1
|
Cui R, Wang G, Liu F, Wang Y, Zhao Z, Mutailipu M, Mu H, Jiang X, Le W, Yang L, Chen B. Neurturin-induced activation of GFRA2-RET axis potentiates pancreatic cancer glycolysis via phosphorylated hexokinase 2. Cancer Lett 2025; 621:217583. [PMID: 39988080 DOI: 10.1016/j.canlet.2025.217583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Pancreatic cancer, characterized by its insidious onset, high invasiveness, resistance to chemotherapy, and a grim prognosis, with a five-year survival rate hovering below 10 %. The identification of novel therapeutic targets addressing tumor progression is therefore critically important. While perineural invasion (PNI) is recognized as a pathological hallmark and key driver of pancreatic cancer progression, its role in metabolic reprogramming of malignant cells has not been fully elucidated. Using integrated metabolomics approaches, we found perineural invasion in pancreatic cancer significantly enhancing glycolytic flux of pancreatic cancer. Our data delineate a neuroendocrine-paracrine signaling axis in which neurturin secreted by neuronal cells binds to the GFRA2 receptor on pancreatic cancer cells, inducing RET kinase recruitment and subsequent heterodimer assembly. This receptor tyrosine kinase complex phosphorylates hexokinase 2 (HK2) at the evolutionarily conserved Ser122 residue, augmenting its hexokinase activity, ultimately driving aerobic glycolysis flux and fueling pancreatic cancer growth. In vivo experiments corroborate our findings, revealing that neurturin blockade effectively halts pancreatic cancer progression and synergizes with RET inhibitors. Our research underscores neurturin as a promising therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ran Cui
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Gaoming Wang
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Fuguo Liu
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Zinan Zhao
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Muladili Mutailipu
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Huiling Mu
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China; Department of Biobank, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Xiaohua Jiang
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Wenjun Le
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China.
| | - Ludi Yang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
2
|
Dong A, Yoshizumi M, Kokubo H. Odz4 upregulates SAN-specific genes to promote differentiation into cardiac pacemaker-like cells. FEBS Lett 2025; 599:299-315. [PMID: 39462648 PMCID: PMC11808419 DOI: 10.1002/1873-3468.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Cardiac arrhythmias stemming from abnormal sinoatrial node (SAN) function can lead to sudden death. Developing a biological pacemaker device for treating sick sinus syndrome (SSS) could offer a potential cure. Understanding SAN differentiation is crucial, yet its regulatory mechanism remains unclear. We reanalyzed published RNA-seq data and identified Odz4 as a SAN-specific candidate. In situ hybridization revealed Odz4 expression in the cardiac crescent and throughout the cardiac conduction system (CCS). To assess the role of Odz4 in CCS differentiation, we utilized a Tet-Off inducible system for its intracellular domain (ICD). Embryonic bodies (EBs) exogenously expressing Odz4-ICD exhibited an increased propensity to develop into pacemaker-like cells with enhanced automaticity and upregulated expression of SAN-specific genes. CellChat and GO analyses unveiled SAN-specific enrichment of ligand-receptor sets, especially Ptn-Ncl, and extracellular matrix components in the group exogenously expressing Odz4-ICD. Our findings underscore the significance of Odz4 in SAN development and offer fresh insights into biological pacemaker establishment.
Collapse
Affiliation(s)
- Anqi Dong
- Department of Physiology and BiophysicsHiroshima UniversityJapan
| | - Masao Yoshizumi
- Department of Physiology and BiophysicsHiroshima UniversityJapan
| | - Hiroki Kokubo
- Department of Physiology and BiophysicsHiroshima UniversityJapan
- Department of Physical TherapyTohto UniversityChibaJapan
| |
Collapse
|
3
|
Lam YY, Chan CH, Geng L, Wong N, Keung W, Cheung YF. APLNR marks a cardiac progenitor derived with human induced pluripotent stem cells. Heliyon 2023; 9:e18243. [PMID: 37539315 PMCID: PMC10395470 DOI: 10.1016/j.heliyon.2023.e18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Cardiomyocytes can be readily derived from human induced pluripotent stem cell (hiPSC) lines, yet its efficacy varies across different batches of the same and different hiPSC lines. To unravel the inconsistencies of in vitro cardiac differentiation, we utilized single cell transcriptomics on hiPSCs undergoing cardiac differentiation and identified cardiac and extra-cardiac lineages throughout differentiation. We further identified APLNR as a surface marker for in vitro cardiac progenitors and immunomagnetically isolated them. Differentiation of isolated in vitro APLNR+ cardiac progenitors derived from multiple hiPSC lines resulted in predominantly cardiomyocytes accompanied with cardiac mesenchyme. Transcriptomic analysis of differentiating in vitro APLNR+ cardiac progenitors revealed transient expression of cardiac progenitor markers before further commitment into cardiomyocyte and cardiac mesenchyme. Analysis of in vivo human and mouse embryo single cell transcriptomic datasets have identified APLNR expression in early cardiac progenitors of multiple lineages. This platform enables generation of in vitro cardiac progenitors from multiple hiPSC lines without genetic manipulation, which has potential applications in studying cardiac development, disease modelling and cardiac regeneration.
