficking protein; UBD: ubiquitin-binding domain; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; ZF: zinc finger.
Collapse
Affiliation(s)
- Yueping Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Paget's Disease of Bone: Osteoimmunology and Osteoclast Pathology. Curr Allergy Asthma Rep 2021; 21:23. [PMID: 33768371 DOI: 10.1007/s11882-021-01001-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to recognize clinical features of Paget's disease of bone and to describe how the osteoclast, a myeloid-derived cell responsible for bone resorption, contributes to the disease. RECENT FINDINGS Recent studies have identified several variants in SQSTM1, OPTN, and other genes that may predispose individuals to Paget's disease of bone; studies of these genes and their protein products have elucidated new roles for these proteins in bone physiology. Understanding the pathologic mechanisms in the Pagetic osteoclast may lead to the identification of future treatment targets for other inflammatory and autoimmune diseases characterized by abnormal bone erosion and/or osteoclast activation.
Collapse
|
20
|
Liu ZZ, Hong CG, Hu WB, Chen ML, Duan R, Li HM, Yue T, Cao J, Wang ZX, Chen CY, Hu XK, Wu B, Liu HM, Tan YJ, Liu JH, Luo ZW, Zhang Y, Rao SS, Luo MJ, Yin H, Wang YY, Xia K, Xu L, Tang SY, Hu RG, Xie H. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy 2020; 17:2766-2782. [PMID: 33143524 DOI: 10.1080/15548627.2020.1839286] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; μCT: micro computed tomography.
Collapse
Affiliation(s)
- Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wen-Bao Hu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao-Ming Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Ming-Jie Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Xu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Rong-Gui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,Institue of Molecular Precision Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
21
|
Korb MK, Kimonis VE, Mozaffar T. Multisystem proteinopathy: Where myopathy and motor neuron disease converge. Muscle Nerve 2020; 63:442-454. [PMID: 33145792 DOI: 10.1002/mus.27097] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Multisystem proteinopathy (MSP) is a pleiotropic group of inherited disorders that cause neurodegeneration, myopathy, and bone disease, and share common pathophysiology. Originally referred to as inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), attributed to mutations in the gene encoding valosin-containing protein (VCP), it has more recently been discovered that there are several other genes responsible for similar clinical and pathological phenotypes with muscle, brain, nerve, and bone involvement, in various combinations. These include heterogeneous nuclear ribonucleoprotein A2B1 and A1 (hnRNPA2B1, hnRNPA1), sequestosome 1 (SQSTM1), matrin 3 (MATR3), T-cell restricted intracellular antigen 1 (TIA1), and optineurin (OPTN), all of which share disruption of RNA stress granule function and autophagic degradation. This review will discuss each of the genes implicated in MSP, exploring the molecular pathogenesis, clinical features, current standards of care, and future directions for this diverse yet mechanistically linked spectrum of disorders.
Collapse
Affiliation(s)
- Manisha K Korb
- Departments of Neurology, University of California Irvine, Orange, California, USA
| | - Virginia E Kimonis
- Departments of Pediatrics, University of California Irvine, Orange, California, USA
| | - Tahseen Mozaffar
- Departments of Neurology, University of California Irvine, Orange, California, USA.,Departments of Orthopedic Surgery, University of California Irvine, Orange, California, USA.,Departments of Pathology & Laboratory Medicine, University of California Irvine, Orange, California, USA
| |
Collapse
|
22
|
Lee WS, Kato M, Sugawara E, Kono M, Kudo Y, Kono M, Fujieda Y, Bohgaki T, Amengual O, Oku K, Yasuda S, Onodera T, Iwasaki N, Atsumi T. Protective Role of Optineurin Against Joint Destruction in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheumatol 2020; 72:1493-1504. [DOI: 10.1002/art.41290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Wen Shi Lee
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | | | | | | | | | | | | | | - Shinsuke Yasuda
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | |
Collapse
|
23
|
Ralston SH. A New Gene for Susceptibility to Paget's Disease of Bone and for Multisystem Proteinopathy. J Bone Miner Res 2020; 35:1385-1386. [PMID: 32589291 DOI: 10.1002/jbmr.4090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Stuart H Ralston
- Centre for Genomic and Experimental Medicine Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
24
|
Guo Q, Wang J, Weng Q. The diverse role of optineurin in pathogenesis of disease. Biochem Pharmacol 2020; 180:114157. [PMID: 32687832 DOI: 10.1016/j.bcp.2020.114157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Optineurin is a widely expressed protein that possesses multiple functions. Growing evidence suggests that mutation or dysregulation of optineurin can cause several neurodegenerative diseases, including amyotrophic lateral sclerosis, primary open-angle glaucoma, and Huntington's disease, as well as inflammatory digestive disorders such as Crohn's disease. Optineurin engages in vesicular trafficking, receptor regulation, immune reactions, autophagy, and distinct signaling pathways including nuclear factor kappa beta, by which optineurin contributes to cellular death and related diseases, indicating its potential as a therapeutic target. In this review, we discuss the major functions and signaling pathways of optineurin. Furthermore, we illustrate the influence of optineurin mutation or dysregulation to region-specific pathogenesis as well as potential applications of optineurin in therapeutic strategies.
