1
|
Wu Y, Li H, Long Y, Zhang Z, Zhang F, Pan R, Meng L, Ma Z, Wang K, Zheng B, Qie Z, Gao W. Epigenetic Suppression of miR-137 Induces RNF4 Expression, Facilitating Wnt Signaling in Colorectal Cancer. Mol Carcinog 2025; 64:475-489. [PMID: 39630054 DOI: 10.1002/mc.23859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 01/05/2025]
Abstract
Colorectal cancer (CRC) is a significant health issue worldwide. Recent studies highlight the critical role of miRNAs in CRC development, particularly miR-137, which acts as a key tumor suppressor. Despite its known role, further exploration of miR-137's downstream signaling is needed to understand its biology and therapeutic potential. We examined the methylation status of miR-137 using one TCGA data and three GEO data sets. A clinical validation cohort of 78 samples was analyzed using MSP for miR-137 promoter methylation. Various in vitro molecular/cellular and animal experiments were conducted to elucidate miR-137's role in CRC. Bioinformatic analysis indicated frequent methylation of miR-137 in CRC tissues, correlating with suppressed expression. EZH2-mediated H3K27 trimethylation silences miR-137 in CRC cells by increasing chromatin compaction, reversible by EZH2 siRNA or inhibitor GSK343. miR-137 inhibits CRC cell proliferation, migration, invasion, and xenograft tumor growth, confirming its tumor-suppressive role. Using the miRWalk repository showed that miR-137 regulates the Wnt signaling pathway by reducing typical protein expression in HCT116 and SW480 cells. miR-137 directly targets RNF4, leading to its downregulation at transcriptional and protein levels, with an observed inverse correlation in CRC tissues. miR-137 accelerates c-Myc and β-catenin degradation by inhibiting RNF4, impacting protein stability and Wnt pathway inhibition. miR-137 is epigenetically silenced through DNA methylation and EZH2-mediated H3K27 trimethylation. It regulates the Wnt signaling pathway by targeting RNF4, leading to c-Myc and β-catenin destabilization. Restoring miR-137 or inhibiting RNF4 suppresses CRC cell proliferation, migration, invasion, and tumor growth, highlighting its therapeutic potential in CRC.
Collapse
Affiliation(s)
- Yazhou Wu
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanhua Li
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yin Long
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Zhang
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fanping Zhang
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runyu Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leijun Meng
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan Ma
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaijing Wang
- Department of Hepatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Zheng
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghong Qie
- Department of Clinical Laboratory, Shanghai health and medical center, Wuxi, China
| | - Wei Gao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Reissland M, Hartmann O, Tauch S, Bugter JM, Prieto-Garcia C, Schulte C, Loebbert S, Solvie D, Bitman-Lotan E, Narain A, Jacomin AC, Schuelein-Voelk C, Fuss CT, Pahor N, Ade C, Buck V, Potente M, Li V, Beliu G, Wiegering A, Grossmann T, Eilers M, Wolf E, Maric H, Rosenfeldt M, Maurice MM, Dikic I, Gallant P, Orian A, Diefenbacher ME. USP10 drives cancer stemness and enables super-competitor signalling in colorectal cancer. Oncogene 2024; 43:3645-3659. [PMID: 39443725 PMCID: PMC11611742 DOI: 10.1038/s41388-024-03141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024]
Abstract
The contribution of deubiquitylating enzymes (DUBs) to β-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes β-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring β-catenin degradation. However, in APC-truncated cancer cells USP10 binds to β-catenin, increasing its stability which is critical for maintaining an undifferentiated tumour identity. Elimination of USP10 reduces the expression of WNT and stem cell signatures and induces the expression of differentiation genes. Remarkably, silencing of USP10 in murine and patient-derived CRC organoids established that it is essential for NOTUM signalling and the APC super competitor-phenotype, reducing tumorigenic properties of APC-truncated CRC. These findings are clinically relevant as patient-derived organoids are highly dependent on USP10, and abundance of USP10 correlates with poorer prognosis of CRC patients. Our findings reveal, therefore, a role for USP10 in CRC cell identity, stemness, and tumorigenic growth by stabilising β-Catenin, leading to aberrant WNT signalling and degradation resistant tumours. Thus, USP10 emerges as a unique therapeutic target in APC truncated CRC.
