1
|
Neves ID, Pinho PPP, Casais-E-Silva LL, Aguiar MC. Botulinum toxin type A inhibits hyperalgesia in the rat masseter muscle in a carrageenan model of myofascial pain. Arch Oral Biol 2025; 173:106218. [PMID: 40056789 DOI: 10.1016/j.archoralbio.2025.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVE Previous studies have shown that botulinum toxin type A (BoNT-A) attenuates nociception, but the underlying mechanisms remain unclear. Studies of experimental pain in humans have also shown conflicting results. Carrageenan is commonly used to produce short-term acute inflammation and hyperalgesia in animal models, and the effect of BoNT-A on carrageenan-induced pain in the masseter muscle has not been studied. This study evaluated the antinociceptive and anti-inflammatory effects of intramuscular injection of BoNT-A in an experimental model of inflammatory pain in the masseter muscle of rats. DESIGN Carrageenan (2 %) was injected into the masseters of sixty rats pretreated with three sessions of BoNT-A (3.5 U/kg) or daily with ibuprofen (40 mg/kg) for seven days. Masseter injected with saline was used as a control. An electronic von Frey anesthesiometer determined the head withdrawal threshold before carrageenan and at 5 h, 1, 3, and 7 days following administration. The masseters were processed for paraffin embedding and H&E staining and subjected to histomorphometric analysis 1 and 8 days after carrageenan administration. RESULTS Pretreatments with BoNT-A or ibuprofen significantly decreased carrageenan-induced hyperalgesia. BoNT-A did not inhibit inflammation and tissue damage induced by carrageenan. CONCLUSIONS These findings reveal that BoNT-A promotes antinociceptive effects in the masseter muscle during painful conditions independently of anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ilana Dantas Neves
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Pedro Paulo Pereira Pinho
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Luciana Lyra Casais-E-Silva
- Department of Bioregulation, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Marcio Cajazeira Aguiar
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
2
|
Sun K, Luo S, Jiang Y, Guo J, Wang X, Cheng K, Xu C, Zhang Y, Gao C, Lu J, Du P, Yu Y, Wang R, Yang Z, Zhou C. Neutralizing chimeric heavy-chain antibody targeting the L-HN domain of Clostridium botulinum neurotoxin type F. Arch Toxicol 2024; 98:4187-4195. [PMID: 39311906 DOI: 10.1007/s00204-024-03869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Botulinum toxin (BoNT) from Clostridium botulinum is the most toxic biotoxin known and is also an important bioterrorism agent. After poisoning, the only effective treatment is injection of antitoxin. However, neutralizing nanoantibodies are safer and more effective, representing a promising therapeutic approach. Therefore, it is important to obtain effective neutralizing nanoantibodies. Hence, the present study aimed to construct a phage antibody library by immunizing a camel and screening specific clones that bind to the L-HN domain of BoNT/F and constructing chimeric heavy-chain antibodies by fusing them with a human Fc fragment. The antibodies' affinity and in vivo neutralizing activities were evaluated. The results showed that 2 µg of F20 antibody could completely neutralize 20 × the median lethal dose (LD50) of BoNT/F in vitro. Injection of 5 mg/kg F20 at 1 h, 2 h, 3 h, and 4 h into mice after BoNT/F challenge resulted in complete survival in vivo. Overall, the antibody might be a candidate for the development of new drugs to treat botulism.
Collapse
Affiliation(s)
- Kaiyue Sun
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shudi Luo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xi Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Kexuan Cheng
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Changyan Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yixiao Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Chen Gao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
3
|
Koc D, Ibis K, Besarat P, Banoglu E, Kiris E. Tirbanibulin (KX2-391) analog KX2-361 inhibits botulinum neurotoxin serotype A mediated SNAP-25 cleavage in pre- and post-intoxication models in cells. Drug Dev Res 2024; 85:e22248. [PMID: 39166850 DOI: 10.1002/ddr.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Botulinum neurotoxins (BoNT) inhibit neuroexocytosis, leading to the potentially lethal disease botulism. BoNT serotype A is responsible for most human botulism cases, and there are no approved therapeutics to treat already intoxicated patients. A growing body of research has demonstrated that BoNT/A can escape into the central nervous system, and therefore, identification of BoNT/A inhibitors that can penetrate BBB and neutralize the toxin within intoxicated neurons would be important. We previously identified an FDA-approved, orally bioavailable compound, KX2-391 (Tirbanibulin) that inhibits BoNT/A in motor neuron assays. Recently, a structural analog of KX2-391, KX2-361, has been shown to exhibit good oral bioavailability and cross BBB with high efficiency in mouse experiments. Therefore, in this work, we evaluated the inhibitory effects of KX2-361 against BoNT/A. Toward this goal, we first evaluated the compound for its effects on cell viability in PC12 cells, via MTT assay, and in mouse embryonic stem cell (mESC)-derived motor neurons, with imaging-based assays. Following, we tested KX2-361 in mESC-derived motor neurons intoxicated with BoNT/A holotoxin, and the compound exhibited activity against the toxin in both pre- and post-intoxication conditions. Excitingly, KX2-361 also inhibited BoNT/A enzymatic component (light chain; LC) in PC12 cells transfected with BoNT/A LC. Furthermore, our molecular docking analyses suggested that KX2-361 can directly bind to BoNT/A LC. Medicinal chemistry approaches to develop structural analogs of KX2-361 to increase its efficacy against BoNT/A may provide a critical lead compound with BBB penetration capacity for drug development efforts against BoNT/A intoxication.
Collapse
Affiliation(s)
- Dilara Koc
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Kubra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Peri Besarat
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
4
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Martinez P, Jury-Garfe N, Patel H, You Y, Perkins A, You Y, Lee-Gosselin A, Vidal R, Lasagna-Reeves CA. Phosphorylation at serine 214 correlates with tau seeding activity in an age-dependent manner in two mouse models for tauopathies and is required for tau transsynaptic propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604618. [PMID: 39211286 PMCID: PMC11361173 DOI: 10.1101/2024.07.22.604618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pathological aggregation and propagation of hyperphosphorylated and aberrant forms of tau are critical features of the clinical progression of Alzheimer's disease and other tauopathies. To better understand the correlation between these pathological tau species and disease progression, we profiled the temporal progression of tau seeding activity and the levels of various phospho- and conformational tau species in the brains of two mouse models of human tauopathies. Our findings indicate that tau seeding is an early event that occurs well before the appearance of AT8-positive NFT. Specifically, we observed that tau phosphorylation in serine 214 (pTau-Ser214) positively correlates to tau seeding activity during disease progression in both mouse models. Furthermore, we found that the histopathology of pTau-Ser214 appears much earlier and has a distinct pattern and compartmentalization compared to the pathology of AT8, demonstrating the diversity of tau species within the same region of the brain. Importantly, we also observed that preventing the phosphorylation of tau at Ser214 significantly decreases tau propagation in mouse primary neurons, and seeding activity in a Drosophila model of tauopathy, suggesting a role for this tau phosphorylation in spreading pathological forms of tau. Together, these results suggest that the diverse spectrum of soluble pathological tau species could be responsible for the distinct pathological properties of tau and that it is critical to dissect the nature of the tau seed in the context of disease progression.