Collapse
Affiliation(s)
- Qingyi Guo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
O'Loughlin T, Kruppa AJ, Ribeiro ALR, Edgar JR, Ghannam A, Smith AM, Buss F. OPTN recruitment to a Golgi-proximal compartment regulates immune signalling and cytokine secretion. J Cell Sci 2020; 133:jcs239822. [PMID: 32376785 PMCID: PMC7328155 DOI: 10.1242/jcs.239822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Optineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and OPTN mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations in OPTN linked to primary open-angle glaucoma (POAG) cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. By using proximity labelling proteomics, we identify the linear ubiquitin assembly complex (LUBAC), CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment, leading to altered pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Antonina J Kruppa
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andre L R Ribeiro
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
- Department of Oral and Maxillofacial Surgery, University Centre of Pará, Belém, Brazil
| | - James R Edgar
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Abdulaziz Ghannam
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Andrew M Smith
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
26
|
Optineurin regulates osteoblastogenesis through STAT1. Biochem Biophys Res Commun 2020; 525:889-894. [DOI: 10.1016/j.bbrc.2020.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 01/19/2023]
|
27
|
Optineurin downregulation induces endoplasmic reticulum stress, chaperone-mediated autophagy, and apoptosis in pancreatic cancer cells. Cell Death Discov 2019; 5:128. [PMID: 31428460 PMCID: PMC6689035 DOI: 10.1038/s41420-019-0206-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows a high level of basal autophagy. Here we investigated the role of optineurin (OPTN) in PDAC cell lines, which is a prominent member of the autophagy system. To that purpose, mining of publically available databases showed that OPTN is highly expressed in PDAC and that high levels of expression are related to reduced survival. Therefore, the role of OPTN on proliferation, migration, and colony formation was investigated by transient knockdown in Miapaca, BXPC3, and Suit2-007 human PDAC cells. Furthermore, gene expression modulation in response to OPTN knockdown was assessed by microarray. The influence on cell cycle distribution and cell death signaling cascades was followed by FACS, assays for apoptosis, RT-PCR, and western blot. Finally, autophagy and ROS induction were screened by acridine orange and DCFH-DA fluorescent staining respectively. OPTN knockdown caused significant inhibition of colony formation, increased migration and no significant effect on proliferation in Miapaca, BXPC3 and Suit2-007 cells. The microarray showed modulation of 293 genes in Miapaca versus 302 in Suit2-007 cells, of which 52 genes overlapped. Activated common pathways included the ER stress response and chaperone-mediated autophagy, which was confirmed at mRNA and protein levels. Apoptosis was activated as shown by increased levels of cleaved PARP, Annexin V binding and nuclear fragmentation. OPTN knockdown caused no increased vacuole formation as assessed by acridine orange. Also, there was only marginally increased ROS production. Combination of OPTN knockdown with the autophagy inducer erufosine or LY294002, an inhibitor of autophagy, showed additive effects, which led us to hypothesize that they address different pathways. In conclusion, OPTN knockdown was related to activation of ER stress response and chaperone-mediated autophagy, which tend to confine the damage caused by OPTN knockdown and thus question its value for PDAC therapy.
Collapse
|
28
|
Global deletion of Optineurin results in altered type I IFN signaling and abnormal bone remodeling in a model of Paget's disease. Cell Death Differ 2019; 27:71-84. [PMID: 31076632 DOI: 10.1038/s41418-019-0341-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified Optineurin (OPTN) as genetically linked to Paget's disease of the bone (PDB), a chronic debilitating bone remodeling disorder characterized by localized areas of increased bone resorption and abnormal bone remodeling. However, only ~10% of mouse models with a mutation in Optn develop PDB, thus hindering the mechanistic understanding of the OPTN-PDB axis. Here, we reveal that 100% of aged Optn global knockout (Optn-/-) mice recapitulate the key clinical features observed in PDB patients, including polyostotic osteolytic lesions, mixed-phase lesions, and increased serum levels of alkaline phosphatase (ALP). Differentiation of primary osteoclasts ex vivo revealed that the absence of Optn resulted in an increased osteoclastogenesis. Mechanistically, Optn-deficient osteoclasts displayed a significantly decreased type I interferon (IFN) signature, resulting from both defective production of IFNβ and impaired signaling via the IFNα/βR, which acts as a negative feedback loop for osteoclastogenesis and survival. These data highlight the dual roles of OPTN in the type I IFN response to restrain osteoclast activation and bone resorption, offering a novel therapeutic target for PDB. Therefore, our study describes a novel and essential mouse model for PDB and define a key role for OPTN in osteoclast differentiation.