Collapse
Affiliation(s)
- Michaela Reissland
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Oliver Hartmann
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
| | - Saskia Tauch
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cristian Prieto-Garcia
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Molecular Signalling Group, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Schulte
- Rudolf-Virchow-Center for Integrative and Translational Imaging, University of Wuerzburg, Wuerzburg, Germany
| | - Sinah Loebbert
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Solvie
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Ashwin Narain
- Cancer Systems Biology Group, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Anne-Claire Jacomin
- Molecular Signalling Group, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Carmina T Fuss
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Nikolett Pahor
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
| | - Carsten Ade
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Viktoria Buck
- Institute for Pathology, University of Würzburg, Wuerzburg, Germany
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin Germany and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Vivian Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Gerti Beliu
- Rudolf-Virchow-Center for Integrative and Translational Imaging, University of Wuerzburg, Wuerzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Paediatric Surgery, University Hospital, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - Tom Grossmann
- Amsterdam Institute of Molecular and Life Sciences, Amsterdam, Netherlands
| | - Martin Eilers
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Elmar Wolf
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Cancer Systems Biology Group, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Hans Maric
- Rudolf-Virchow-Center for Integrative and Translational Imaging, University of Wuerzburg, Wuerzburg, Germany
| | - Mathias Rosenfeldt
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Institute for Pathology, University of Würzburg, Wuerzburg, Germany
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ivan Dikic
- Molecular Signalling Group, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Amir Orian
- Faculty of Medicine, TICC, Technion Haifa, Haifa, Israel
| | - Markus E Diefenbacher
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany.
- Institute of Lung Health and Immunity, Helmholtz Center, Munich, Germany.
- German Center for Lung Research, DZL, Germany.
- Ludwig Maximilian University Munich, Munich, Germany.
| |
Collapse
|
3
|
Jin Y, Liu Q, Sun B, Li X, Wu J, Lin Z, Ma Y, Jia H. Pralatrexate represses the resistance of HCC cells to molecular targeted agents via the miRNA-34a/Notch pathway. Discov Oncol 2024; 15:709. [PMID: 39585461 PMCID: PMC11589030 DOI: 10.1007/s12672-024-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolism-related pathways are important targets for intervention in the treatment of hepatocellular carcinoma (HCC), but few studies have reported on the combination of inhibitors of folate metabolism-related enzymes and molecularly targeted drugs for HCC. The results of the present work are the first to reveal the effects of an inhibitor of dihydrofolate reductase (DHFR), pralatrexate, on the sensitivity of HCC cells to molecularly targeted agents examined using multiple assays. In HCC cells, knockdown of DHFR or treatment with pralatrexate enhanced the sensitivity of HCC cells to molecularly targeted agents, such as sorafenib, regorafenib, lenvatinib, cabozantinib, or anlotinib. Mechanically, pralatrexate decreased the methylation rates of miRNA-34a's promoter region to enhance the expression of miRNA-34a. Treatment with pralatrexate inhibited the expression of Notch and its downstream factors by enhancing the expression of miRNA-34a in HCC cells. In clinical specimens, the expression of miRNA-34a was negatively correlated with DHFR expression, while DHFR expression was positively correlated with the Notch intracellular domain (NICD) and downstream factors of the Notch pathway. The expression of miRNA-34a was negatively correlated with DHFR expression, while the methylation rates of miRNA-34a's promoter were positively related to DHFR. The effect of pralatrexate on the metabolic profile of HCC cells is very different from that of small molecule inhibitors related to glycolipid metabolism. Therefore, pralatrexate upregulates the sensitivity of HCC cells to molecularly targeted drugs. These results expand our understanding of folate metabolism and HCC and can help provide more options for HCC treatment.
Collapse
Affiliation(s)
- Yang Jin
- The 920th Hospital of the PLA Joint Logistic Support Force, Kunming, 650032, Yunnan, People's Republic of China
| | - Qiming Liu
- Air Force Medical Center, Chinese People's Liberation Army, Beijing, 100142, People's Republic of China
| | - Baisheng Sun
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaokang Li
- The 63650 Military Hospital, Chinese People's Liberation Army, Urumqi, 841700, China
| | - Jiahao Wu
- The 63650 Military Hospital, Chinese People's Liberation Army, Urumqi, 841700, China
| | - Zhiyuan Lin
- The 63650 Military Hospital, Chinese People's Liberation Army, Urumqi, 841700, China
| | - Yan Ma
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, 100853, People's Republic of China.
| | - Haijiang Jia
- Department of Quality Management, the 967th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, No. 80 Shengli Road, Xigang District, Dalian, 116021, Liaoning Province, People's Republic of China.