Collapse
|
6
|
Martin V, Carre D, Bilbault H, Oster S, Limana L, Sebal F, Favre-Guilmard C, Kalinichev M, Leveque C, Boulifard V, George C, Lezmi S. Intramuscular Botulinum Neurotoxin Serotypes E and A Elicit Distinct Effects on SNAP25 Protein Fragments, Muscular Histology, Spread and Neuronal Transport: An Integrated Histology-Based Study in the Rat. Toxins (Basel) 2024; 16:225. [PMID: 38787077 PMCID: PMC11125604 DOI: 10.3390/toxins16050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Botulinum neurotoxins E (BoNT/E) and A (BoNT/A) act by cleaving Synaptosome-Associated Protein 25 (SNAP25) at two different C-terminal sites, but they display very distinct durations of action, BoNT/E being short acting and BoNT/A long acting. We investigated the duration of action, spread and neuronal transport of BoNT/E (6.5 ng/kg) and BoNT/A (125 pg/kg) after single intramuscular administrations of high equivalent efficacious doses, in rats, over a 30- or 75-day periods, respectively. To achieve this, we used (i) digit abduction score assay, (ii) immunohistochemistry for SNAP25 (N-ter part; SNAP25N-ter and C-ter part; SNAP25C-ter) and its cleavage sites (cleaved SNAP25; c-SNAP25E and c-SNAP25A) and (iii) muscular changes in histopathology evaluation. Combined in vivo observation and immunohistochemistry analysis revealed that, compared to BoNT/A, BoNT/E induces minimal muscular changes, possesses a lower duration of action, a reduced ability to spread and a decreased capacity to be transported to the lumbar spinal cord. Interestingly, SNAP25C-ter completely disappeared for both toxins during the peak of efficacy, suggesting that the persistence of toxin effects is driven by the persistence of proteases in tissues. These data unveil some new molecular mechanisms of action of the short-acting BoNT/E and long-acting BoNT/A, and reinforce their overall safety profiles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Christian Leveque
- Aix-Marseille University, INSERM, DyNaMo U1325, 13009 Marseille, France
| | | | | | | |
Collapse
|
7
|
Ambrin G, Kang YJ, Van Do K, Lee C, Singh BR, Cho H. Botulinum Neurotoxin Induces Neurotoxic Microglia Mediated by Exogenous Inflammatory Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305326. [PMID: 38342616 PMCID: PMC11022717 DOI: 10.1002/advs.202305326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is widely used in therapeutics and cosmetics. The effects of multi-dosed BoNT/A treatment are well documented on the peripheral nervous system (PNS), but much less is known on the central nervous system (CNS). Here, the mechanism of multi-dosed BoNT/A leading to CNS neurodegeneration is explored by using the 3D human neuron-glia model. BoNT/A treatment reduces acetylcholine, triggers astrocytic transforming growth factor beta, and upregulates C1q, C3, and C5 expression, inducing microglial proinflammation. The disintegration of the neuronal microtubules is escorted by microglial nitric oxide, interleukin 1β, tumor necrosis factor α, and interleukin 8. The microglial proinflammation eventually causes synaptic impairment, phosphorylated tau (pTau) aggregation, and the loss of the BoNT/A-treated neurons. Taking a more holistic approach, the model will allow to assess therapeutics for the CNS neurodegeneration under the prolonged use of BoNT/A.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- School of MedicineUniversity of CaliforniaSan DiegoCA92093USA
- Department of Mechanical Engineering and Engineering SciencesUniversity of North CarolinaCharlotteNC28223USA
| | - You Jung Kang
- Institute Quantum BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Khanh Van Do
- Institute Quantum BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Charles Lee
- Department of Mechanical Engineering and Engineering SciencesUniversity of North CarolinaCharlotteNC28223USA
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced SciencesDartmouthMA02747USA
| | - Hansang Cho
- Institute Quantum BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University, 2066 Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| |
Collapse
|
8
|
Nemanić D, Mustapić M, Matak I, Bach-Rojecky L. Botulinum toxin type a antinociceptive activity in trigeminal regions involves central transcytosis. Eur J Pharmacol 2024; 963:176279. [PMID: 38123005 DOI: 10.1016/j.ejphar.2023.176279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Botulinum toxin type A (BoNT-A) provides lasting pain relief in patients with craniofacial pain conditions but the mechanisms of its antinociceptive activity remain unclear. Preclinical research revealed toxin axonal transport to the central afferent terminals, but it is unknown if its central effects involve transsynaptic traffic to the higher-order synapses. To answer this, we examined the contribution of central BoNT-A transcytosis to its action in experimental orofacial pain. MATERIAL AND METHODS Male Wistar rats, 3-4 months old, were injected with BoNT-A (7 U/kg) unilaterally into the vibrissal pad. To investigate the possible contribution of toxin's transcytosis, BoNT-A-neutralizing antiserum (5 IU) was applied intracisternally. Antinocicepive BoNT-A action was assessed by duration of nocifensive behaviors and c-Fos activation in the trigeminal nucleus caudalis (TNC) following bilateral or unilateral formalin (2.5%) application into the vibrissal pad. Additionally, cleaved synaptosomal-associated protein of 25 kDa (cl-SNAP-25) immunoreactivity was analyzed in the bilateral TNC. RESULTS Unilaterally injected BoNT-A reduced the nocifensive behaviors and bilateral c-Fos activation induced by formalin, which was accompanied by the toxin's enzymatic activity on both sides of the TNC. BoNT-A antinociceptive or enzymatic activities were prevented by the specific neutralizing antitoxin. BoNT-A contralateral action occurred independently from ipsilateral side nociception or contralateral trigeminal nerve-mediated axonal traffic. CONCLUSION Herein, we demonstrate that antinociceptive action of pericranially administered BoNT-A involves transsynaptic transport to second order synapses and contralateral trigeminal nociceptive nuclei. These results reveal more complex central toxin activity, necessary to explain its clinical effectiveness in the trigeminal region-related pain states.
Collapse
Affiliation(s)
- Dalia Nemanić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Matej Mustapić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10 000, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia.
| |
Collapse
|
9
|
Wagle Shukla A. Basis of movement control in dystonia and why botulinum toxin should influence it? Toxicon 2024; 237:107251. [PMID: 37574115 DOI: 10.1016/j.toxicon.2023.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Dystonia is a network disorder involving multiple brain regions, such as the motor cortex, sensory cortex, basal ganglia, and cerebellum. Botulinum toxin (BoNT) is the first-line therapy for treating focal dystonia and is a potent molecule that blocks the release of acetylcholine at the peripheral neuromuscular junction. However, the clinical benefits of BoNT are not solely related to peripheral muscle relaxation or modulation of afferent input from the muscle spindle. An increasing body of evidence, albeit in smaller cohorts, has shown that BoNT leads to distant modulation of the pathological brain substrates implicated in dystonia. A single treatment session of BoNT has been observed to reduce excessive motor excitability and improve sensory processing. Furthermore, owing to plasticity effects that are induced by botulinum, neural reorganization of pathological networks occurs, presumably leading to defective motor programs of dystonia replaced with normal movement patterns. However, longitudinal studies investigating the effects of multiple treatment sessions in large, well-characterized homogenous cohorts of dystonia will provide further compelling evidence supporting central botulinum mechanisms.
Collapse
Affiliation(s)
- Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, 32608, Florida, United States.
| |
Collapse
|
10
|
Belvisi D, Leodori G, Costanzo M, Conte A, Berardelli A. How does botulinum toxin really work? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:441-479. [PMID: 37482400 DOI: 10.1016/bs.irn.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Over the past 30 years, Botulinum toxin (BoNT) has emerged as an effective and safe therapeutic tool for a number of neurological conditions, including dystonia. To date, the exact mechanism of action of BoNT in dystonia is not fully understood. Although it is well known that BoNT mainly acts on the neuromuscular junction, a growing body of evidence suggests that the therapeutic effect of BoNT in dystonia may also depend on its ability to modulate peripheral sensory feedback from muscle spindles. Animal models also suggest a retrograde and anterograde BoNT transportation from the site of injection to central nervous system structures. In humans, however, BoNT central effects seem to depend on the modulation of afferent input rather than on BoNT transportation. In this chapter, we aimed to report and discuss research evidence providing information on the possible mechanisms of action of BoNT in relation to treatment of dystonia.
Collapse
Affiliation(s)
- Daniele Belvisi
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy.
| |
Collapse
|
11
|
Ni L, Chen H, Xu X, Sun D, Cai H, Wang L, Tang Q, Hao Y, Cao S, Hu X. Neurocircuitry underlying the antidepressant effect of retrograde facial botulinum toxin in mice. Cell Biosci 2023; 13:30. [PMID: 36782335 PMCID: PMC9926702 DOI: 10.1186/s13578-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUNDS Botulinum toxin type A (BoNT/A) is extensively applied in spasticity and dystonia as it cleaves synaptosome-associated protein 25 (SNAP25) in the presynaptic terminals, thereby inhibiting neurotransmission. An increasing number of randomized clinical trials have suggested that glabellar BoNT/A injection improves depressive symptoms in patients with major depressive disorder (MDD). However, the underlying neuronal circuitry of BoNT/A-regulated depression remains largely uncharacterized. RESULTS Here, we modeled MDD using mice subjected to chronic restraint stress (CRS). By pre-injecting BoNT/A into the unilateral whisker intrinsic musculature (WIM), and performing behavioral testing, we showed that pre-injection of BoNT/A attenuated despair- and anhedonia-like phenotypes in CRS mice. By applying immunostaining of BoNT/A-cleaved SNAP25 (cl.SNAP25197), subcellular spatial localization of SNAP25 with markers of cholinergic neurons (ChAT) and post-synaptic membrane (PSD95), and injection of monosynaptic retrograde tracer CTB-488-mixed BoNT/A to label the primary nucleus of the WIM, we demonstrated that BoNT/A axonal retrograde transported to the soma of whisker-innervating facial motoneurons (wFMNs) and subsequent transcytosis to synaptic terminals of second-order neurons induced central effects. Furthermore, using transsynaptic retrograde and monosynaptic antegrade viral neural circuit tracing with c-Fos brain mapping and co-staining of neural markers, we observed that the CRS-induced expression of c-Fos and CaMKII double-positive neurons in the ventrolateral periaqueductal grey (vlPAG), which sent afferents to wFMNs, was down-regulated 3 weeks after BoNT/A facial pre-administration. Strikingly, the repeated and targeted silencing of the wFMNs-projecting CaMKII-positive neurons in vlPAG with a chemogenetic approach via stereotactic injection of recombinant adeno-associated virus into specific brain regions of CRS mice mimicked the antidepressant-like action of BoNT/A pre-treatment. Conversely, repeated chemogenetic activation of this potential subpopulation counteracted the BoNT/A-improved significant antidepressant behavior. CONCLUSION We reported for the first time that BoNT/A inhibited the wFMNs-projecting vlPAG excitatory neurons through axonal retrograde transport and cell-to-cell transcytosis from the injected location of the WIM to regulate depressive-like phenotypes of CRS mice. For the limited and the reversibility of side effects, BoNT/A has substantial advantages and potential application in MDD.