Collapse
Affiliation(s)
- Yin-Yu Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Chun-Ho Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Lin Geng
- – Dr. Li Dak-Sum Research Centre, HKU-KI Collaboration in Regenerative Medicine, The University of Hong Kong, China
| | - Nicodemus Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Wendy Keung
- – Dr. Li Dak-Sum Research Centre, HKU-KI Collaboration in Regenerative Medicine, The University of Hong Kong, China
| | - Yiu-Fai Cheung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
- – Dr. Li Dak-Sum Research Centre, HKU-KI Collaboration in Regenerative Medicine, The University of Hong Kong, China
| |
Collapse
|
4
|
Siatra P, Vatsellas G, Chatzianastasiou A, Balafas E, Manolakou T, Papapetropoulos A, Agapaki A, Mouchtouri ET, Ruchaya PJ, Korovesi AG, Mavroidis M, Thanos D, Beis D, Kokkinopoulos I. Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart. NPJ Regen Med 2023; 8:13. [PMID: 36869039 PMCID: PMC9984483 DOI: 10.1038/s41536-023-00280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/25/2023] [Indexed: 03/05/2023] Open
Abstract
The single curative measure for heart failure patients is a heart transplantation, which is limited due to a shortage of donors, the need for immunosuppression and economic costs. Therefore, there is an urgent unmet need for identifying cell populations capable of cardiac regeneration that we will be able to trace and monitor. Injury to the adult mammalian cardiac muscle, often leads to a heart attack through the irreversible loss of a large number of cardiomyocytes, due to an idle regenerative capability. Recent reports in zebrafish indicate that Tbx5a is a vital transcription factor for cardiomyocyte regeneration. Preclinical data underscore the cardioprotective role of Tbx5 upon heart failure. Data from our earlier murine developmental studies have identified a prominent unipotent Tbx5-expressing embryonic cardiac precursor cell population able to form cardiomyocytes, in vivo, in vitro and ex vivo. Using a developmental approach to an adult heart injury model and by employing a lineage-tracing mouse model as well as the use of single-cell RNA-seq technology, we identify a Tbx5-expressing ventricular cardiomyocyte-like precursor population, in the injured adult mammalian heart. The transcriptional profile of that precursor cell population is closer to that of neonatal than embryonic cardiomyocyte precursors. Tbx5, a cardinal cardiac development transcription factor, lies in the center of a ventricular adult precursor cell population, which seems to be affected by neurohormonal spatiotemporal cues. The identification of a Tbx5-specific cardiomyocyte precursor-like cell population, which is capable of dedifferentiating and potentially deploying a cardiomyocyte regenerative program, provides a clear target cell population for translationally-relevant heart interventional studies.