| |
Collapse
|
4
|
Liu X, Wang M, Wang Q, Zhang H. A ubiquitin-proteasome system-related signature to predict prognosis, immune infiltration, and therapy efficacy for breast cancer. Immunol Res 2024; 72:368-382. [PMID: 38036900 DOI: 10.1007/s12026-023-09440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an essential regulatory system for maintaining homeostasis, and its dysfunction may cause various diseases. The activity of proteasome and ubiquitin-conjugating enzymes has been found to be greatly increased in breast cancer (BC), indicating that the heterogeneity of UPS may be related to the progression of BC. Gene data was obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases and performed in multiple algorithms to construct a UPS-related signature for BC. Patients in the UPS low-risk group had greater overall and recurrence-free survival probability than those in the UPS high-risk group. This signature was closely associated with functional enrichment. Some high metabolism-related pathways were more active in the UPS high-risk group. The UPS low-risk group had more abundant anti-tumor immune cells, while in the UPS high-risk group, immunosuppressive cells were dominant. More importantly, we found that the UPS low-risk group was more sensitive to immunotherapy, while the UPS high-risk group responded better to radiotherapy. Drug sensitivity analysis identified more effective chemotherapy drugs in different UPS-related risk groups. This UPS-related signature may serve as a novel biomarker and independent prognostic factor for BC. It can effectively predict prognosis, immune infiltration, and therapy efficacy, providing new strategies for individualized treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meihuan Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Jin C, Einig E, Xu W, Kollampally RB, Schlosser A, Flentje M, Popov N. The dimeric deubiquitinase USP28 integrates 53BP1 and MYC functions to limit DNA damage. Nucleic Acids Res 2024; 52:3011-3030. [PMID: 38227944 PMCID: PMC11024517 DOI: 10.1093/nar/gkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.
Collapse
Affiliation(s)
- Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Wenshan Xu
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ravi Babu Kollampally
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Aljabban J, Syed S, Syed S, Rohr M, Mukhtar M, Aljabban H, Cottini F, Mohammed M, Hughes T, Gonzalez T, Panahiazr M, Hadley D, Benson D. Characterization of monoclonal gammopathy of undetermined significance progression to multiple myeloma through meta-analysis of GEO data. Heliyon 2023; 9:e17298. [PMID: 37539132 PMCID: PMC10394915 DOI: 10.1016/j.heliyon.2023.e17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The etiology of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) is still obscure as are the processes that enable the progression of MGUS to MM. Understanding the unique vs. shared transcriptomes can potentially elucidate why individuals develop one or the other. Furthermore, highlighting key pathways and genes involved in the pathogenesis of MM or the development of MGUS to MM may allow the discovery of novel drug targets and therapies. We employed STARGEO platform to perform three separate meta-analysis to compare MGUS and MM transcriptomes. For these analyses we tagged (1) 101 MGUS patient plasma cells from bone marrow samples and 64 plasma cells from healthy controls (2) 383 MM patient CD138+ cells from bone marrow and the 101 MGUS samples in the first analysis as controls (3) 517 MM patient peripheral blood samples and 97 peripheral blood samples from healthy controls. We then utilized Ingenuity Pathway Analysis (IPA) to analyze the unique genomic signatures within and across these samples. Our study identified genes that may have unique roles in MGUS (GADD45RA and COMMD3), but also newly identified signaling pathways (EIF2, JAK/STAT, and MYC) and gene activity (NRG3, RBFOX2, and PARP15) in MGUS that have previously been shown to be involved in MM suggesting a spectrum of molecular overlap. On the other hand, genes such as DUSP4, RN14, LAMP5, differentially upregulated in MM, may be seen as tipping the scales from benignity to malignancy and could serve as drug targets or novel biomarkers for risk of progression. Furthermore, our analysis of MM identified newly associated gene/pathway activity such as inhibition of Wnt-signaling and defective B cell development. Finally, IPA analysis, suggests the multifactorial, oncogenic qualities of IFNγ signaling in MM may be a unifying pathway for these diverse mechanisms and prompts the need for further studies.