Collapse
Affiliation(s)
- Linhui Ni
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Hanze Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Xinxin Xu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.13402.340000 0004 1759 700XDepartment of Ultrasonography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Di Sun
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Huaying Cai
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Li Wang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Qiwen Tang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Yonggang Hao
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.263761.70000 0001 0198 0694Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215125 China
| | - Shuxia Cao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
12
|
Kim BH, Kim DH, Lee JH, Lee HJ, Kim HJ. Evaluating intramuscular neural distribution in the cricopharyngeus muscle for injecting botulinum toxin. Auris Nasus Larynx 2023; 50:87-93. [PMID: 35649955 DOI: 10.1016/j.anl.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The objective of this study was to determine the area in the cricopharyngeus muscle (CPM) where botulinum neurotoxin (BoNT) can be injected safely and effectively by evaluating neural distribution in the CPM. METHODS Eleven specimens of the CPM were gathered from human cadavers. The anatomical relationship between the posterior cricoarytenoid muscle (PCAM) and the CPM was evaluated. Myelinated nerve fibers in the CPM were stained using modified Sihler's method. The CPM was classified into five zones according to the area accessible within the CPM via transcutaneous and transluminal approaches for BoNT injection as follows: i) lateral area including upper area (zone 1) and lower area (zone 2); ii) posterolateral area including upper area (zone 3) and lower area (zone 4); and iii) posterior area (zone 5). Neural distribution originating from the pharyngeal plexus and the extralaryngeal branches of recurrent laryngeal nerve (EBRLN) within each classified zone in stained specimens was determined. RESULTS Six specimens (12 lateral areas, 12 posterolateral areas, and 6 posterior areas) were suitable for evaluating neural distribution within the CPM. Zone 1 was adjacent to the PCAM the most in all specimens. Nerve endings originating from the EBRLN were observed on four sides of zone 2 (33.3%, 4/12 sides) in three specimens (3/6, 50%). Neural distribution originating from the pharyngeal plexus was found on ten sides (83.3%, 10/12 sides) of zone 3 in five specimens (83.3%, 5/6 specimens) and on nine sides (75.0%, 9/12 sides) of zone 4 in five specimens (83.3%, 5/6 specimens). CONCLUSION The posterolateral area (zone 3 and zone 4) is thought to be the most suitable area for alleviating the spasticity of CPM with a minimum dose of BoNT.
Collapse
Affiliation(s)
- Bo Hae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk university Ilsan Hospital, College of Medicine, Goyang, South Korea; Sensory Organ Research Institute, College of Medicine, Dongguk University, Gyengju, South Korea.
| | - Do Hyung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk university Ilsan Hospital, College of Medicine, Goyang, South Korea
| | - Ji-Hyun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hyung-Jin Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Center, College of Dentistry, Yonsei University, Seoul, South Korea.
| |
Collapse
|
13
|
Schümann F, Schmitt O, Wree A, Hawlitschka A. Distribution of Cleaved SNAP-25 in the Rat Brain, following Unilateral Injection of Botulinum Neurotoxin-A into the Striatum. Int J Mol Sci 2023; 24:1685. [PMID: 36675200 PMCID: PMC9865012 DOI: 10.3390/ijms24021685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
In Parkinson's disease, hypercholinism in the striatum occurs, with the consequence of disturbed motor functions. Direct application of Botulinum neurotoxin-A in the striatum of hemi-Parkinsonian rats might be a promising anticholinergic therapeutic option. Here, we aimed to determine the spread of intrastriatally injected BoNT-A in the brain as well as the duration of its action based on the distribution of cleaved SNAP-25. Rats were injected with 1 ng of BoNT-A into the right striatum and the brains were examined at different times up to one year after treatment. In brain sections immunohistochemically stained for BoNT-A, cleaved SNAP-25 area-specific densitometric analyses were performed. Increased immunoreactivity for cleaved SNAP-25 was found in brain regions other than the unilaterally injected striatum. Most cleaved SNAP-25-ir was found in widespread areas ipsilateral to the BoNT-A injection, in some regions, however, immunoreactivity was also measured in the contralateral hemisphere. There was a linear relationship between the distance of a special area from the injected striatum and the time until its maximum averaged immunoreactivity was reached. Moreover, we observed a positive relationship for the area-specific distance from the injected striatum and its maximum immunoreactivity as well as for the connection density with the striatum and its maximum immunoreactivity. The results speak for a bidirectional axonal transport of BoNT-A after its application into the striatum to its widespread connected parts of the brain. Even one year after BoNT-A injection, cleaved SNAP-25 could still be detected.
Collapse
Affiliation(s)
- Friederike Schümann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
- Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| |
Collapse
|
14
|
Pacella SJ. Commentary on: Is It Worth Using Botulinum Toxin Injections for the Management of Mild to Moderate Blepharoptosis? Aesthet Surg J 2022; 42:1382-1384. [PMID: 35723540 DOI: 10.1093/asj/sjac161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Salvatore J Pacella
- Division of Plastic and Reconstructive Surgery, Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| |
Collapse
|
15
|
Cornet S, Carré D, Limana L, Castel D, Meilin S, Horne R, Pons L, Evans S, Lezmi S, Kalinichev M. Intraoperative abobotulinumtoxinA alleviates pain after surgery and improves general wellness in a translational animal model. Sci Rep 2022; 12:21555. [PMID: 36513684 PMCID: PMC9747791 DOI: 10.1038/s41598-022-25002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pain after surgery remains a significant healthcare challenge. Here, abobotulinumtoxinA (aboBoNT-A, DYSPORT) was assessed in a post-surgical pain model in pigs. Full-skin-muscle incision and retraction surgery on the lower back was followed by intradermal injections of either aboBoNT-A (100, 200, or 400 U/pig), vehicle (saline), or wound infiltration of extended-release bupivacaine. We assessed mechanical sensitivity, distress behaviors, latency to approach the investigator, and wound inflammation/healing for 5-6 days post-surgery. We followed with immunohistochemical analyses of total and cleaved synaptosomal-associated protein 25 kD (SNAP25), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor protein-1(Iba1), calcitonin gene-related peptide (CGRP) and substance P (SP) in the skin, dorsal root ganglia (DRG) and the spinal cord of 400 U aboBoNT-A- and saline-treated animals. At Day 1, partial reversal of mechanical allodynia in aboBoNT-A groups was followed by a full reversal from Day 3. Reduced distress and normalized approaching responses were observed with aboBoNT-A from 6 h post-surgery. Bupivacaine reversed mechanical allodynia for 24 h after surgery but did not affect distress or approaching responses. In aboBoNT-A-treated animals cleaved SNAP25 was absent in the skin and DRG, but present in the ipsilateral dorsal horn of the spinal cord. In aboBoNT-A- versus saline-treated animals there were significant reductions in GFAP and Iba1 in the spinal cord, but no changes in CGRP and SP. Analgesic efficacy of aboBoNT-A appears to be mediated by its activity on spinal neurons, microglia and astrocytes. Clinical investigation to support the use of aboBoNT-A as an analgesic drug for post-surgical pain, is warranted.
Collapse
Affiliation(s)
- Sylvie Cornet
- grid.476474.20000 0001 1957 4504Ipsen Innovation, Les Ulis, France
| | - Denis Carré
- grid.476474.20000 0001 1957 4504Ipsen Innovation, Les Ulis, France
| | - Lorenzo Limana
- grid.476474.20000 0001 1957 4504Ipsen Innovation, Les Ulis, France
| | | | | | | | - Laurent Pons
- grid.476474.20000 0001 1957 4504Ipsen Innovation, Les Ulis, France
| | | | - Stephane Lezmi
- grid.476474.20000 0001 1957 4504Ipsen Innovation, Les Ulis, France ,Present Address: Excilone Sercives, Jouy en Josas, France
| | - Mikhail Kalinichev
- grid.476474.20000 0001 1957 4504Ipsen Innovation, Les Ulis, France ,grid.488228.c0000 0004 0552 3230Present Address: Addex Therapeutics, Geneva, Switzerland
| |
Collapse
|
16
|
Xu K, Zhang Z, Li Y, Song L, Gou J, Sun C, Li J, Du S, Cao R, Cui S. Botulinum Toxin A, a Better Choice for Skeletal Muscle Block in a Comparative Study With Lidocaine in Rats. J Pharmacol Exp Ther 2022; 383:227-237. [PMID: 36116794 DOI: 10.1124/jpet.122.001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
A positive response to scalene muscle block (SMB) is an important indication for the diagnosis of thoracic outlet syndrome. Lidocaine injection is commonly used in clinical practice in SMB, although there have been some cases of misdiagnosis. Botulinum toxin A (BTX-A) is one of the therapeutic agents in SMB, but whether it is also indicated for SMB diagnosis is controversial. To evaluate the muscle block efficiency of these two drugs, the contraction strength was repeatedly recorded on tibialis anterior muscle in rats. It was found that at a safe dosage, 2% lidocaine performed best at 40 μL, but it still exhibits an unsatisfactory partial blocking efficiency. Moreover, neither lidocaine injection in combination with epinephrine or dexamethasone nor multiple locations injection could improve the blocking efficiency. On the other hand, injections of 3, 6, and 12 U/kg BTX-A all showed almost complete muscle block. Gait analysis showed that antagonistic gastrocnemius muscle, responsible for heel rising, was paralyzed for nonspecific blockage in the 12 U/kg BTX-A group, but not in the 3 U/kg or 6 U/kg BTX-A group. Cleaved synaptosomal associated protein 25 (c-SNAP 25) was stained to test the transportation of BTX-A, and was additionally observed in the peripheral muscles in 6 and 12 U/kg groups. c-SNAP 25, however, was barely detectable in the spinal cord after BTX-A administration. Therefore, our results suggest that low dosage of BTX-A may be a promising option for the diagnostic SMB of thoracic outlet syndrome. SIGNIFICANCE STATEMENT: Muscle block is important for the diagnosis and treatment of thoracic outlet syndrome and commonly performed with lidocaine. However, misdiagnosis was observed sometimes. Here, we found that intramuscular injection of optimal dosage lidocaine only partially blocked the muscle contraction in rats, whereas low-dosage botulinum toxin, barely used in diagnostic block, showed almost complete block without affecting the central nervous system. This study suggests that botulinum toxin might be more suitable for muscle block than lidocaine in clinical practice.