Collapse
Affiliation(s)
- Panagiota Siatra
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Giannis Vatsellas
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Athanasia Chatzianastasiou
- Department of Pharmacy, Laboratory of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Balafas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Pharmacy, Laboratory of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Agapaki
- Histochemistry Facility, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Prashant J Ruchaya
- School of Health, Sport and Biosciences, University of East London, London, UK
| | - Artemis G Korovesi
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Manolis Mavroidis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dimitrios Thanos
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dimitris Beis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioannis Kokkinopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
5
|
Dubé M, Chazara O, Lemaçon A, Asselin G, Provost S, Barhdadi A, Lemieux Perreault L, Mongrain I, Wang Q, Carss K, Paul DS, Cunningham JW, Rouleau J, Solomon SD, McMurray JJ, Yusuf S, Granger CB, Haefliger C, de Denus S, Tardif J. Pharmacogenomic study of heart failure and candesartan response from the CHARM programme. ESC Heart Fail 2022; 9:2997-3008. [PMID: 35736394 PMCID: PMC9715825 DOI: 10.1002/ehf2.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 11/07/2022] Open
Abstract
AIMS The Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM) programme consisted of three parallel, randomized, double-blind clinical trials comparing candesartan with placebo in patients with heart failure (HF) categorized according to left ventricular ejection fraction and tolerability to an angiotensin-converting enzyme inhibitor. We conducted a pharmacogenomic study of the CHARM trials with the objective of identifying genetic predictors of HF progression and of the efficacy and safety of treatment with candesartan. METHODS We performed genome-wide association studies in 2727 patients of European ancestry from CHARM-Overall and stratified by CHARM study according to preserved and reduced ejection fraction and according to assignment to the interventional treatment with candesartan. We tested genetic association with the composite endpoint of cardiovascular death or hospitalization for heart failure for drug efficacy in candesartan-treated patients and for HF progression using patients from both candesartan and placebo arms. The safety endpoints for response to candesartan were hyperkalaemia, renal dysfunction, hypotension, and change in systolic blood pressure between baseline and 6 weeks of treatment. To support our observations, we conducted a genome-wide gene-level collapsing analysis from whole-exome sequencing data with the composite cardiovascular endpoint. RESULTS We found that the A allele (14% allele frequency) of the genetic variant rs66886237 at 8p21.3 near the gene GFRA2 was associated with the composite cardiovascular endpoint in 1029 HF patients with preserved ejection fraction from the CHARM-Preserved study (hazard ratio: 1.91, 95% confidence interval: 1.55-2.35; P = 1.7 × 10-9 ). The association was independent of candesartan treatment, and the genetic variant was not associated with the cardiovascular endpoint in patients with reduced ejection fraction. None of the genome-wide association studies for candesartan safety or efficacy conducted in patients treated with candesartan passed the significance threshold. We found no significant association from the gene-level collapsing analysis. CONCLUSIONS We have identified a candidate genetic variant potentially predictive of the progression of heart failure in patients with preserved ejection fraction. The findings require further replication, and we cannot exclude the possibility that the results may be chance findings.
Collapse
Affiliation(s)
- Marie‐Pierre Dubé
- Montreal Heart InstituteMontrealCanada
- Université de Montréal Beaulieu‐Saucier Pharmacogenomics CentreMontrealCanada
- Université de Montréal, Faculty of Medicine, Department of medicineUniversité de MontréalMontrealCanada
| | - Olympe Chazara
- Centre for Genomics Research (CGR), Discovery Sciences, BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Audrey Lemaçon
- Montreal Heart InstituteMontrealCanada
- Université de Montréal Beaulieu‐Saucier Pharmacogenomics CentreMontrealCanada
- Université de Montréal, Faculty of Medicine, Department of medicineUniversité de MontréalMontrealCanada
| | - Géraldine Asselin
- Montreal Heart InstituteMontrealCanada
- Université de Montréal Beaulieu‐Saucier Pharmacogenomics CentreMontrealCanada
| | - Sylvie Provost
- Montreal Heart InstituteMontrealCanada
- Université de Montréal Beaulieu‐Saucier Pharmacogenomics CentreMontrealCanada
| | - Amina Barhdadi
- Montreal Heart InstituteMontrealCanada
- Université de Montréal Beaulieu‐Saucier Pharmacogenomics CentreMontrealCanada
| | | | - Ian Mongrain
- Montreal Heart InstituteMontrealCanada
- Université de Montréal Beaulieu‐Saucier Pharmacogenomics CentreMontrealCanada
| | - Quanli Wang
- Centre for Genomics Research (CGR), Discovery Sciences, BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Keren Carss
- Centre for Genomics Research (CGR), Discovery Sciences, BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Dirk S. Paul
- Centre for Genomics Research (CGR), Discovery Sciences, BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | | | - Jean Rouleau
- Montreal Heart InstituteMontrealCanada
- Université de Montréal, Faculty of Medicine, Department of medicineUniversité de MontréalMontrealCanada
| | - Scott D. Solomon
- Cardiovascular Division, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Salim Yusuf