Collapse
Affiliation(s)
- Jihad Aljabban
- University of Wisconsin Hospital and Clinics, Department of Medicine, United States
| | - Sharjeel Syed
- University of Chicago Medical Center, Department of Medicine, United States
| | - Saad Syed
- Northwestern Memorial Hospital, Department of Medicine, United States
| | - Michael Rohr
- University of Central Florida College of Medicine, United States
| | - Mohamed Mukhtar
- Michigan State University College of Human Medicine, United States
| | | | - Francesca Cottini
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| | | | - Tiffany Hughes
- Ohio State University Wexner Medical Center, United States
| | | | - Maryam Panahiazr
- University of California San Francisco, Department of Surgery, United States
| | - Dexter Hadley
- University of Central Florida College of Medicine, United States
- University of Central Florida, Chief of the Department of Artificial Intelligence, United States
| | - Don Benson
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| |
Collapse
|
7
|
Kanoh T, Lu J, Mizoguchi T, Itoh M. The E3 ubiquitin ligase MIB1 suppresses breast cancer cell migration through regulating CTNND1 protein level. Biochem Biophys Res Commun 2023; 667:73-80. [PMID: 37209565 DOI: 10.1016/j.bbrc.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Breast cancer is one of the most common invasive cancers among women. The leading cause of difficulty in treating breast cancer patients is metastasis. Because cell migration is closely related to breast cancer metastasis, elucidating the detailed mechanism by which breast cancer cells promote their migration is crucial for improving the prognosis of patients. In this study, we investigated the relationship between breast cancer cell migration and Mind bomb1 (MIB1), an E3 ubiquitin ligase. We found that the downregulation of MIB1 promotes the cell migration of MCF7, a breast cancer-derived cell line. Furthermore, knockdown of MIB1 caused a reduction in CTNND1 and thereby impaired E-cadherin membrane localization in the cell boundary region. Taken together, our data suggest that MIB1 might play a role in suppressing breast cancer cell migration.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Jingyu Lu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
8
|
Qi T, Xu X, Guo Y, Xia Y, Peng L, Li C, Ding F, Gao C, Fan M, Yu M, Zhao H, He Y, Li W, Hai C, Gao E, Zhang X, Gao F, Fan Y, Yan W, Tao L. CSF2RB overexpression promotes the protective effects of mesenchymal stromal cells against ischemic heart injury. Theranostics 2023; 13:1759-1773. [PMID: 37064880 PMCID: PMC10091875 DOI: 10.7150/thno.81336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/26/2023] [Indexed: 04/18/2023] Open
Abstract
Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- School of Public Management, Northwest University, Xi'an 710127, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Peng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengyue Ding
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| |
Collapse
|
9
|
Lv L, Huang B, Yi L, Zhang L. Long non-coding RNA SNHG4 enhances RNF14 mRNA stability to promote the progression of colorectal cancer by recruiting TAF15 protein. Apoptosis 2022; 28:414-431. [PMID: 36482019 DOI: 10.1007/s10495-022-01781-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Abstract
SNHG4 is a lncRNA that was previously reported to promote colorectal cancer (CRC) progression via molecular sponge mechanism. Bioinformatic analysis suggested SNHG4 might scaffold TAF15 protein-RNF14 mRNA interaction. We aimed to investigate the mechanisms of potential SNHG4/TAF15/RNF14 axis in promoting CRC malignant phenotypes. Protein-RNA interaction was determined using RNA immunoprecipitation, pull-down and fluorescence in situ hybridization (FISH) combined immunofluorescence assays. Cell apoptosis rates were quantified using flow cytometry. CCK-8 and colony formation were adopted to determine cell proliferation. Wound healing and transwell assays were employed to assess cell migration and invasion, respectively. Xenograft tumor model was applied to assess the effects of SNHG4 on CRC tumorigenesis in vivo. SNHG4, TAF15 and RNF14 were up-regulated in CRC tissues. SNHG4 overexpression promoted cell proliferation, migration, invasion, and Wnt/β-catenin pathway activation in vitro, as well as tumor growth in vivo. The inhibited malignant phenotypes caused by SNHG4 knockdown were impeded by TAF15 or RNF14 overexpression. Mechanistically, SNHG4 recruited TAF15 protein and thus promoted the interaction between TAF15 protein and RNF14 mRNA, leading to the increased RNF14 mRNA stability. This in turn facilitated the Wnt/β-catenin signal transduction. SNHG4 enhanced RNF14 mRNA stability and activated the Wnt/β-catenin pathway to promote the progression of colorectal cancer by recruiting TAF15 protein.