Collapse
Affiliation(s)
- Ke Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yueying Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lili Song
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin Gou
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chengkuan Sun
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayang Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rangjuan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex. J Clin Med 2022; 11:jcm11123453. [PMID: 35743523 PMCID: PMC9224879 DOI: 10.3390/jcm11123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Focal laryngeal dystonia (LD) is a rare, idiopathic disease affecting the laryngeal musculature with an unknown cause and clinically presented as adductor LD or rarely as abductor LD. The most effective treatment options include the injection of botulinum toxin (BoNT) into the affected laryngeal muscle. The aim of this narrative review is to summarize the patho-neuro-physiological and genetic background of LD, as well as the standard recommended therapy (BoNT) and pharmacological treatment options, and to discuss possible treatment perspectives using neuro-modulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and vibrotactile stimulation. The review will present two LD cases, patients with adductor and abductor LD, standard diagnostic procedure, treatments and achievement, and the results of cortical excitability mapping the primary motor cortex for the representation of the laryngeal muscles in the assessment of corticospinal and corticobulbar excitability.
Collapse
|
18
|
Yunfeng G, Fei L, Junbo L, Dingyuan Y, Chaoyou H. An indirect comparison meta-analysis of noninvasive intravesical instillation and intravesical injection of botulinum toxin-A in bladder disorders. Int Urol Nephrol 2022; 54:479-491. [PMID: 35044552 DOI: 10.1007/s11255-022-03107-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A) intravesical instillation and BTX-A intravesical injection are both effective treatments or overactive bladder (OAB) and interstitial cystitis/bladder pain syndrome (IC/BPS), but direct comparative studies of the two treatments are lacking. METHODS We conducted a pairs-comparison meta-analysis and an adjusted indirect comparison meta-analysis extracting published data from randomized controlled trials in literature databases from the inception of each database to Aug. 31, 2021, evaluating efficacy and safety of BTX-A intravesical instillation and BTX-A intravesical injection. We also carried out a subgroup analysis. RESULTS We identified 24 trials in 21 studies were included in our study, of which 18 trials in 17 studies were BTX-A intravesical injections, 6 trials in 4 studies were BTX-A intravesical instillation. Compared with the normal saline injection, BTX-A intravesical injections for patients with OAB and IC/ BPS can obviously improve the symptoms of urinary frequency, urgency episode, UI and UUI, but BTX-A significantly increased the rate of urinary retention and urinary tract infection and increased PVR (p < 0.05). Adjusted indirect comparison meta-analysis showed that BTX-A intravesical injections was more effective than BTX-A intravesical instillation (p > 0.05). Surprisingly, BTX-A intravesical instillation had fewer side effects than BTX-A intravesical injections (p < 0.05). CONCLUSIONS Although BTX-A intravesical injections of OAB and IC/BPS has been significantly superior the BTX-A intravesical instillation, it has major side effects, but this needs to be confirmed by more large-scale, multicenter, direct comparison randomized controlled trials.
Collapse
Affiliation(s)
- Gao Yunfeng
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China
| | - Lai Fei
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China
| | - Liu Junbo
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China
| | - Yang Dingyuan
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China
| | - Huang Chaoyou
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
19
|
Ibrahim H, Maignel J, Hornby F, Daly D, Beard M. BoNT/A in the Urinary Bladder-More to the Story than Silencing of Cholinergic Nerves. Toxins (Basel) 2022; 14:53. [PMID: 35051030 PMCID: PMC8780360 DOI: 10.3390/toxins14010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxin (BoNT/A) is an FDA and NICE approved second-line treatment for overactive bladder (OAB) in patients either not responsive or intolerant to anti-cholinergic drugs. BoNT/A acts to weaken muscle contraction by blocking release of the neurotransmitter acetyl choline (ACh) at neuromuscular junctions. However, this biological activity does not easily explain all the observed effects in clinical and non-clinical studies. There are also conflicting reports of expression of the BoNT/A protein receptor, SV2, and intracellular target protein, SNAP-25, in the urothelium and bladder. This review presents the current evidence of BoNT/A's effect on bladder sensation, potential mechanisms by which it might exert these effects and discusses recent advances in understanding the action of BoNT in bladder tissue.
Collapse
Affiliation(s)
- Hodan Ibrahim
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (H.I.); (D.D.)
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France;
| | - Fraser Hornby
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - Donna Daly
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (H.I.); (D.D.)
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| |
Collapse
|
20
|
Luvisetto S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins (Basel) 2021; 13:toxins13110751. [PMID: 34822535 PMCID: PMC8622321 DOI: 10.3390/toxins13110751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders. BoNTs are also effective in inhibiting both the release of ACh at sites other than NMJ and the release of neurotransmitters other than ACh. Furthermore, much evidence shows that BoNTs can act not only on the peripheral nervous system (PNS), but also on the central nervous system (CNS). Under this view, central changes may result either from sensory input from the PNS, from retrograde transport of BoNTs, or from direct injection of BoNTs into the CNS. The aim of this review is to give an update on available data, both from animal models or human studies, which suggest or confirm central alterations induced by peripheral or central BoNTs treatment. The data will be discussed with particular attention to the possible therapeutic applications to pathological conditions and degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Biochemistry and Cell Biology (IBBC), Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Roma, Italy
| |
Collapse
|
21
|
Antonucci L, Locci C, Schettini L, Clemente MG, Antonucci R. Infant botulism: an underestimated threat. Infect Dis (Lond) 2021; 53:647-660. [PMID: 33966588 DOI: 10.1080/23744235.2021.1919753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022] Open
Abstract
Infant botulism (IB) is defined as a potentially life-threatening neuroparalytic disorder affecting children younger than 12 months. It is caused by ingestion of food or dust contaminated by Clostridium botulinum spores, which germinate in the infant's large bowel and produce botulinum neurotoxin. Although the real impact of IB is likely underestimated worldwide, the USA has the highest number of cases. The limited reporting of IB in many countries is probably due to diagnostic difficulties and nonspecific presentation. The onset is usually heralded by constipation, followed by bulbar palsy, and then by a descending bilateral symmetric paralysis; ultimately, palsy can involve respiratory and diaphragmatic muscles, leading to respiratory failure. The treatment is based on supportive care and specific therapy with Human Botulism Immune Globulin Intravenous (BIG-IV), and should be started as early as possible. The search for new human-like antibody preparations that are both highly effective and well tolerated has led to the creation of a mixture of oligoclonal antibodies that are highly protective and can be produced in large quantities without the use of animals. Ongoing research for future treatment of IB involves the search for new molecular targets to produce a new generation of laboratory-produced antitoxins, and the development of new vaccines with safety and efficacy profiles that can be scaled up for clinical use. This narrative literature review aims to provide a readable synthesis of the best current literature on microbiological, epidemiological and clinical features of IB, and a practical guide for its treatment.