Collapse
|
29
|
Gennari L, Rendina D, Falchetti A, Merlotti D. Paget's Disease of Bone. Calcif Tissue Int 2019; 104:483-500. [PMID: 30671590 DOI: 10.1007/s00223-019-00522-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/30/2018] [Indexed: 01/04/2023]
Abstract
Paget's disease of bone (PDB) is a chronic and focal bone disorder, characterized by increased osteoclast-mediated bone resorption and a subsequent compensatory increase in bone formation, resulting in a disorganized mosaic of woven and lamellar bone at one or more affected skeletal sites. As a result, bone pain, noticeable deformities, arthritis at adjacent joints, and fractures can occur. In a small proportion of cases neoplastic degeneration in osteosarcoma, or, less frequently, giant cell tumor has been also described at PDB sites. While recent epidemiological evidences clearly indicate a decrease in the prevalence and the severity of PDB, over the past 2 decades there have been consistent advances on the genetic mechanisms of disease. It is now clear that PDB is a genetically heterogeneous disorder, with mutations in at least two different genes (SQSTM1, ZNF687) and more common predisposing variants. As a counterpart to the genetic hypothesis, the focal nature of lesions, the decline in prevalence rates, and the incomplete penetrance of the disease among family members suggest that one or more environmental triggers may play a role in the pathophysiology of PDB. The exact nature of these triggers and how they might interact with the genetic factors are less understood, but recent experimental data from mice models suggest the implication of paramixoviral infections. The clinical management of PDB has also evolved considerably, with the development of potent aminobisphosphonates such as zoledronic acid which, given as a single intravenous infusion, now allows a long-term disease remission in the majority of patients.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy.
| | - Domenico Rendina
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Alberto Falchetti
- Centro Hercolani and Villa Alba (GVM), 40123 Bologna and EndOsMet, Villa Donatello Private Hospital, 50132, Florence, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
30
|
Ralston SH, Taylor JP. Rare Inherited forms of Paget's Disease and Related Syndromes. Calcif Tissue Int 2019; 104:501-516. [PMID: 30756140 PMCID: PMC6779132 DOI: 10.1007/s00223-019-00520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Several rare inherited disorders have been described that show phenotypic overlap with Paget's disease of bone (PDB) and in which PDB is a component of a multisystem disorder affecting muscle and the central nervous system. These conditions are the subject of this review article. Insertion mutations within exon 1 of the TNFRSF11A gene, encoding the receptor activator of nuclear factor kappa B (RANK), cause severe PDB-like disorders including familial expansile osteolysis, early-onset familial PDB and expansile skeletal hyperphosphatasia. The mutations interfere with normal processing of RANK and cause osteoclast activation through activation of nuclear factor kappa B (NFκB) independent of RANK ligand stimulation. Recessive, loss-of-function mutations in the TNFRSF11B gene, which encodes osteoprotegerin, cause juvenile PDB and here the bone disease is due to unopposed activation of RANK by RANKL. Multisystem proteinopathy is a disorder characterised by myopathy and neurodegeneration in which PDB is often an integral component. It may be caused by mutations in several genes including VCP, HNRNPA1, HNRNPA2B1, SQSTM1, MATR3, and TIA1, some of which are involved in classical PDB. The mechanisms of osteoclast activation in these conditions are less clear but may involve NFκB activation through sequestration of IκB. The evidence base for management of these disorders is somewhat limited due to the fact they are extremely rare. Bisphosphonates have been successfully used to gain control of elevated bone remodelling but as yet, no effective treatment exists for the treatment of the muscle and neurological manifestations of MSP syndromes.
Collapse
Affiliation(s)
- Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - J Paul Taylor
- Howard Hughes Medical Institute and Department of Cell and Molecular Biology, St Jude's Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
31
|
McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 2019; 137:715-730. [PMID: 30465257 PMCID: PMC6482122 DOI: 10.1007/s00401-018-1933-9] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that overlap in their clinical presentation, pathology and genetics, and likely represent a spectrum of one underlying disease. In ALS/FTD patients, neuroinflammation characterized by innate immune responses of tissue-resident glial cells is uniformly present on end-stage pathology, and human imaging studies and rodent models support that neuroinflammation begins early in disease pathogenesis. Additionally, changes in circulating immune cell populations and cytokines are found in ALS/FTD patients, and there is evidence for an autoinflammatory state. However, despite the prominent role of neuro- and systemic inflammation in ALS/FTD, and experimental evidence in rodents that altering microglial function can mitigate pathology, therapeutic approaches to decrease inflammation have thus far failed to alter disease course in humans. Here, we review the characteristics of inflammation in ALS/FTD in both the nervous and peripheral immune systems. We further discuss evidence for direct influence on immune cell function by mutations in ALS/FTD genes including C9orf72, TBK1 and OPTN, and how this could lead to the altered innate immune system “tone” observed in these patients.