Collapse
Affiliation(s)
- Lv Lv
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China.
| | - Bojie Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Lu Yi
- Department of Dermatology & Venerology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Li Zhang
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China
| |
Collapse
|
10
|
Novak R, Ahmad YA, Timaner M, Bitman-Lotan E, Oknin-Vaisman A, Horwitz R, Hartmann O, Reissland M, Buck V, Rosenfeldt M, Nikomarov D, Diefenbacher ME, Shaked Y, Orian A. RNF4~RGMb~BMP6 axis required for osteogenic differentiation and cancer cell survival. Cell Death Dis 2022; 13:820. [PMID: 36153321 PMCID: PMC9509360 DOI: 10.1038/s41419-022-05262-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
Molecular understanding of osteogenic differentiation (OD) of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for regenerative medicine and has direct implications for cancer. We report that the RNF4 ubiquitin ligase is essential for OD of hBMSCs, and that RNF4-deficient hBMSCs remain as stalled progenitors. Remarkably, incubation of RNF4-deficient hBMSCs in conditioned media of differentiating hBMSCs restored OD. Transcriptional analysis of RNF4-dependent gene signatures identified two secreted factors that act downstream of RNF4 promoting OD: (1) BMP6 and (2) the BMP6 co-receptor, RGMb (Dragon). Indeed, knockdown of either RGMb or BMP6 in hBMSCs halted OD, while only the combined co-addition of purified RGMb and BMP6 proteins to RNF4-deficient hBMSCs fully restored OD. Moreover, we found that the RNF4-RGMb-BMP6 axis is essential for survival and tumorigenicity of osteosarcoma and therapy-resistant melanoma cells. Importantly, patient-derived sarcomas such as osteosarcoma, Ewing sarcoma, liposarcomas, and leiomyosarcomas exhibit high levels of RNF4 and BMP6, which are associated with reduced patient survival. Overall, we discovered that the RNF4~BMP6~RGMb axis is required for both OD and tumorigenesis.
Collapse
Affiliation(s)
- Rostislav Novak
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel ,Rambam Health Campus Center, Haifa, 3109610 Israel
| | - Yamen Abu Ahmad
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Michael Timaner
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Eliya Bitman-Lotan
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Avital Oknin-Vaisman
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Roi Horwitz
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Oliver Hartmann
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Michaela Reissland
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Viktoria Buck
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Mathias Rosenfeldt
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Markus Elmar Diefenbacher
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Yuval Shaked
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Amir Orian
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| |
Collapse
|
11
|
RNF4 promotes tumorigenesis, therapy resistance of cholangiocarcinoma and affects cell cycle by regulating the ubiquitination degradation of p27kip1 in the nucleus. Exp Cell Res 2022; 419:113295. [PMID: 35926659 DOI: 10.1016/j.yexcr.2022.113295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Among the hallmarks of cholangiocarcinoma (CCA) progression and unresponsiveness to therapy is impaired ubiquitin-dependent degradation of nuclear tumor suppressor protein. In the previous stage, our research group found that as a key tumor suppressor, nuclear dysfunction of p27kip1 is closely related to chemotherapy resistance of CCA, but the specific mechanism is unclear. It was recently shown that p27kip1-driven tumors were strongly dependent on the SUMO pathway. RNF4, as the SUMO-targeted ubiquitin ligase (STUbL), identifies SUMOylated proteins as a substrate through sumo-interacting motifs (SIM) and causes its degradation via the ubiquitin proteasome pathway. Here we described that the expression of RNF4 was upregulated in CCA tissues and related to malignant features. Silencing RNF4 arrested human CCA cells at the G1 phase, which was associated with the upregulation of p27kip1 and the downregulation of its downstream cycle-related proteins. Silencing RNF4 inhibited cell proliferation and migration, increased cell apoptosis, and sensitized CCA cells to treatment of chemotherapeutic drugs in vitro. Immunofluorescence showed that p27kip1 and RNF4 were mainly co-located in the nucleus. Immunoprecipitation and Western blot showed that p27kip1 was a target protein for SUMOylation and high expression of RNF4 decreased the levels of nuclear p27kip1, enhanced the levels of ubiquitinated and SUMOylated p27kip1, indicating that RNF4 could regulate cell cycle progression via recognizing SUMOylated p27kip1 and facilitating its ubiquitination degradation. These data indicate that RNF4-mediated ubiquitination degradation of SUMOylated proteins is a novel regulatory mechanism of p27kip1 dysfunction and CCA tumorigenesis, which provides a potential option for therapeutic intervention of CCA.