- The Population Health Research Institute, Hamilton Health Sciences and the School of Rehabilitation ScienceMcMaster UniversityHamiltonONCanada
| | - Chris B. Granger
- Duke Clinical Research InstituteDuke University School of MedicineDurhamNCUSA
| | - Carolina Haefliger
- Centre for Genomics Research (CGR), Discovery Sciences, BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Simon de Denus
- Montreal Heart InstituteMontrealCanada
- Université de Montréal Beaulieu‐Saucier Pharmacogenomics CentreMontrealCanada
- Faculty of PharmacyUniversité de MontréalMontrealCanada
| | - Jean‐Claude Tardif
- Montreal Heart InstituteMontrealCanada
- Université de Montréal, Faculty of Medicine, Department of medicineUniversité de MontréalMontrealCanada
| |
Collapse
|
6
|
Fielding C, García-García A, Korn C, Gadomski S, Fang Z, Reguera JL, Pérez-Simón JA, Göttgens B, Méndez-Ferrer S. Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis. Nat Commun 2022; 13:543. [PMID: 35087060 PMCID: PMC8795384 DOI: 10.1038/s41467-022-28175-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system has been evolutionary selected to respond to stress and activates haematopoietic stem cells via noradrenergic signals. However, the pathways preserving haematopoietic stem cell quiescence and maintenance under proliferative stress remain largely unknown. Here we found that cholinergic signals preserve haematopoietic stem cell quiescence in bone-associated (endosteal) bone marrow niches. Bone marrow cholinergic neural signals increase during stress haematopoiesis and are amplified through cholinergic osteoprogenitors. Lack of cholinergic innervation impairs balanced responses to chemotherapy or irradiation and reduces haematopoietic stem cell quiescence and self-renewal. Cholinergic signals activate α7 nicotinic receptor in bone marrow mesenchymal stromal cells leading to increased CXCL12 expression and haematopoietic stem cell quiescence. Consequently, nicotine exposure increases endosteal haematopoietic stem cell quiescence in vivo and impairs hematopoietic regeneration after haematopoietic stem cell transplantation in mice. In humans, smoking history is associated with delayed normalisation of platelet counts after allogeneic haematopoietic stem cell transplantation. These results suggest that cholinergic signals preserve stem cell quiescence under proliferative stress.
Collapse
Affiliation(s)
- Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Andrés García-García
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Claudia Korn
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Stephen Gadomski
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- NIH-Oxford-Cambridge Scholars Program in partnership with Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Juan L Reguera
- Department of Hematology, University Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - José A Pérez-Simón
- NIH-Oxford-Cambridge Scholars Program in partnership with Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Hematology, University Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK.
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK.
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
- Instituto de Biomedicina de Sevilla (IBiS/CSIC), Universidad de Sevilla, 41013, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Seville, Spain.
| |
Collapse
|
7
|
Jankowski M, Kaczmarek M, Wąsiatycz G, Dompe C, Mozdziak P, Jaśkowski JM, Piotrowska-Kempisty H, Kempisty B. Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts. Int J Mol Sci 2021; 22:6663. [PMID: 34206369 PMCID: PMC8269079 DOI: 10.3390/ijms22136663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells' application in regenerative medicine.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
8
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
9
|
Pradilla Dieste A, Chenlo M, Perez-Romero S, Garcia-Rendueles ÁR, Suarez-Fariña M, Garcia-Lavandeira M, Bernabeu I, Cameselle-Teijeiro JM, Alvarez CV. GFRα 1-2-3-4 co-receptors for RET Are co-expressed in Pituitary Stem Cells but Individually Retained in Some Adenopituitary Cells. Front Endocrinol (Lausanne) 2020; 11:631. [PMID: 33071961 PMCID: PMC7543094 DOI: 10.3389/fendo.2020.00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022] Open
Abstract
The RET tyrosine kinase receptor is expressed by the endocrine somatotroph cells of the pituitary where it has important functions regulating survival/apoptosis. However, RET is also expressed by the GPS pituitary stem cells localized in a niche between the adenopituitary and the intermediate lobe. To bind any of its four ligands, RET needs one of four co-receptors called GFRα1-4. It has been previously shown that GFRα1 is expressed by somatotroph cells and acromegaly tumors. GFRα2 was shown to be expressed by pituitary stem cells. GFRα4 was proposed as not expressed in the pituitary. Here we study the RNA and protein expression of the four GFRα co-receptors for RET in rat and human pituitary. The four co-receptors were abundantly expressed at the RNA level both in rat and human pituitary, although GFRα4 was the less abundant. Multiple immunofluorescence for each co-receptor and β-catenin, a marker of stem cell niche was performed. The four GFRα co-receptors were co-expressed by the GPS cells at the niche colocalizing with β-catenin. Isolated individual scattered cells positive for one or other receptor could be found through the adenopituitary with low β-catenin expression. Some of them co-express GFRα1 and PIT1. Immunohistochemistry in normal human pituitary confirmed the data. Our data suggest that the redundancy of GFRα co-expression is a self-supportive mechanism which ensures niche maintenance and proper differentiation.