Collapse
|
32
|
Targeted sequencing of DCSTAMP in familial Paget's disease of bone. Bone Rep 2019; 10:100198. [PMID: 30886882 PMCID: PMC6403439 DOI: 10.1016/j.bonr.2019.100198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/11/2019] [Accepted: 02/20/2019] [Indexed: 12/01/2022] Open
Abstract
Paget's disease of bone (PDB) has a strong genetic component. Variants in SQSTM1 are found in up to 40% of patients with a family history of the disease, where a pattern of autosomal dominance with incomplete penetrance is apparent. By contrast, SQSTM1 variants are only found in up to 10% of patients with sporadic disease. It has been hypothesised that the remaining genetic susceptibility to PDB, particularly in familial cases, could be explained by rare genetic variants in loci previously identified by Genome Wide Association Studies. It is likely that polygenic factors are involved in many individuals. In this study we utilised whole exome sequencing to investigate predisposing genetic factors in an unsolved PDB kindred and identified a c.1189C > T p.L397F variant in DC-STAMP, also known as TM7SF4, that co-segregated with disease. DCSTAMP was identified as a gene of interest in PDB following Genome Wide Association Studies and has been previously shown to play critical roles in osteoclast fusion. The variant we identified has also been reported in association with PDB in a French-Canadian cohort however the significance of this variant was inconclusive. Targeted screening of DCSTAMP in our familial cohort of PDB patients revealed an additional 8 variants; however we did not find a significant association between any of these, including p.L397F, with PDB. Osteoclastogenesis assays from the affected proband and his unaffected brother demonstrated an increase in osteoclast number and nucleation, consistent with the pagetic phenotype. In converse to other established Paget's associated genetic variations such as SQSTM1, TNFRSF11A and OPTN, expression of the mutant DC-STAMP protein attenuated the activation of transcription factors NFκB and AP-1 when exogenously expressed. We found that the p.L397F variant did not influence the subcellular localization of the protein. Based on these findings we conclude that genetic variation in DCSTAMP is not a significant predisposing factor in our specific cohort of PDB patients and the p.L397F variant is unlikely to be a contributing factor in PDB pathogenesis. Variants in DC-STAMP do not appear to be significantly associated with Paget’s disease of bone in our cohort. The DC-STAMP p.L397F variant attenuates both NFkB and AP-1 signalling compared to the wild type protein. No significant differences in cellular colocalisation were found between DC-STAMP wild type and p.L397F.
Collapse
|
33
|
Liu Z, Li H, Hong C, Chen M, Yue T, Chen C, Wang Z, You Q, Li C, Weng Q, Xie H, Hu R. ALS-Associated E478G Mutation in Human OPTN (Optineurin) Promotes Inflammation and Induces Neuronal Cell Death. Front Immunol 2018; 9:2647. [PMID: 30519240 PMCID: PMC6251386 DOI: 10.3389/fimmu.2018.02647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a group of neurodegenerative disorders that featured with the death of motor neurons, which leads to loss of voluntary control on muscles. The etiologies vary among different subtypes of ALS, and no effective management or medication could be provided to the patients, with the underlying mechanisms incompletely understood yet. Mutations in human Optn (Optineurin), particularly E478G, have been found in many ALS patients. In this work, we report that NF-κB activity was increased in Optn knockout (Optn−/−) MEF (mouse embryonic fibroblast) cells expressing OPTN of different ALS-associated mutants especially E478G. Inflammation was significantly activated in mice infected with lenti-virus that allowed overexpression of OPTNE478G mutation in the motor cortex, with marked increase in the secretion of pro-inflammatory cytokines as well as neuronal cell death. Our work with both cell and animal models strongly suggested that anti-inflammation treatment could represent a powerful strategy to intervene into disease progression in ALS patients who possess the distinctive mutations in OPTN gene.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongming Li
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chungu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Menglu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Yue
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyuan Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenxing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qing You
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.,Department of life science, Shanghai Tech University, Shanghai, China
| | - Chuanyin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.,Department of life science, Shanghai Tech University, Shanghai, China
| | - Qinjie Weng
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.,Department of life science, Shanghai Tech University, Shanghai, China
| |
Collapse
|
34
|
Yin H, Wu H, Chen Y, Zhang J, Zheng M, Chen G, Li L, Lu Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front Immunol 2018; 9:1512. [PMID: 30108582 PMCID: PMC6080611 DOI: 10.3389/fimmu.2018.01512] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a complicated cellular mechanism that maintains cellular and tissue homeostasis and integrity via degradation of senescent, defective subcellular organelles, infectious agents, and misfolded proteins. Accumulating evidence has shown that autophagy is involved in numerous immune processes, such as removal of intracellular bacteria, cytokine production, autoantigen presentation, and survival of lymphocytes, indicating an apparent and important role in innate and adaptive immune responses. Indeed, in genome-wide association studies, autophagy-related gene polymorphisms have been suggested to be associated with the pathogenesis of several autoimmune and inflammatory disorders, such as systemic lupus erythematosus, psoriasis, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition, conditional knockdown of autophagy-related genes in mice displayed therapeutic effects on several autoimmune disease models by reducing levels of inflammatory cytokines and autoreactive immune cells. However, the inhibition of autophagy accelerates the progress of some inflammatory and autoimmune diseases via promotion of inflammatory cytokine production. Therefore, this review will summarize the current knowledge of autophagy in immune regulation and discuss the therapeutic and pathogenic role of autophagy in autoimmune diseases to broaden our understanding of the etiopathogenesis of autoimmune diseases and shed light on autophagy-mediated therapies.