Collapse
|
12
|
Chen H, Zhao X, Li Y, Zhang S, Wang Y, Wang L, Ma W. High Expression of TMEM33 Predicts Poor Prognosis and Promotes Cell Proliferation in Cervical Cancer. Front Genet 2022; 13:908807. [PMID: 35832191 PMCID: PMC9271802 DOI: 10.3389/fgene.2022.908807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
Background: The prognosis of patients with advanced cervical cancer remains unsatisfactory. A study indicated that transmembrane protein 33 (TMEM33) was implicated in tumor recurrence, while its role in cervical cancer has not been elucidated. Methods: TMEM33 expression in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) was primarily screened in The Cancer Genome Atlas (TCGA), and further validated in Gene Expression Omnibus (GEO) database. The Kaplan–Meier plotter analysis and Cox regression were constructed to evaluate the prognostic value of TMEM33 in CESC. Functional enrichment analysis was performed with GO, KEGG and GSEA tools. CCK-8 assay and colony formation assay were performed to investigate the carcinogenesis role of TMEM33 in cervical cancer cell proliferation. Results: TMEM33 expression was significantly elevated in CESC compared with normal tissues. High expression of TMEM33 was associated with poor prognostic clinical characteristics in CESC patients. KM-plotter analysis revealed that patients with increased TMEM33 had shorter overall survival (OS), progress free interval (PFI), and disease specific survival (DSS). Moreover, Multivariate Cox analysis confirmed that high TMEM33 expression was an independent risk factor for OS in patients with CESC. TMEM33 was associated with immune infiltrates, and its expression was correlated with tumorigenesis-related genes RNF4, OCIAD1, TMED5, DHX15, MED28 and LETM1. More importantly, knockdown of TMEM33 in cervical cancer cells decreased the expression of those genes and inhibited cell proliferation. Conclusion: Increased TMEM33 in cervical cancer can serve as an independent prognostic marker and might play a role in tumorigenesis by promoting cell proliferation.
Collapse
Affiliation(s)
- Hanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong LaiBo Biotechnology Co., Ltd., Jinan, China
| | - Xia Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongqing Li
- Department of Clinical Laboratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Lili Wang, ; Wanshan Ma,
| | - Wanshan Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Lili Wang, ; Wanshan Ma,
| |
Collapse
|
13
|
Quiroga M, Rodríguez-Alonso A, Alfonsín G, Rodríguez JJE, Breijo SM, Chantada V, Figueroa A. Protein Degradation by E3 Ubiquitin Ligases in Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14040990. [PMID: 35205738 PMCID: PMC8870109 DOI: 10.3390/cancers14040990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The aim of this review was to discuss the fundamental role of E3 ubiquitin ligases in controlling cancer stem cells. It will be surmised that protein degradation controlled by the E3 ubiquitin ligases plays a fundamental role in the self-renewal, maintenance and differentiation of cancer stem cells, highlighting its potential as an effective therapeutic target for anticancer drug development. Abstract Cancer stem cells are a small subpopulation within the tumor with high capacity for self-renewal, differentiation and reconstitution of tumor heterogeneity. Cancer stem cells are major contributors of tumor initiation, metastasis and therapy resistance in cancer. Emerging evidence indicates that ubiquitination-mediated post-translational modification plays a fundamental role in the maintenance of cancer stem cell characteristics. In this review, we will discuss how protein degradation controlled by the E3 ubiquitin ligases plays a fundamental role in the self-renewal, maintenance and differentiation of cancer stem cells, highlighting the possibility to develop novel therapeutic strategies against E3 ubiquitin ligases targeting CSCs to fight cancer.
Collapse
|
14
|
Ellis N, Zhu J, Yagle MK, Yang WC, Huang J, Kwako A, Seidman MM, Matunis MJ. RNF4 Regulates the BLM Helicase in Recovery From Replication Fork Collapse. Front Genet 2021; 12:753535. [PMID: 34868226 PMCID: PMC8633118 DOI: 10.3389/fgene.2021.753535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
Sumoylation is an important enhancer of responses to DNA replication stress and the SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of sumoylated DNA damage response factors. The specific targets and functional consequences of RNF4 regulation in response to replication stress, however, have not been fully characterized. Here we demonstrated that RNF4 is required for the restart of DNA replication following prolonged hydroxyurea (HU)-induced replication stress. Contrary to its role in repair of γ-irradiation-induced DNA double-strand breaks (DSBs), our analysis revealed that RNF4 does not significantly impact recognition or repair of replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the firing of new DNA replication origins, which is required for replication restart following prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and thereby promotes its proteosome-mediated turnover at damaged DNA replication forks. Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM rescued defects in the firing of new replication origins observed in cells depleted of RNF4 alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA replication forks, which is required to facilitate normal resumption of DNA synthesis after prolonged replication fork stalling and collapse.
Collapse
Affiliation(s)
- Nathan Ellis
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jianmei Zhu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Mary K Yagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Wei-Chih Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jing Huang
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, United States
| | - Alexander Kwako
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, United States
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
15
|
Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021; 10:2374. [PMID: 34572023 PMCID: PMC8469536 DOI: 10.3390/cells10092374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of "degradation-resistant" cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.