Collapse
Affiliation(s)
- Alberto Pradilla Dieste
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ángela R. Garcia-Rendueles
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Garcia-Lavandeira
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ignacio Bernabeu
- Department of Endocrinology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Instituto de Investigación Sanitaria de Santiago (IDIS), USC, Santiago de Compostela, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Clara V. Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- *Correspondence: Clara V. Alvarez
| |
Collapse
|
10
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
11
|
Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. Sci Rep 2019; 9:11953. [PMID: 31420575 PMCID: PMC6697751 DOI: 10.1038/s41598-019-48321-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
The endocardium is the endothelial component of the vertebrate heart and plays a key role in heart development. Where, when, and how the endocardium segregates during embryogenesis have remained largely unknown, however. We now show that Nkx2-5+ cardiac progenitor cells (CPCs) that express the Sry-type HMG box gene Sox17 from embryonic day (E) 7.5 to E8.5 specifically differentiate into the endocardium in mouse embryos. Although Sox17 is not essential or sufficient for endocardium fate, it can bias the fate of CPCs toward the endocardium. On the other hand, Sox17 expression in the endocardium is required for heart development. Deletion of Sox17 specifically in the mesoderm markedly impaired endocardium development with regard to cell proliferation and behavior. The proliferation of cardiomyocytes, ventricular trabeculation, and myocardium thickening were also impaired in a non-cell-autonomous manner in the Sox17 mutant, likely as a consequence of down-regulation of NOTCH signaling. An unknown signal, regulated by Sox17 and required for nurturing of the myocardium, is responsible for the reduction in NOTCH-related genes in the mutant embryos. Our results thus provide insight into differentiation of the endocardium and its role in heart development.
Collapse
|
12
|
Identification of Cardiomyocyte-Fated Progenitors from Human-Induced Pluripotent Stem Cells Marked with CD82. Cell Rep 2019; 22:546-556. [PMID: 29320747 DOI: 10.1016/j.celrep.2017.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/22/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023] Open
Abstract
Here, we find that human-induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM)-fated progenitors (CFPs) that express a tetraspanin family glycoprotein, CD82, almost exclusively differentiate into CMs both in vitro and in vivo. CD82 is transiently expressed in late-stage mesoderm cells during hiPSC differentiation. Purified CD82+ cells gave rise to CMs under nonspecific in vitro culture conditions with serum, as well as in vivo after transplantation to the subrenal space or injured hearts in mice, indicating that CD82 successfully marks CFPs. CD82 overexpression in mesoderm cells as well as in undifferentiated hiPSCs increased the secretion of exosomes containing β-catenin and reduced nuclear β-catenin protein, suggesting that CD82 is involved in fated restriction to CMs through Wnt signaling inhibition. This study may contribute to the understanding of CM differentiation mechanisms and to cardiac regeneration strategies.