Collapse
Affiliation(s)
- Heng Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Genhui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Gennari L, Rendina D, Picchioni T, Bianciardi S, Materozzi M, Nuti R, Merlotti D. Paget’s disease of bone: an update on epidemiology, pathogenesis and pharmacotherapy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1500691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Domenico Rendina
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Tommaso Picchioni
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Simone Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Materozzi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
36
|
Swarup G, Sayyad Z. Altered Functions and Interactions of Glaucoma-Associated Mutants of Optineurin. Front Immunol 2018; 9:1287. [PMID: 29951055 PMCID: PMC6008547 DOI: 10.3389/fimmu.2018.01287] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin (OPTN) is an adaptor protein that is involved in mediating a variety of cellular processes such as signaling, vesicle trafficking, and autophagy. Certain mutations in OPTN (gene OPTN) are associated with primary open angle glaucoma, a leading cause of irreversible blindness, and amyotrophic lateral sclerosis, a fatal motor neuron disease. Glaucoma-associated mutations of OPTN are mostly missense mutations. OPTN mediates its functions by interacting with various proteins and altered interactions of OPTN mutants with various proteins primarily contribute to functional defects. It interacts with Rab8, myosin VI, Huntigtin, TBC1D17, and transferrin receptor to mediate various membrane vesicle trafficking pathways. It is an autophagy receptor that mediates cargo-selective as well as non-selective autophagy. Glaucoma-associated mutants of OPTN, E50K, and M98K, cause defective vesicle trafficking, autophagy, and signaling that contribute to death of retinal ganglion cells (RGCs). Transgenic mice expressing E50K-OPTN show loss of RGCs and persistent reactive gliosis. TBK1 protein kinase, which mediates E50K-OPTN and M98K-OPTN induced cell death, is emerging as a potential drug target. Autoimmunity has been implicated in glaucoma but involvement of OPTN or its mutants in autoimmnity has not been explored. In this review, we highlight the main functions of OPTN and how glaucoma-associated mutants alter these functions. We also discuss some of the controversies, such as the role of OPTN in signaling to transcription factor NF-κB, interferon signaling, and use of RGC-5 cell line as a cell culture model.
Collapse
Affiliation(s)
- Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents. RECENT FINDINGS Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias. Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
38
|
Molecular effect of an OPTN common variant associated to Paget's disease of bone. PLoS One 2018; 13:e0197543. [PMID: 29782529 PMCID: PMC5962077 DOI: 10.1371/journal.pone.0197543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Paget’s disease of bone (PDB) is a chronic bone disorder and although genetic factors appear to play an important role in its pathogenesis, to date PDB causing mutations were identified only in the Sequestosome 1 (SQSTM1) gene at the PDB3 locus. PDB6 locus, also previously linked to PDB, contains several candidate genes for metabolic bone diseases. We focused our analysis in the most significantly associated variant with PDB, within the Optineurin (OPTN) gene, i.e. the common variant rs1561570. Although it was previously shown to be strongly associated with PDB in several populations, its contribution to PDB pathogenesis remains unclear. In this study we have shown that rs1561570 may contribute to PDB since its T allele results in the loss of a methylation site in patients’ DNA, leading to higher levels of OPTN gene expression and a corresponding increase in protein levels in patients’ osteoclasts. This increase in OPTN expression leads to higher levels of NF-κB translocation into the nucleus and increasing expression of its target genes, which may contribute to the overactivity of osteoclasts observed in PDB. We also reported a tendency for a more severe clinical phenotype in the presence of a haplotype containing the rs1561570 T allele, which appear to be re-enforced with the presence of the SQSTM1/P392L mutation. In conclusion, our work provides novel insight towards understanding the functional effects of this variant, located in OPTN intron 7, and its implication in the contribution to PDB pathogenesis.