Collapse
Affiliation(s)
- Luca Antonucci
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Cristian Locci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Livia Schettini
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Antonucci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
22
|
Cheng F, Ahmed F. OnabotulinumtoxinA for the prophylactic treatment of headaches in adult patients with chronic migraine: a safety evaluation. Expert Opin Drug Saf 2021; 20:1275-1289. [PMID: 34187265 DOI: 10.1080/14740338.2021.1948531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Existing oral prophylaxis for chronic migraine (CM) are often ineffective or poorly tolerated. OnabotulinumtoxinA (onabotA) is approved for headache prophylaxis in CM and ameliorates headaches in patients refractory to multiple preventatives.Areas covered: We appraise evidence regarding action mechanisms, pharmacodynamics, and pharmacokinetics of onabotA in CM prophylaxis. We critically evaluate salient clinical and real-world studies demonstrating its efficacy in improving multiple aspects of CM. We discuss onabotA safety, tolerability, and adverse events (AEs) for CM prophylaxis from clinical trials, post-authorization studies and meta-analyses, including novel pregnancy safety data and comparisons with oral prophylactics. We explore areas of future interest, particularly onabotA safety and efficacy in the context of novel antibody-based prophylaxis.Expert opinion: Clinical and real-world evidence demonstrate onabotA safety, tolerability and efficacy for CM prophylaxis. Most AEs are mild/moderate and self-limiting, with few serious AEs and no treatment-related deaths. Common AEs include neck pain, ptosis, muscle weakness, and stiffness. Modifying existing responder-criteria enables more patients to benefit from onabotA. OnabotA shows superior safety and efficacy to oral preventatives, and appears safe in pregnancy. Future pregnancy-risk register will clarify pregnancy and lactation safety further. Future research comparing onabotA safety and efficacy with newly emergent antibody-based prophylaxis is keenly awaited.
Collapse
Affiliation(s)
- Fan Cheng
- Department of Neurosciences, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Fayyaz Ahmed
- Department of Neurosciences, Hull University Teaching Hospitals NHS Trust, Hull, UK
| |
Collapse
|
23
|
Characterization of clostridium botulinum neurotoxin serotype A (BoNT/A) and fibroblast growth factor receptor interactions using novel receptor dimerization assay. Sci Rep 2021; 11:7832. [PMID: 33837264 PMCID: PMC8035261 DOI: 10.1038/s41598-021-87331-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/24/2021] [Indexed: 01/03/2023] Open
Abstract
Clostridium botulinum neurotoxin serotype A (BoNT/A) is a potent neurotoxin that serves as an effective therapeutic for several neuromuscular disorders via induction of temporary muscular paralysis. Specific binding and internalization of BoNT/A into neuronal cells is mediated by its binding domain (HC/A), which binds to gangliosides, including GT1b, and protein cell surface receptors, including SV2. Previously, recombinant HC/A was also shown to bind to FGFR3. As FGFR dimerization is an indirect measure of ligand-receptor binding, an FCS & TIRF receptor dimerization assay was developed to measure rHC/A-induced dimerization of fluorescently tagged FGFR subtypes (FGFR1-3) in cells. rHC/A dimerized FGFR subtypes in the rank order FGFR3c (EC50 ≈ 27 nM) > FGFR2b (EC50 ≈ 70 nM) > FGFR1c (EC50 ≈ 163 nM); rHC/A dimerized FGFR3c with similar potency as the native FGFR3c ligand, FGF9 (EC50 ≈ 18 nM). Mutating the ganglioside binding site in HC/A, or removal of GT1b from the media, resulted in decreased dimerization. Interestingly, reduced dimerization was also observed with an SV2 mutant variant of HC/A. Overall, the results suggest that the FCS & TIRF receptor dimerization assay can assess FGFR dimerization with known and novel ligands and support a model wherein HC/A, either directly or indirectly, interacts with FGFRs and induces receptor dimerization.
Collapse
|
24
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
25
|
Wang L, Ringelberg CS, Singh BR. Dramatic neurological and biological effects by botulinum neurotoxin type A on SH-SY5Y neuroblastoma cells, beyond the blockade of neurotransmitter release. BMC Pharmacol Toxicol 2020; 21:66. [PMID: 32891179 PMCID: PMC7487822 DOI: 10.1186/s40360-020-00443-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene expression profile analysis on mammalian cell lines and animal models after exposure to botulinum neurotoxin (BoNT) has been investigated in several studies in recent years. Microarray analysis provides a powerful tool for identifying critical signaling pathways involved in the biological and inflammatory responses to BoNT and helps determine the mechanism of the function of botulinum toxins. One of the pivotal clinical characteristics of BoNT is its prolonged on-site effects. The role of BoNT on the blockage of neurotransmitter acetylcholine release in the neuromuscular junction has been well established. However, the effects of the treatment time of BoNT on the human cellular model and its potential mechanism remain to be defined. METHODS This study aimed to use gene microarray technology to compare the two physiological critical time points of BoNT type A (BoNT/A) treatment of human neuroblastoma cells and to advance our understanding of the profound biological influences that toxin molecules play in the neuronal cellular system. SH-SY5Y neuroblastoma cells were treated with BoNT/A for 4 and 48 h, which represent the time needed for the entrance of toxin into the cells and the time necessary for the initial appearance of the on-site effects after BoNT application, respectively. RESULTS A comparison of the two time points identified 122 functional groups that are significantly changed. The top five groups are alternative splicing, phosphoprotein, nucleus, cytoplasm, and acetylation. Furthermore, after 48 h, there were 744 genes significantly up-regulated, and 624 genes significantly down-regulated (p‹ 0.01). These genes fell into the following neurological and biological annotation groups: Nervous system development, proteinaceous extracellular matrix, signaling pathways regulating pluripotency of stem cells, cellular function and signal transduction, and apoptosis. We have also noticed that the up-regulated groups contained neuronal cell development, nervous system development, and metabolic processes. In contrast, the down-regulated groups contained many chromosomes and cell cycle categories. CONCLUSIONS The effects of BoNT/A on neuronal cells extend beyond blocking the neurotransmitter release, and that BoNT/A is a multifunctional molecule that can evoke profound cellular responses which warrant a more in-depth understanding of the mechanism of the toxin's effects after administration.
Collapse
Affiliation(s)
- Lei Wang
- Prime Bio, Inc., North Dartmouth, MA, 02747, USA
| | - Carol S Ringelberg
- Genomics and Molecular Biology Shared Resource, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Bal R Singh
- Prime Bio, Inc., North Dartmouth, MA, 02747, USA. .,Institute of Advanced Sciences, Botulinum Research Center, North Dartmouth, MA, 02747, USA.
| |
Collapse
|
26
|
Solabre Valois L, Wilkinson KA, Nakamura Y, Henley JM. Endocytosis, trafficking and exocytosis of intact full-length botulinum neurotoxin type a in cultured rat neurons. Neurotoxicology 2020; 78:80-87. [PMID: 32088326 PMCID: PMC7225749 DOI: 10.1016/j.neuro.2020.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
Botulinum toxin A (BoNT/A) is a potent neurotoxin that acts primarily by silencing synaptic transmission by blocking neurotransmitter release. BoNT/A comprises a light chain (LC/A) intracellular protease and a heavy chain (HC/A) composed of a receptor binding domain (HCC/A) and a translocation domain (HCN/A) that mediates cell entry. Following entry into the neuron, the disulphide bond linking the two peptide chains is reduced to release the LC/A. To gain better insight into the trafficking and fate of BoNT/A before dissociation we have used a catalytically inactive, non-toxic full-length BoNT/A(0) mutant. Our data confirm that BoNT/A(0) enters cortical neurons both in an activity-dependent manner and via a pathway dependent on fibroblast growth factor receptor 3 (Fgfr3) signalling. We demonstrate that both dynamin-dependent endocytosis and lipid rafts are involved in BoNT/A internalisation and that full-length BoNT/A(0) traffics to early endosomes. Furthermore, while a proportion of BoNT/A remains stable in neurons for 3 days, BoNT/A degradation is primarily mediated by the proteasome. Finally, we demonstrate that a fraction of the endocytosed full-length BoNT/A(0) is capable of exiting the cell to intoxicate other neurons. Together, our data shed new light on the entry routes, trafficking and degradation of BoNT/A, and confirm that trafficking properties previously described for the isolated HCC/A receptor binding domain of are also applicable to the intact, full-length toxin.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
27
|
What clinicians and patients want: The past, the presence, and the future of the botulinum toxins. Toxicon 2020; 177:46-51. [DOI: 10.1016/j.toxicon.2020.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
|
28
|
Botulinum neurotoxin injections for muscle-based (dystonia and spasticity) and non-muscle-based (neuropathic pain) pain disorders: a meta-analytic study. J Neural Transm (Vienna) 2020; 127:935-951. [PMID: 32146504 DOI: 10.1007/s00702-020-02163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Apart from the known efficacy of Botulinum Neurotoxin Type A (BoNT/A) in hyperactive striated and smooth muscles, different pain states have become potential targets of toxin effects. This present study determined the comparative toxin effectiveness in pain reduction among those patients injected with BoNT/A in muscle-based and in non-muscle-based conditions. Randomized controlled trials (RCTs) on the effect of BoNT/A on selected pain conditions were included. The conditions were spasticity and dystonia for muscle-based pain. For non-muscle-based pain, conditions included were painful diabetic neuropathy (PDN), post-herpetic neuralgia (PHN), trigeminal neuralgia (TN), complex regional pain syndrome (CRPS), and spinal cord injury (SCI). In view of possibly differing pathophysiology, myofascial pain, temporomandibular joint (TMJ), other joint or tendon pains, cervicogenic and lumbar pains, migraine and visceral pain syndromes were excluded. Standardized mean difference was used as the effect measure and computed with STATA. 25 RCTs were analyzed. Pooled estimates showed significantly lower pain score in the Treatment group (z = 5.23, p < 0.01, 95% CI = - 0.75, - 0.34). Subgroup analyses showed that BoNT/A significantly reduced both muscle-based (z = 3.78, p < 0.01, 95% CI = - 0.72, - 0.23) and non-muscle-based (z = 3.37, p = 0.001, 95% CI = - 1.00, - 0.27) pain. Meta-regression using four covariates namely dosage, route, frequency and duration was done which revealed that dosage significantly affects standardized mean differences, while the other three covariates were insignificant. The joint F-test was found to be insignificant (p value = 0.1182). The application of the model with these covariates does not significantly explain the derived heterogeneity of standardized mean differences. In conclusion, BoNT/A can be effectively used in muscle-based and non-muscle-based pain disorders. We detected no difference between the presence and magnitude of pain relief favoring muscle-based compared to non-muscle-based pain. Thus, we cannot say whether or not there might be independent mechanisms of toxin-induced pain relief for pain generated from either muscle or nerve hyperactivity.