Collapse
|
13
|
Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20133330. [PMID: 31284593 PMCID: PMC6650859 DOI: 10.3390/ijms20133330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cell therapy raises hope to reduce the harmful effects of acute myocardial ischemia. Stem and progenitor cells (SPCs) may be a valuable source of trophic factors. In this study, we assessed the plasma levels of selected trophic factors in patients undergoing application of autologous bone marrow (BM)-derived, lineage-negative (Lin-) stem/progenitor cells into the coronary artery in the acute phase of myocardial infarction. The study group consisted of 15 patients with acute myocardial infarction (AMI) who underwent percutaneous revascularization and, afterwards, Lin- stem/progenitor cell administration into the infarct-related artery. The control group consisted of 19 patients. BM Lin- cells were isolated using immunomagnetic methods. Peripheral blood was collected on day 0, 2, 4, and 7 and after the first and third month to assess the concentration of selected trophic factors using multiplex fluorescent bead-based immunoassays. We found in the Lin- group that several angiogenic trophic factors (vascular endothelial growth factor, Angiopoietin-1, basic fibroblast growth factor, platelet-derived growth factor-aa) plasma level significantly increased to the 4th day after myocardial infarction. In parallel, we noticed a tendency where the plasma levels of the brain-derived neurotrophic factor were increased in the Lin- group. The obtained results suggest that the administered SPCs may be a valuable source of angiogenic trophic factors for damaged myocardium, although this observation requires further in-depth studies.
Collapse
|
14
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
15
|
Li Z, Xie J, Fei Y, Gao P, Xie Q, Gao W, Xu Z. GDNF family receptor alpha 2 promotes neuroblastoma cell proliferation by interacting with PTEN. Biochem Biophys Res Commun 2019; 510:339-344. [PMID: 30722993 DOI: 10.1016/j.bbrc.2018.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022]
Abstract
Neuroblastoma is a childhood tumor, and high-stage neuroblastoma has a poor prognosis. The regulatory mechanisms for neuroblastoma progression are poorly understood. In present study, we found that GDNF family receptor alpha 2 (GFRA2) was upregulated in neuroblastoma cells and tissues, and its overexpression promoted neuroblastoma cell proliferation, as revealed using colony formation, soft agar growth, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays Tumor suppressor phosphatase and tensin homolog (PTEN) is an inhibitor of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) pathway that interacts with GFRA2. A luciferase activity assay showed GFRA2 inhibits the transcriptional activity of the forkhead box O (FOXO) family proteins, which suggested that GFRA2 activated the PI3K/AKT pathway. Inhibition of the PI3K/AKT pathway in GFRA2 overexpressing cells decreased cell proliferation, confirming that GFRA2 promoted neuroblastoma cell proliferation by activating the PI3K/AKT pathway. In summary, cell proliferation via the GFRA2-PTEN-PI3K/AKT axis may represent new target to develop treatments for neuroblastoma.
Collapse
Affiliation(s)
- Zuoqing Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juntao Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingchun Fei
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pengfei Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qigen Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenzong Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhe Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Hong SP, Song S, Lee S, Jo H, Kim HK, Han J, Park JH, Cho SW. Regenerative potential of mouse embryonic stem cell-derived PDGFRα + cardiac lineage committed cells in infarcted myocardium. World J Stem Cells 2019; 11:44-54. [PMID: 30705714 PMCID: PMC6354102 DOI: 10.4252/wjsc.v11.i1.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/06/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pluripotent stem cell-derived cardiomyocytes (CMs) have become one of the most attractive cellular resources for cell-based therapy to rescue damaged cardiac tissue.
AIM We investigated the regenerative potential of mouse embryonic stem cell (ESC)-derived platelet-derived growth factor receptor-α (PDGFRα)+ cardiac lineage-committed cells (CLCs), which have a proliferative capacity but are in a morphologically and functionally immature state compared with differentiated CMs.
METHODS We induced mouse ESCs into PDGFRα+ CLCs and αMHC+ CMs using a combination of the small molecule cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197. We implanted PDGFRα+ CLCs and differentiated αMHC+ CMs into a myocardial infarction (MI) murine model and performed functional analysis using transthoracic echocardiography (TTE) and histologic analysis.
RESULTS Compared with the untreated MI hearts, the anterior and septal regional wall motion and systolic functional parameters were notably and similarly improved in the MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs based on TTE. In histologic analysis, the untreated MI hearts contained a thinner ventricular wall than did the controls, while the ventricular walls of MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs were similarly thicker compared with that of the untreated MI hearts. Furthermore, implanted PDGFRα+ CLCs aligned and integrated with host CMs and were mostly differentiated into α-actinin+ CMs, and they did not convert into CD31+ endothelial cells or αSMA+ mural cells.
CONCLUSION PDGFRα+ CLCs from mouse ESCs exhibiting proliferative capacity showed a regenerative effect in infarcted myocardium. Therefore, mouse ESC-derived PDGFRα+ CLCs may represent a potential cellular resource for cardiac regeneration.