Collapse
Affiliation(s)
| | | | | | - Amir Orian
- Rappaport Faculty of Medicine, R-TICC, Technion-IIT, Efron St. Bat-Galim, Haifa 3109610, Israel; (Y.A.A.); (A.O.-V.); (E.B.-L.)
| |
Collapse
|
16
|
Gatekeepers of the Gut: The Roles of Proteasomes at the Gastrointestinal Barrier. Biomolecules 2021; 11:biom11070989. [PMID: 34356615 PMCID: PMC8301830 DOI: 10.3390/biom11070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin–proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis.
Collapse
|
17
|
Li L, Halpert G, Lerner MG, Hu H, Dimitrion P, Weiss MJ, He J, Philosophe B, Burkhart R, Burns WR, Wesson RN, MacGregor Cameron A, Wolfgang CL, Georgiades C, Kawamoto S, Azad NS, Yarchoan M, Meltzer SJ, Oshima K, Ensign LM, Bader JS, Selaru FM. Protein synthesis inhibitor omacetaxine is effective against hepatocellular carcinoma. JCI Insight 2021; 6:138197. [PMID: 34003798 PMCID: PMC8262474 DOI: 10.1172/jci.insight.138197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common and the fourth most deadly cancer worldwide. The development cost of new therapeutics is a major limitation in patient outcomes. Importantly, there is a paucity of preclinical HCC models in which to test new small molecules. Herein, we implemented potentially novel patient-derived organoid (PDO) and patient-derived xenografts (PDX) strategies for high-throughput drug screening. Omacetaxine, an FDA-approved drug for chronic myelogenous leukemia (CML), was found to be a top effective small molecule in HCC PDOs. Next, omacetaxine was tested against a larger cohort of 40 human HCC PDOs. Serial dilution experiments demonstrated that omacetaxine is effective at low (nanomolar) concentrations. Mechanistic studies established that omacetaxine inhibits global protein synthesis, with a disproportionate effect on short–half-life proteins. High-throughput expression screening identified molecular targets for omacetaxine, including key oncogenes, such as PLK1. In conclusion, by using an innovative strategy, we report — for the first time to our knowledge — the effectiveness of omacetaxine in HCC. In addition, we elucidate key mechanisms of omacetaxine action. Finally, we provide a proof-of-principle basis for future studies applying drug screening PDOs sequenced with candidate validation in PDX models. Clinical trials could be considered to evaluate omacetaxine in patients with HCC.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and Hepatology and
| | - Gilad Halpert
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael G Lerner
- Department of Physics and Astronomy, Earlham College, Richmond, Indiana, USA
| | - Haijie Hu
- Division of Gastroenterology and Hepatology and
| | - Peter Dimitrion
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew J Weiss
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Philosophe
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William R Burns
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell N Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Nilofer S Azad
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen J Meltzer
- Division of Gastroenterology and Hepatology and.,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology and.,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Sun XX, Li Y, Sears RC, Dai MS. Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Front Oncol 2021; 11:679445. [PMID: 34178666 PMCID: PMC8226175 DOI: 10.3389/fonc.2021.679445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Deregulated MYC overexpression and activation contributes to tumor growth and progression. Given the short half-life and unstable nature of the MYC protein, it is not surprising that the oncoprotein is highly regulated via diverse posttranslational mechanisms. Among them, ubiquitination dynamically controls the levels and activity of MYC during normal cell growth and homeostasis, whereas the disturbance of the ubiquitination/deubiquitination balance enables unwanted MYC stabilization and activation. In addition, MYC is also regulated by SUMOylation which crosstalks with the ubiquitination pathway and controls MYC protein stability and activity. In this mini-review, we will summarize current updates regarding MYC ubiquitination and provide perspectives about these MYC regulators as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Yanping Li
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Rosalie C Sears
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
19
|
Shimada T, Kudoh Y, Noguchi T, Kagi T, Suzuki M, Tsuchida M, Komatsu H, Takahashi M, Hirata Y, Matsuzawa A. The E3 Ubiquitin-Protein Ligase RNF4 Promotes TNF-α-Induced Cell Death Triggered by RIPK1. Int J Mol Sci 2021; 22:5796. [PMID: 34071450 PMCID: PMC8199362 DOI: 10.3390/ijms22115796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) of RIPK1. However, the underlying mechanisms associated with the PTMs of RIPK1 are unclear. In this study, we found that RING finger protein 4 (RNF4), a RING finger E3 ubiquitin ligase, is required for the RIPK1 autophosphorylation and subsequent cell death. It has been reported that RNF4 negatively regulates TNF-α-induced activation of the nuclear factor-κB (NF-κB) through downregulation of transforming growth factor β-activated kinase 1 (TAK1) activity, indicating the possibility that RNF4-mediated TAK1 suppression results in enhanced sensitivity to cell death. However, interestingly, RNF4 was needed to induce RIPK1-mediated cell death even in the absence of TAK1, suggesting that RNF4 can promote RIPK1-mediated cell death without suppressing the TAK1 activity. Thus, these observations reveal the existence of a novel mechanism whereby RNF4 promotes the autophosphorylation of RIPK1, which provides a novel insight into the molecular basis for the PTMs of RIPK1.