Collapse
|
29
|
Jensen DB, Klingenberg S, Dimintiyanova KP, Wienecke J, Meehan CF. Intramuscular Botulinum toxin A injections induce central changes to axon initial segments and cholinergic boutons on spinal motoneurones in rats. Sci Rep 2020; 10:893. [PMID: 31964988 PMCID: PMC6972769 DOI: 10.1038/s41598-020-57699-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 01/29/2023] Open
Abstract
Intramuscular injections of botulinum toxin block pre-synaptic cholinergic release at neuromuscular junctions producing a temporary paralysis of affected motor units. There is increasing evidence, however, that the effects are not restricted to the periphery and can alter the central excitability of the motoneurones at the spinal level. This includes increases in input resistance, decreases in rheobase currents for action potentials and prolongations of the post-spike after-hyperpolarization. The aim of our experiments was to investigate possible anatomical explanations for these changes. Unilateral injections of Botulinum toxin A mixed with a tracer were made into the gastrocnemius muscle of adult rats and contralateral tracer only injections provided controls. Immunohistochemistry for Ankyrin G and the vesicular acetylcholine transporter labelled axon initial segments and cholinergic C-boutons on traced motoneurones at 2 weeks post-injection. Soma size was not affected by the toxin; however, axon initial segments were 5.1% longer and 13.6% further from the soma which could explain reductions in rheobase. Finally, there was a reduction in surface area (18.6%) and volume (12.8%) but not frequency of C-boutons on treated motoneurones potentially explaining prolongations of the after-hyperpolarization. Botulinum Toxin A therefore affects central anatomical structures controlling or modulating motoneurone excitability explaining previously observed excitability changes.
Collapse
Affiliation(s)
- D B Jensen
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - S Klingenberg
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - K P Dimintiyanova
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - J Wienecke
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, DK-2200, Copenhagen, Denmark
| | - C F Meehan
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
30
|
Abstract
This chapter is focused on analgesic mechanism of action of botulinum toxin type A (BoNT-A) including the action beyond peripheral nerve endings. With the exception of the meninges and possibly urinary bladder, the presence of BoNT-A activity in the periphery, cleaving SNAP25 as a target molecule, up to now was not convincingly shown. In contrast many reports demonstrated BoNT-A activity and the presence of cleaved SNAP25 in the brain and spinal cord. In a model of mirror pain BoNT-A analgesic effect can be achieved even without participation of peripheral nerve ending. Thus generalized hypothesis central or peripheral mechanism of action belongs to history, and there is a need to confirm or dispute the results with meninges, urinary bladder, and possibly with other, especially visceral organs.There are two general options for the central actions of BoNT-A: 1. The activity ends by silencing primary sensory neuron thereby stopping the pain information further in the CNS. 2. Or thereafter, indirectly or transsynaptically, BoNT-A triggers smaller or larger neural loops, forming memory of pain in the CNS that could explain the bilateral effects after unilateral peripheral administration, similar effect in mirror image allodynia and the like Intensive research has shown that peripherally administered BoNT-A reaches the CNS by axonal transport. There is increasing evidence that BoNT-A is preventing pain in a growing range of disorders. In the absence of unexpected findings, or an increase in the uncontrolled use of illicit preparations by uneducated persons, BoNT-A is emerging as a new long-lasting and relatively safe analgesic.
Collapse
Affiliation(s)
- Zdravko Lacković
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
31
|
Pellett S, Tepp WH, Johnson EA. Critical Analysis of Neuronal Cell and the Mouse Bioassay for Detection of Botulinum Neurotoxins. Toxins (Basel) 2019; 11:E713. [PMID: 31817843 PMCID: PMC6950160 DOI: 10.3390/toxins11120713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Botulinum Neurotoxins (BoNTs) are a large protein family that includes the most potent neurotoxins known to humankind. BoNTs delivered locally in humans at low doses are widely used pharmaceuticals. Reliable and quantitative detection of BoNTs is of paramount importance for the clinical diagnosis of botulism, basic research, drug development, potency determination, and detection in clinical, environmental, and food samples. Ideally, a definitive assay for BoNT should reflect the activity of each of the four steps in nerve intoxication. The in vivo mouse bioassay (MBA) is the 'gold standard' for the detection of BoNTs. The MBA is sensitive, robust, semi-quantitative, and reliable within its sensitivity limits. Potential drawbacks with the MBA include assay-to-assay potency variations, especially between laboratories, and false positives or negatives. These limitations can be largely avoided by careful planning and performance. Another detection method that has gained importance in recent years for research and potency determination of pharmaceutical BoNTs is cell-based assays, as these assays can be highly sensitive, quantitative, human-specific, and detect fully functional holotoxins at physiologically relevant concentrations. A myriad of other in vitro BoNT detection methods exist. This review focuses on critical factors and assay limitations of the mouse bioassay and cell-based assays for BoNT detection.
Collapse
Affiliation(s)
| | | | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (S.P.); (W.H.T.)
| |
Collapse
|
32
|
Muñoz Lora VRM, Del Bel Cury AA, Jabbari B, Lacković Z. Botulinum Toxin Type A in Dental Medicine. J Dent Res 2019; 98:1450-1457. [PMID: 31533008 DOI: 10.1177/0022034519875053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Botulinum toxins (BoNTs) are a product of the bacteria Clostridium botulinum. By entering nerve endings, they cleave and inactivate SNARE proteins, which are essential for neurotransmitter release. Prevention of acetylcholine release at the neuromuscular junction causes long-lasting and potentially fatal flaccid paralysis-a major feature of botulism. However, an intramuscular injection of minute amounts of BoNTs, primarily type A (BoNT-A), has useful long-lasting muscle relaxation effects on spastic motor disorders. This characteristic of BoNT-A is widely used in neurology and cosmetics. Over the last few decades, it has been demonstrated that the functions of BoNT-A are not limited to muscle-relaxing or autonomic cholinergic effects but that it can act as an analgesic agent as well. More recently, it was revealed that this antinociceptive effect starts after entering the sensory nerve endings, where these agents are axonally transported to the central nervous system, suggesting that at least part of their analgesic effect might be of central origin. Because of its antinociceptive effect, BoNT-A is currently approved for treatment of chronic migraine; nonetheless, case reports and preclinical and clinical experiments indicating its benefit in numerous potential painful conditions have increased. In the field of dentistry, the US Food and Drug Administration approved BoNT-A for the treatment of sialorrhea only. Legal status of the use of BoNT-A in other countries is less known. However, there are controlled clinical trials suggesting its efficacy in other conditions, such as bruxism, temporomandibular disorders, and trigeminal neuropathic pain. Thereby, using criteria of the American Academy of Neurology, we critically reviewed the uses of BoNTs in oral medicine and found it effective for trigeminal neuralgia (category A) and probably effective in temporomandibular disorders and bruxism.
Collapse
Affiliation(s)
- V R M Muñoz Lora
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, Brazil
| | - A A Del Bel Cury
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, Brazil
| | - B Jabbari
- Division of Movement Disorders, Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Z Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
33
|
Giannantoni A, Gubbiotti M, Bini V. Botulinum Neurotoxin A Intravesical Injections in Interstitial Cystitis/Bladder Painful Syndrome: A Systematic Review with Meta-Analysis. Toxins (Basel) 2019; 11:toxins11090510. [PMID: 31480323 PMCID: PMC6784147 DOI: 10.3390/toxins11090510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A) appears to be one of the best intravesical treatments for interstitial cystitis/bladder painful syndrome (IC/BPS). We aimed to point out what the evidence is regarding the effects of BoNT/A intravesically injected in patients with IC/BPS. We performed a systematic review of all randomized controlled trials (RCTs) assessing BoNT/A for IC/BPS by using Medline, EMBASE, CINAHL, CENTRAL and MetaRegister of Controlled Trials. Standardized mean differences (SMD) were extracted from the available trials and combined in a meta-analysis applying a random effect model, including heterogeneity of effects. Twelve trials were identified. Significant benefits from BoNT/A injections were detected in: Interstitial Cystitis Symptom Index and Problem Index (ICSI, ICPI) (small to medium effect size: SMD = -0.302; p = 0.007 and -0.430, p = 0.004, respectively); Visual Analog Scale (VAS) for pain and day-time urinary frequency (medium effect size: SMD = -0.576, p < 0.0001 and -0.546, p = 0.013, respectively). A great effect size was detected for post-void residual volume (PVR, SMD = 0.728; p =0.002) although no clinically relevant in most cases. Great heterogeneity was observed in treatments' methodologies and symptoms assessment. Overall, BoNT/A intravesical injections significantly improve some of the most relevant symptoms affecting IC/BPS patients.