Collapse
Affiliation(s)
- Seon Pyo Hong
- Center for Vascular Research, Institute of Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukhyun Song
- Center for Vascular Research, Institute of Basic Science (IBS), Daejeon 34141, South Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Hyeonju Jo
- Cardiovascular and Metabolic Disease Center, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Inje University College of Medicine, Busan 47392, South Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Inje University College of Medicine, Busan 47392, South Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Inje University College of Medicine, Busan 47392, South Korea
| | - Jae-Hyeong Park
- Department of Cardiology in Internal Medicine, School of Medicine, Chungnam National University Hospital, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul 04551, South Korea
- Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, South Korea
| |
Collapse
|
17
|
Hong SP, Song S, Lee S, Jo H, Kim HK, Han J, Park JH, Cho SW. Regenerative potential of mouse embryonic stem cell-derived PDGFRα + cardiac lineage committed cells in infarcted myocardium. World J Stem Cells 2019. [DOI: 10.4252/wjsc.v11.i1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Kim HW, Lee HS, Kang JM, Bae SH, Kim C, Lee SH, Schwarz J, Kim GJ, Kim JS, Cha DH, Kim J, Chang SW, Lee TH, Moon J. Dual Effects of Human Placenta-Derived Neural Cells on Neuroprotection and the Inhibition of Neuroinflammation in a Rodent Model of Parkinson's Disease. Cell Transplant 2018; 27:814-830. [PMID: 29871515 PMCID: PMC6047269 DOI: 10.1177/0963689718766324] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease
in the elderly and the patients suffer from uncontrolled movement disorders due to loss of
dopaminergic (DA) neurons on substantia nigra pars compacta (SNpc). We previously reported
that transplantation of human fetal midbrain-derived neural precursor cells restored the
functional deficits of a 6-hydroxy dopamine (6-OHDA)-treated rodent model of PD but its
low viability and ethical issues still remain to be solved. Albeit immune privilege and
neural differentiation potentials suggest mesenchymal stem cells (MSCs) from various
tissues including human placenta MSCs (hpMSCs) for an alternative source, our
understanding of their therapeutic mechanisms is still limited. To expand our knowledge on
the MSC-mediated PD treatment, we here investigated the therapeutic mechanism of hpMSCs
and hpMSC-derived neural phenotype cells (hpNPCs) using a PD rat model. Whereas both
hpMSCs and hpNPCs protected DA neurons in the SNpc at comparable levels, the hpNPC
transplantation into 6-OHDA treated rats exhibited longer lasting recovery in motor
deficits than either the saline or the hpMSC treated rats. The injected hpNPCs induced
delta-like ligand (DLL)1 and neurotrophic factors, and influenced environments prone to
neuroprotection. Compared with hpMSCs, co-cultured hpNPCs more efficiently protected
primary neural precursor cells from midbrain against 6-OHDA as well as induced their
differentiation into DA neurons. Further experiments with conditioned media from hpNPCs
revealed that the secreted factors from hpNPCs modulated immune responses and neural
protection. Taken together, both DLL1-mediated contact signals and paracrine factors play
critical roles in hpNPC-mediated improvement. First showing here that hpMSCs and their
neural derivative hpNPCs were able to restore the PD-associated deficits via dual
mechanisms, neuroprotection and immunosuppression, this study expanded our knowledge of
therapeutic mechanisms in PD and other age-related diseases.
Collapse
Affiliation(s)
- Han Wool Kim
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Hyun-Seob Lee
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Jun Mo Kang
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Sang-Hun Bae
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea.,2 Department of Biotechnology, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Chul Kim
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Sang-Hun Lee
- 3 Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Johannes Schwarz
- 4 German Center for Neurodegenerative Diseases (DZNE), Technical University Munich, Munich, Germany
| | - Gi Jin Kim
- 5 Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Jin-Su Kim
- 6 Molecular Imaging Research Center, Korea Institute Radiological and Medical Sciences, Seoul, Korea
| | - Dong Hyun Cha
- 7 Deparment of Ob and Gyn, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Joopyung Kim
- 8 Department of Neurosurgery, Bundang CHA Hospital, CHA University School of Medicine, Seongnam-si, Korea
| | - Sung Woon Chang
- 9 Department of Ob and Gyn, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Tae Hee Lee
- 10 Formulae Pharmacology Department, School of Oriental Medicine, Gachon University, Gyeonggi, Korea
| | - Jisook Moon
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea.,2 Department of Biotechnology, CHA University, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
19
|
Abstract
Major cardiovascular events including myocardial infarction (MI) continue to dominate morbidity rates in the developed world. Although multiple device therapies and various pharmacological agents have been shown to improve patient care and reduce mortality rates, clinicians and researchers alike still lack a true panacea to regenerate damaged cardiac tissue. Over the previous two to three decades, cardiovascular stem cell therapies have held great promise. Several stem cell-based approaches have now been shown to improve ventricular function and are documented in preclinical animal models as well as phase I and phase II clinical trials. More recently, the cardiac progenitor cell has begun to gain momentum as an ideal candidate for stem cell therapy in heart disease. Here, we will highlight the most recent advances in cardiac stem/progenitor cell biology in regard to both the basics and applied settings.