Collapse
|
39
|
Outlioua A, Pourcelot M, Arnoult D. The Role of Optineurin in Antiviral Type I Interferon Production. Front Immunol 2018; 9:853. [PMID: 29755463 PMCID: PMC5932347 DOI: 10.3389/fimmu.2018.00853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022] Open
Abstract
After a viral infection and the stimulation of some pattern-recognition receptors as the toll-like receptor 3 in the endosomes or the RIG-I-like receptors in the cytosol, activation of the IKK-related kinase TBK1 leads to the production of type I interferons (IFNs) after phosphorylation of the transcription factors IRF3 and IRF7. Recent findings indicate an involvement of K63-linked polyubiquitination and of the Golgi-localized protein optineurin (OPTN) in the activation of this crucial kinase involved in innate antiviral immunity. This review summarizes the sensing of viruses and the signaling leading to type I IFN production following TBK1 activation through its ubiquitination and the sensing of ubiquitin chains by OPTN at the Golgi apparatus.
Collapse
Affiliation(s)
- Ahmed Outlioua
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- ANSES, INRA, ENVA, UPEC, UMR_1161 Virology, LabEx IBEID, Maisons-Alfort, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
| |
Collapse
|
40
|
Slowicka K, van Loo G. Optineurin Functions for Optimal Immunity. Front Immunol 2018; 9:769. [PMID: 29692786 PMCID: PMC5902560 DOI: 10.3389/fimmu.2018.00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 12/04/2022] Open
Abstract
Optineurin (OPTN) was identified 20 years ago in a yeast-two-hybrid screen with a viral protein known to inhibit the cytolytic effects of tumor necrosis factor. Since then, OPTN has been identified as a ubiquitin-binding protein involved in many signaling pathways and cellular processes, and mutations in the OPTN gene have been associated with glaucoma, Paget’s disease of bone and neurodegenerative pathologies. Its role in autophagy, however, has attracted most attention in recent years and may explain (some of) the mechanisms behind the disease-associated mutations of OPTN. In this brief review, we focus on the role of OPTN in inflammation and immunity and describe how this may translate to its involvement in human disease.
Collapse
Affiliation(s)
- Karolina Slowicka
- Unit of Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Unit of Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Zach F, Polzer F, Mueller A, Gessner A. p62/sequestosome 1 deficiency accelerates osteoclastogenesis in vitro and leads to Paget's disease-like bone phenotypes in mice. J Biol Chem 2018; 293:9530-9541. [PMID: 29555685 DOI: 10.1074/jbc.ra118.002449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/09/2018] [Indexed: 11/06/2022] Open
Abstract
The sequestosome 1 gene encodes the p62 protein and is the major genetic risk factor associated with Paget's disease of bone. In 2004, p62 was reported to up-regulate osteoclast differentiation by activating the transcription factors Nfatc1 and NF-κB. Here, we characterized the osteoclastogenic potential of murine p62-/--derived cells compared with WT cells. Our data confirmed previous findings indicating that p62 is induced during murine osteoclast differentiation. Surprisingly, an indispensable role for p62 in in vitro osteoclast differentiation was not reproducible because p62-deficient osteoclasts exhibited robust activation of Nfatc1, NF-κB, and osteoclast marker enzymes. Thus, we concluded that in vitro osteoclast differentiation is not negatively influenced by knocking out p62. On the contrary, our results revealed that p62 deficiency accelerates osteoclastogenesis. Differentiation potential, multinucleation status, and soluble receptor activator of NF-κB ligand (sRANKL) sensitivity were significantly elevated in p62-deficient, murine bone marrow-derived stem cells. Moreover, femur ultrastructures visualized by micro-computed tomography revealed pronounced accumulation of adipocytes and trabecular bone material in distal femora of obese p62-/- mice. Increased tartrate-resistant acid phosphatase activity, along with increased trabecular bone and accumulation of adipocytes, was confirmed in both paraffin-embedded decalcified and methyl methacrylate-embedded nondecalcified bones from p62-/- mice. Of note, Paget's disease-like osteolytic lesions and increased levels of the bone turnover markers CTX-I and PINP were also observed in the p62-/- mice. Our results indicate that p62 predominantly suppresses murine in vitro osteoclast differentiation and highlight previously undetected Paget's disease-like phenotypes in p62-/- mice in vivo.