Collapse
Affiliation(s)
- Antonella Giannantoni
- Department of Medical and Surgical Sciences and Neurosciences, Functional and Surgical Urology Unit, University of Siena, 53100 Siena, Italy.
| | - Marilena Gubbiotti
- Department of Urology, San Donato Hospital, 52100 Arezzo, Italy
- Serafico Institute of Assisi, Research centre "InVita", Assisi, 06081 Perugia, Italy
| | - Vittorio Bini
- Department of Medicine, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
34
|
Gago-Veiga A, Santos-Lasaosa S, Cuadrado M, Guerrero Á, Irimia P, Láinez J, Leira R, Pascual J, Sanchez del Río M, Viguera J, Pozo-Rosich P. Evidence and experience with onabotulinumtoxinA in chronic migraine: Recommendations for daily clinical practice. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
35
|
Central Effects of Botulinum Neurotoxin-Evidence from Human Studies. Toxins (Basel) 2019; 11:toxins11010021. [PMID: 30621330 PMCID: PMC6356587 DOI: 10.3390/toxins11010021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 11/24/2022] Open
Abstract
For more than three decades, Botulinum neurotoxin (BoNT) has been used to treat a variety of clinical conditions such as spastic or dystonic disorders by inducing a temporary paralysis of the injected muscle as the desired clinical effect. BoNT is known to primarily act at the neuromuscular junction resulting in a biochemical denervation of the treated muscle. However, recent evidence suggests that BoNT’s pharmacological properties may not only be limited to local muscular denervation at the injection site but may also include additional central effects. In this review, we report and discuss the current evidence for BoNT’s central effects based on clinical observations, neurophysiological investigations and neuroimaging studies in humans. Collectively, these data strongly point to indirect mechanisms via changes to sensory afferents that may be primarily responsible for the marked plastic effects of BoNT on the central nervous system. Importantly, BoNT-related central effects and consecutive modulation and/or reorganization of the brain may not solely be considered “side-effects” but rather an additional therapeutic impact responsible for a number of clinical observations that cannot be explained by merely peripheral actions.
Collapse
|
36
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
38
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
39
|
Transynaptic Action of Botulinum Neurotoxin Type A at Central Cholinergic Boutons. J Neurosci 2018; 38:10329-10337. [PMID: 30315128 DOI: 10.1523/jneurosci.0294-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023] Open
Abstract
Botulinum neurotoxin Type A (BoNT/A) is an effective treatment for several movement disorders, including spasticity and dystonia. BoNT/A acts by cleaving synaptosomal-associated protein of 25 kDa (SNAP-25) at the neuromuscular junction, thus blocking synaptic transmission and weakening overactive muscles. However, not all the therapeutic benefits of the neurotoxin are explained by peripheral neuroparalysis, suggesting an action of BoNT/A on central circuits. Currently, the specific targets of BoNT/A central activity remain unclear. Here, we show that catalytically active BoNT/A is transported to the facial nucleus (FN) after injection into the nasolabial musculature of rats and mice. BoNT/A-mediated cleavage of SNAP-25 in the FN is prevented by intracerebroventricular delivery of antitoxin antibodies, demonstrating that BoNT/A physically leaves the motoneurons to enter second-order neurons. Analysis of intoxicated terminals within the FN shows that BoNT/A is transcytosed preferentially into cholinergic synapses. The cholinergic boutons containing cleaved SNAP-25 are associated with a larger size, suggesting impaired neuroexocytosis. Together, the present findings indicate a previously unrecognized source of reduced motoneuron drive after BoNT/A via blockade of central, excitatory cholinergic inputs. These data highlight the ability of BoNT/A to selectively target and modulate specific central circuits, with consequent impact on its therapeutic effectiveness in movement disorders.SIGNIFICANCE STATEMENT Botulinum neurotoxins are among the most potent toxins known. Despite this, their specific and reversible action prompted their use in clinical practice to treat several neuromuscular pathologies (dystonia, spasticity, muscle spasms) characterized by hyperexcitability of peripheral nerve terminals or even in nonpathological applications (i.e., cosmetic use). Substantial experimental and clinical evidence indicates that not all botulinum neurotoxin Type A (BoNT/A) effects can be explained solely by the local action (i.e., silencing of the neuromuscular junction). In particular, there are cases in which the clinical benefit exceeds the duration of peripheral neurotransmission blockade. In this study, we demonstrate that BoNT/A is transported to facial motoneurons, released, and internalized preferentially into cholinergic terminals impinging onto the motoneurons. Our data demonstrate a direct central action of BoNT/A.
Collapse
|
40
|
Development of Microplatforms to Mimic the In Vivo Architecture of CNS and PNS Physiology and Their Diseases. Genes (Basel) 2018; 9:genes9060285. [PMID: 29882823 PMCID: PMC6027402 DOI: 10.3390/genes9060285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the mechanisms that govern nervous tissues function remains a challenge. In vitro two-dimensional (2D) cell culture systems provide a simplistic platform to evaluate systematic investigations but often result in unreliable responses that cannot be translated to pathophysiological settings. Recently, microplatforms have emerged to provide a better approximation of the in vivo scenario with better control over the microenvironment, stimuli and structure. Advances in biomaterials enable the construction of three-dimensional (3D) scaffolds, which combined with microfabrication, allow enhanced biomimicry through precise control of the architecture, cell positioning, fluid flows and electrochemical stimuli. This manuscript reviews, compares and contrasts advances in nervous tissues-on-a-chip models and their applications in neural physiology and disease. Microplatforms used for neuro-glia interactions, neuromuscular junctions (NMJs), blood-brain barrier (BBB) and studies on brain cancer, metastasis and neurodegenerative diseases are addressed. Finally, we highlight challenges that can be addressed with interdisciplinary efforts to achieve a higher degree of biomimicry. Nervous tissue microplatforms provide a powerful tool that is destined to provide a better understanding of neural health and disease.
Collapse
|
41
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
42
|
Fonfria E, Maignel J, Lezmi S, Martin V, Splevins A, Shubber S, Kalinichev M, Foster K, Picaut P, Krupp J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins (Basel) 2018; 10:E208. [PMID: 29783676 PMCID: PMC5983264 DOI: 10.3390/toxins10050208] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Stephane Lezmi
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Vincent Martin
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Andrew Splevins
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Saif Shubber
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, Wrexham LL13 9UF, UK.
| | | | - Keith Foster
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Philippe Picaut
- Ipsen Bioscience, 650 Kendall Street, Cambridge, MA 02142, USA.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
43
|
Caleo M, Restani L. Exploiting Botulinum Neurotoxins for the Study of Brain Physiology and Pathology. Toxins (Basel) 2018; 10:toxins10050175. [PMID: 29693600 PMCID: PMC5983231 DOI: 10.3390/toxins10050175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/25/2023] Open
Abstract
Botulinum neurotoxins are metalloproteases that specifically cleave N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in synaptic terminals, resulting in a potent inhibition of vesicle fusion and transmitter release. The family comprises different serotypes (BoNT/A to BoNT/G). The natural target of these toxins is represented by the neuromuscular junction, where BoNTs block acetylcholine release. In this review, we describe the actions of botulinum toxins after direct delivery to the central nervous system (CNS), where BoNTs block exocytosis of several transmitters, with near-complete silencing of neural networks. The use of clostridial neurotoxins in the CNS has allowed us to investigate specifically the role of synaptic activity in different physiological and pathological processes. The silencing properties of BoNTs can be exploited for therapeutic purposes, for example to counteract pathological hyperactivity and seizures in epileptogenic brain foci, or to investigate the role of activity in degenerative diseases like prion disease. Altogether, clostridial neurotoxins and their derivatives hold promise as powerful tools for both the basic understanding of brain function and the dissection and treatment of activity-dependent pathogenic pathways.