Collapse
|
20
|
Abstract
In vitro generated mammalian cardiomyocytes provide experimental models for studying normal mammalian cardiomyocyte development, for disease modeling and for drug development. They also promise to inform future therapeutic strategies for repair of injured or diseased myocardium. Here we provide reliable protocols for differentiation of mouse embryonic stem cells into functional cardiomyocytes, together with Notes about trouble shooting and optimizing such protocols for specific cell lines.
Collapse
Affiliation(s)
- Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK
| | - Silvia Mazzotta
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK.
| |
Collapse
|
21
|
Miller DC, Harmer SC, Poliandri A, Nobles M, Edwards EC, Ware JS, Sharp TV, McKay TR, Dunkel L, Lambiase PD, Tinker A. Ajmaline blocks I Na and I Kr without eliciting differences between Brugada syndrome patient and control human pluripotent stem cell-derived cardiac clusters. Stem Cell Res 2017; 25:233-244. [PMID: 29172153 PMCID: PMC5727153 DOI: 10.1016/j.scr.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022] Open
Abstract
The class Ia anti-arrhythmic drug ajmaline is used clinically to unmask latent type I ECG in Brugada syndrome (BrS) patients, although its mode of action is poorly characterised. Our aims were to identify ajmaline's mode of action in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs), and establish a simple BrS hiPSC platform to test whether differences in ajmaline response could be determined between BrS patients and controls. Control hiPSCs were differentiated into spontaneously contracting cardiac clusters. It was found using multi electrode array (MEA) that ajmaline treatment significantly lengthened cluster activation-recovery interval. Patch clamping of single CMs isolated from clusters revealed that ajmaline can block both INa and IKr. Following generation of hiPSC lines from BrS patients (absent of pathogenic SCN5A sodium channel mutations), analysis of hiPSC-CMs from patients and controls revealed that differentiation and action potential parameters were similar. Comparison of cardiac clusters by MEA showed that ajmaline lengthened activation-recovery interval consistently across all lines. We conclude that ajmaline can block both depolarisation and repolarisation of hiPSC-CMs at the cellular level, but that a more refined integrated tissue model may be necessary to elicit differences in its effect between BrS patients and controls. hiPSC lines generated and differentiated from BrS patients lacking SCN5A mutations Ajmaline lengthens the activation-recovery interval of hPSC cardiac clusters Ajmaline effect consistent between BrS patient and control hPSC cardiac clusters Patch clamp analysis of hiPSC-CMs reveals ajmaline blocks both INa and IKr
Collapse
Affiliation(s)
- Duncan C Miller
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stephen C Harmer
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ariel Poliandri
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Muriel Nobles
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elizabeth C Edwards
- National Heart and Lung Institute, NIHR Royal Brompton Cardiovascular BRU, Imperial College London, London, UK
| | - James S Ware
- National Heart and Lung Institute, NIHR Royal Brompton Cardiovascular BRU, Imperial College London, London, UK
| | - Tyson V Sharp
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tristan R McKay
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Leo Dunkel
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, UCL and Barts Heart Centre, London, UK
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
22
|
Carvajal-Vergara X, Prósper F. Are we closer to cardiac regeneration? Stem Cell Investig 2016; 3:59. [PMID: 27868041 DOI: 10.21037/sci.2016.09.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/21/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xonia Carvajal-Vergara
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Felipe Prósper
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain;; Cell Therapy Area, Clínica Universidad de Navarra, University of Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|