Collapse
Affiliation(s)
- Frank Zach
- From the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Franziska Polzer
- From the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexandra Mueller
- From the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - André Gessner
- From the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
42
|
Ayaki T, Ito H, Komure O, Kamada M, Nakamura M, Wate R, Kusaka H, Yamaguchi Y, Li F, Kawakami H, Urushitani M, Takahashi R. Multiple Proteinopathies in Familial ALS Cases With Optineurin Mutations. J Neuropathol Exp Neurol 2017; 77:128-138. [DOI: 10.1093/jnen/nlx109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Paul Tuck S, Layfield R, Walker J, Mekkayil B, Francis R. Adult Paget's disease of bone: a review. Rheumatology (Oxford) 2017; 56:2050-2059. [PMID: 28339664 DOI: 10.1093/rheumatology/kew430] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 01/30/2023] Open
Abstract
Adult PD of bone is the second commonest metabolic bone condition after osteoporosis. The condition is characterized by increased bone cell activity, with bone-resorbing osteoclasts often larger and containing more nuclei than normal, and osteoblasts producing increased amounts of disorganized bone. This leads to expanded bone of poor quality possessing both sclerotic and lytic areas. PD of bone has a strong genetic element, with a family history being noted in 10-20% of cases. A number of genetic defects have been found to be associated with the condition. The most common disease-associated variants identified affect the SQSTM1 gene, providing insights into disease aetiology, with the clinical value of knowledge of SQSTM1 mutation status currently under active investigation. The diagnosis may be suggested by an isolated raised total ALP without other identifiable causes. This can be confirmed on plain X-rays and the extent determined by isotope bone scan. The mainstays of treatment are the bisphosphonates, especially i.v. zoledronate, which results in long-term suppression of bone turnover. ALP is the usual means of monitoring the condition, although more specific bone turnover markers can be helpful, especially in coincident liver disease. Patients should be followed up to monitor for biochemical relapse or development of complications, which may require medical or surgical intervention.
Collapse
Affiliation(s)
- Stephen Paul Tuck
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne.,Rheumatology, The James Cook University Hospital, Middlesbrough
| | - Robert Layfield
- Department of Biochemistry, School of Life Sciences, University of Nottingham Medical School, Nottingham
| | - Julie Walker
- Department of Histopathology, The James Cook University Hospital, Middlesbrough, UK
| | | | - Roger Francis
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne
| |
Collapse
|
44
|
Markovinovic A, Cimbro R, Ljutic T, Kriz J, Rogelj B, Munitic I. Optineurin in amyotrophic lateral sclerosis: Multifunctional adaptor protein at the crossroads of different neuroprotective mechanisms. Prog Neurobiol 2017; 154:1-20. [PMID: 28456633 DOI: 10.1016/j.pneurobio.2017.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
When optineurin mutations showed up on the amyotrophic lateral sclerosis (ALS) landscape in 2010, they differed from most other ALS-causing genes. They seemed to act by loss- rather than gain-of-function, and it was unclear how a polyubiquitin-binding adaptor protein, which was proposed to regulate a variety of cellular functions including cell signaling and vesicle trafficking, could mediate neuroprotection. This review discusses the considerable progress that has been made since then. A large number of mutations in optineurin and optineurin-interacting proteins TANK-binding kinase (TBK1) and p62/SQSTM-1 have been found in the ALS patients, suggesting a common neuroprotective pathway. Moreover, functional studies of the ALS-causing optineurin mutations and the recently established optineurin ubiquitin-binding deficient and knockout mouse models helped identify three major mechanisms likely to mediate neuroprotection: regulation of autophagy, mitigation of (chronic) inflammatory signaling, and blockade of necroptosis. These three processes crosstalk, and require multiple levels of control, many of which can be mediated by optineurin. Based on the role of optineurin in multiple processes and the unexpected finding that targeted optineurin deletion in microglia and oligodendrocytes ultimately leads to the same phenotype of axonal degeneration despite different initial defects, we propose that the failure of the weakest link in the optineurin neuroprotective network is sufficient to disturb homeostasis and set-off the domino effect that could ultimately lead to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Raffaello Cimbro
- Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Tereza Ljutic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Research Centre of the Mental Health Institute of Quebec, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Biomedical Research Institute BRIS, SI-1000 Ljubljana, Slovenia
| | - Ivana Munitic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
45
|
Montecalvo A, Watkins SC, Orange J, Kane LP. Inducible turnover of optineurin regulates T cell activation. Mol Immunol 2017; 85:9-17. [PMID: 28192730 DOI: 10.1016/j.molimm.2017.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/28/2022]
Abstract
Optineurin (Optn) is an adaptor protein with homology to NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex. Dysregulation of Optn has been linked to neurodegenerative, autoimmune and bone diseases. Optn shares a high degree of homology with NEMO, but is not part of the same high-molecular weight complex containing IKKα and IKKβ. Despite its homology with NEMO and the fact that it has been the subject of extensive study in several cell types, there are no published studies addressing the role of Optn during T cell activation. Here we demonstrate that ectopic expression of Optn down-regulates TCR-induced NF-κB activation and TNF-α production, in a manner dependent on ubiquitin-binding. Conversely, knock-down of Optn enhances NF-κB activation and the production of TNF-α. Consistent with a negative regulatory role for this protein, we observed transient loss of Optn after TCR stimulation in both cell lines and in primary murine T cells. The acute loss of Optn appears to be due to both protein degradation and exocytosis, the latter via activation-induced exosomes. This study therefore provides novel information regarding the role of Optn during TCR activation, suggesting the possible importance of Optn during inflammation and/or autoimmune diseases.