Collapse
Affiliation(s)
- Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Laura Restani
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
44
|
Gustafsson R, Zhang S, Masuyer G, Dong M, Stenmark P. Crystal Structure of Botulinum Neurotoxin A2 in Complex with the Human Protein Receptor SV2C Reveals Plasticity in Receptor Binding. Toxins (Basel) 2018; 10:E153. [PMID: 29649119 PMCID: PMC5923319 DOI: 10.3390/toxins10040153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are a family of highly dangerous bacterial toxins, with seven major serotypes (BoNT/A-G). Members of BoNTs, BoNT/A1 and BoNT/B1, have been utilized to treat an increasing number of medical conditions. The clinical trials are ongoing for BoNT/A2, another subtype of BoNT/A, which showed promising therapeutic properties. Both BoNT/A1 and BoNT/A2 utilize three isoforms of synaptic vesicle protein SV2 (SV2A, B, and C) as their protein receptors. We here present a high resolution (2.0 Å) co-crystal structure of the BoNT/A2 receptor-binding domain in complex with the human SV2C luminal domain. The structure is similar to previously reported BoNT/A-SV2C complexes, but a shift of the receptor-binding segment in BoNT/A2 rotates SV2C in two dimensions giving insight into the dynamic behavior of the interaction. Small differences in key residues at the binding interface may influence the binding to different SV2 isoforms, which may contribute to the differences between BoNT/A1 and BoNT/A2 observed in the clinic.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
45
|
Abstract
An intramuscular formulation of onabotulinumtoxinA (onabotA; Botox®) is currently the only therapy specifically approved for the prevention of headaches in adults with chronic migraine (CM) in the EU and North America. This article provides a narrative review of relevant data on the drug in this indication from an EU perspective. OnabotA was originally approved on the basis of pooled data from two phase III studies (PREEMPT 1 and 2). In these pivotal studies, injection of up to five cycles of onabotA (155-195 U/cycle) at 12-week intervals was generally well tolerated and effective in producing statistically significant and clinically meaningful improvements in headache symptoms, acute headache pain medication usage, headache impact and health-related quality of life in adults with CM, of whom approximately two-thirds were acute medication overusers and approximately one-third had failed to respond to ≥ 3 prior oral prophylactic therapies. More recently, the efficacy and tolerability of onabotA over a period of 1 year in the PREEMPT programme has been substantiated and extended by the results of a long-term phase IV study (COMPEL), in which patients received up to nine treatment cycles over a period of 2 years, and by findings from several real-world clinical practice studies from Europe, including the prospective multinational REPOSE and CM-PASS studies. In conclusion, the totality of evidence from clinical trials and real-world studies indicates that onabotA is an effective and generally well tolerated option for the prevention of CM that may be particularly useful for patients who have previously failed to respond to or are intolerant of commonly prescribed oral prophylactics.
Collapse
Affiliation(s)
- James E Frampton
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | | |
Collapse
|
46
|
Evidence and experience with onabotulinumtoxinA in chronic migraine: Recommendations for daily clinical practice. Neurologia 2017; 34:408-417. [PMID: 29169810 DOI: 10.1016/j.nrl.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
OnabotulinumtoxinA has been demonstrated to be effective as a preventive treatment in patients with chronic migraine (CM). Five years after the approval of onabotulinumtoxinA in Spain, the Headache Study Group of the Spanish Society of Neurology considered it worthwhile to gather a group of experts in treating patients with CM in order to draw up, based on current evidence and our own experience, a series of guidelines aimed at facilitating the use of the drug in daily clinical practice. For this purpose, we posed 12 questions that we ask ourselves as doctors, and which we are also asked by our patients. Each author responded to one question, and the document was then reviewed by everyone. We hope that this review will constitute a practical tool to help neurologists treating patients with CM.
Collapse
|
47
|
Drinovac Vlah V, Filipović B, Bach-Rojecky L, Lacković Z. Role of central versus peripheral opioid system in antinociceptive and anti-inflammatory effect of botulinum toxin type A in trigeminal region. Eur J Pain 2017; 22:583-591. [PMID: 29134730 DOI: 10.1002/ejp.1146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although botulinum toxin type A (BT-A) is approved for chronic migraine treatment, its site and mechanism of action are still elusive. Recently our group discovered that suppression of CGRP release from dural nerve endings might account for antimigraine action of pericranially injected BT-A. We demonstrated that central antinociceptive effect of BT-A in sciatic region involves endogenous opioid system as well. Here we investigated possible interaction of BT-A with endogenous opioid system within the trigeminal region. METHODS In orofacial formalin test we investigated the influence of centrally acting opioid antagonist naltrexone (2 mg/kg, s.c.) versus peripherally acting methylnaltrexone (2 mg/kg, s.c.) on BT-A's (5 U/kg, s.c. into whisker pad) or morphine's (6 mg/kg, s.c.) antinociceptive effect and the effect on dural neurogenic inflammation (DNI). DNI was assessed by Evans blue-plasma protein extravasation. RESULTS Naltrexone abolished the effect of BT-A on pain and dural plasma protein extravasation, whereas peripherally acting methylnaltrexone did not change either BT-A's effect on pain or its effect on dural extravasation. Naltrexone abolished the antinociceptive and anti-inflammatory effects of morphine, as well. However, methylnaltrexone decreased the antinociceptive effect of morphine only partially in the second phase of the test and had no significant effect on morphine-mediated reduction in DNI. CONCLUSIONS Morphine acts on pain in trigeminal region both peripherally and centrally, whereas the effect on dural plasma protein extravasation seems to be only centrally mediated. However, the interaction of BT-A with endogenous opioid system, with consequent inhibition of nociceptive transmission as well as the DNI, occurs primarily centrally. SIGNIFICANCE Botulinum toxin type A (BT-A)'s axonal transport and potential transcytosis suggest that its antinociceptive effect might involve diverse neurotransmitters at different sites of trigeminal system. Here we discovered that the reduction in pain and accompanying DNI involves the interaction of BT-A with central endogenous opioid system (probably at the level of trigeminal nucleus caudalis).
Collapse
Affiliation(s)
- V Drinovac Vlah
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Croatia
| | - B Filipović
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Croatia.,Department of Otorhinolaryngology & Head and Neck Surgery, University Hospital Sveti Duh, Zagreb, Croatia
| | - L Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Croatia
| | - Z Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Croatia
| |
Collapse
|
48
|
Tonomura S, Kakehi Y, Sato M, Naito Y, Shimizu H, Goto Y, Takahashi N. Takotsubo-like Myocardial Dysfunction in a Patient with Botulism. Intern Med 2017; 56:2925-2927. [PMID: 28924131 PMCID: PMC5709640 DOI: 10.2169/internalmedicine.8968-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Botulinum toxin A (BTXA) can disrupt the neuromuscular and autonomic functions. We herein report a case of autonomic system dysfunction that manifested as Takotsubo-like myocardial dysfunction in a patient with botulism. Takotsubo syndrome results in acute cardiac insufficiency, another fatal complication of botulism in addition to respiratory muscle paralysis, particularly in patients with cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Masatoshi Sato
- Department of Infectious Disease, Nara City Hospital, Japan
| | - Yuki Naito
- Department of Neurology, Nara City Hospital, Japan
| | | | - Yasunobu Goto
- Department of Intensive Care Unit, Nara City Hospital, Japan
| | | |
Collapse
|
49
|
Caleo M, Restani L. Direct central nervous system effects of botulinum neurotoxin. Toxicon 2017; 147:68-72. [PMID: 29111119 DOI: 10.1016/j.toxicon.2017.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
Local intramuscular injections of botulinum neurotoxin type A (BoNT/A) are effective in the treatment of focal dystonias, muscle spasms, and spasticity. However, not all clinical effects of BoNT/A may be explained by its action at peripheral nerve terminals. For example, the therapeutic benefit may exceed the duration of the peripheral neuroparalysis induced by the neurotoxin. In cellular and animal models, evidence demonstrates retrograde transport of catalytically active BoNT/A in projection neurons. This process of long-range trafficking is followed by transcytosis and action at second-order synapses. In humans, several physiological changes have been described following intramuscular delivery of BoNT/A. In particular, clinical studies have documented a decrease in Renshaw cell-mediated inhibition (i.e., recurrent inhibition), which may be important therapeutically for normalizing uncoordinated movements and overflow of muscle activity. In this review, we present data obtained in animal and experimental models that support direct central actions of BoNT/A mediated via retrograde axonal trafficking. We also discuss the reorganization of central circuitry induced by BoNT/A in patients, and the potential contribution of these effects to the therapeutic efficacy of the neurotoxin.
Collapse
Affiliation(s)
- Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy
| | - Laura Restani
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
50
|
Cocco A, Albanese A. Recent developments in clinical trials of botulinum neurotoxins. Toxicon 2017; 147:77-83. [PMID: 28818530 DOI: 10.1016/j.toxicon.2017.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 11/26/2022]
Abstract
Botulinum neurotoxins (BoNTs) are increasingly used in clinical practice for several indications. Following the pioneering years of discoveries, the recent years have witnessed an increase of new indications and new toxin brands. We review here the clinical trials on BoNTs performed since 2014 and put them into perspective. We also review the ongoing trials listed by the National Institutes of Health registry (Clinicaltrials.gov). The following indications are reviewed here: blepharospasm, cervical dystonia, spasticity, cerebral palsy, urinary incontinence, headache, topical formulations, postoperative cardiac arrhythmia, keloids and scars. For each of these indications the latest trials are reviewed and commented.
Collapse
Affiliation(s)
| | - Alberto Albanese
- Humanitas Research Hospital, Rozzano, Milano, Italy; Catholic University, Milano, Italy.
| |
Collapse
|