Collapse
Affiliation(s)
- Angela Montecalvo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Jordan Orange
- Texas Children's Hospital, Houston, TX 77030, United States
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States.
| |
Collapse
|
46
|
Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol 2017; 176:55-62. [PMID: 28095319 DOI: 10.1016/j.clim.2017.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved protein degradation pathway from yeasts to humans that is essential for removing protein aggregates and misfolded proteins in healthy cells. Recently, autophagy-related genes polymorphisms have been implicated in several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, psoriasis, and multiple sclerosis. Numerous studies reveal autophagy and autophagy-related proteins also participate in immune regulation. Conditional deletions of autophagy-related proteins in mice have rendered protection from experimental autoimmune encephalomyelitis, and TNF-mediated joint destruction in animal models of multiple sclerosis and experimental arthritis respectively. As autophagy is strongly implicated in immune functions such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development, in this review we summarized current understanding of the roles of autophagy and autophagy proteins in autoimmune diseases.
Collapse
Affiliation(s)
- Dennis J Wu
- Graduate Group in Immunology, University of California at Davis, USA; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, USA
| | - Iannis E Adamopoulos
- Graduate Group in Immunology, University of California at Davis, USA; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, USA.
| |
Collapse
|
47
|
Abstract
Paget’s disease of bone (PDB) is the second most common metabolic bone disorder, after osteoporosis. It is characterised by focal areas of increased and disorganised bone turnover, coupled with increased bone formation. This disease usually appears in the late stages of life, being slightly more frequent in men than in women. It has been reported worldwide, but primarily affects individuals of British descent. Majority of PDB patients are asymptomatic, but clinical manifestations include pain, bone deformity and complications, like pathological fractures and deafness. The causes of the disease are poorly understood and it is considered as a complex trait, combining genetic predisposition with environmental factors. Linkage analysis identified SQSTM1, at chromosome 5q35, as directly related to the disease. A number of mutations in this gene have been reported, pP392L being the most common variant among different populations. Most of these variants affect the ubiquitin-associated (UBA) domain of the protein, which is involved in autophagy processes. Genome-wide association studies enlarged the number of loci associated with PDB, and further fine-mapping studies, combined with functional analysis, identified OPTN and RIN3 as causal genes for Paget’s disease. A combination of risk alleles identified by genome-wide association studies led to the development of a score to predict disease severity, which could improve the management of the disease. Further studies need to be conducted to elucidate other important aspects of the trait, such as its focal nature and the epidemiological changes found in some populations. In this review, we summarize the clinical characteristics of the disease and the latest genetic advances to identify susceptibility genes. We also list current available treatments and prospective options.
Collapse
|
48
|
Minegishi Y, Nakayama M, Iejima D, Kawase K, Iwata T. Significance of optineurin mutations in glaucoma and other diseases. Prog Retin Eye Res 2016; 55:149-181. [DOI: 10.1016/j.preteyeres.2016.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
|
49
|
Pourcelot M, Zemirli N, Silva Da Costa L, Loyant R, Garcin D, Vitour D, Munitic I, Vazquez A, Arnoult D. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol 2016; 14:69. [PMID: 27538435 PMCID: PMC4991008 DOI: 10.1186/s12915-016-0292-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.
Collapse
Affiliation(s)
- Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Naima Zemirli
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Leandro Silva Da Costa
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Roxane Loyant
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Vitour
- ANSES, INRA, ENVA, UPEC, UMR_1161 Virology, LabEx IBEID, Maisons-Alfort, France
| | - Ivana Munitic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Aimé Vazquez
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France.
- Université Paris-Saclay, Paris, France.
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France.
| |
Collapse
|
50
|
Slowicka K, Vereecke L, van Loo G. Cellular Functions of Optineurin in Health and Disease. Trends Immunol 2016; 37:621-633. [PMID: 27480243 DOI: 10.1016/j.it.2016.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
Optineurin (OPTN) was initially identified as a regulator of NF-κB and interferon signaling, but attracted most attention because of its association with various human disorders such as glaucoma, Paget disease of bone, and amyotrophic lateral sclerosis. Importantly, OPTN has recently been identified as an autophagy receptor important for the autophagic removal of pathogens, damaged mitochondria, and protein aggregates. This activity is most likely compromised in patients carrying OPTN mutations, and contributes to the observed phenotypes. In this review we summarize recent studies describing the molecular mechanisms by which OPTN controls immunity and autophagy, and discuss these findings in the context of several diseases that have been associated with OPTN (mal)function.
Collapse
Affiliation(s)
- Karolina Slowicka
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lars Vereecke
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|