Collapse
Affiliation(s)
| | | | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (T.S.); (Y.K.); (T.K.); (M.S.); (M.T.); (H.K.); (M.T.); (Y.H.)
| | | | | | | | | | | | | | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (T.S.); (Y.K.); (T.K.); (M.S.); (M.T.); (H.K.); (M.T.); (Y.H.)
| |
Collapse
|
20
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
21
|
Li L, Bai J, Fan H, Yan J, Li S, Jiang P. E2 ubiquitin-conjugating enzyme UBE2L6 promotes Senecavirus A proliferation by stabilizing the viral RNA polymerase. PLoS Pathog 2020; 16:e1008970. [PMID: 33104725 PMCID: PMC7588118 DOI: 10.1371/journal.ppat.1008970] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
Senecavirus A (SVA), discovered in 2002, is an emerging pathogen of swine that has since been reported in numerous pork producing countries. To date, the mechanism of SVA replication remains poorly understood. In this study, utilizing iTRAQ analysis we found that UBE2L6, an E2 ubiquitin-conjugating enzyme, is up-regulated in SVA-infected BHK-21 cells, and that its overexpression promotes SVA replication. We determined that UBE2L6 interacts with, and ubiquitinates the RNA-dependent RNA polymerase of SVA, (the 3D protein) and this ubiquitination serves to inhibit the degradation of 3D. UBE2L6-mediated ubiquitination of 3D requires a cystine at residue 86 in UBE2L6, and lysines at residues 169 and 321 in 3D. Virus with mutations in 3D (rK169R and rK321R) exhibited significantly decreased replication compared to wild type SVA and the repaired viruses, rK169R(R) and rK321R(R). These data indicate that UBE2L6, the enzyme, targets the 3D polymerase, the substrate, during SVA infection to facilitate replication. Senecavirus A (SVA) is a newly emerging pathogen causing swine idiopathic vesicular disease and epidemic transient neonatal losses. Infections have been reported in many pork producing countries, yet the mechanism of SVA replication remains poorly understood. In this study, we found that UBE2L6, an E2 ubiquitin-conjugating enzyme, is up-regulated in SVA-infected BHK-21 cells. The viral RNA dependent RNA polymerase (RdRp) 3D is ubiquitinated by UBE2L6, and the lysines at residues 169 and 321 of 3D are the required ubiquitination sites. The level of replication of recombinant viruses harboring ubiquitination-deficient 3D was significantly decreased compared to parental SVA. Our data demonstrate that UBE2L6 ubiquitinates SVA 3D, thereby facilitating SVA infection. These results may make it possible to identify novel targets for disease treatment.
Collapse
Affiliation(s)
- Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JB); (PJ)
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junfang Yan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shihai Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JB); (PJ)
| |
Collapse
|
22
|
Chen J, Chen K, Zhou Z, Huang L, Cai Y, Tu H, Zhang X. RING finger protein 187 as a novel potential biomarker for predicting the prognosis of ovarian carcinoma in 2 cancer centers. Curr Probl Cancer 2020; 44:100555. [PMID: 32057463 DOI: 10.1016/j.currproblcancer.2020.100555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 02/02/2023]
Abstract
RING finger protein 187 (RNF187) has been used to predict prognosis of several human carcinomas. However, the clinicopathologic and prognostic implication of RNF187 expression in ovarian carcinomas remains not to be evaluated. The aim of this study was to explore the clinicopathologic and the prognostic significance of RNF187 in patients with ovarian carcinomas. Expression levels of RNF187 protein were investigated by immunohistochemical staining based on tissue-microarray composed of 147 patients with ovarian carcinomas. Receiver operating characteristic curve analysis was used to select the ideal cut-off value of RNF187 expression in ovarian carcinoma, and then analyze the correlation between the status of RNF187 expression and various clinicopathologic variables by chi-square test. Univariate analysis was employed to investigate the association between clinicopathologic variables and prognosis of patients by Kaplan-Meier method. Multivariate analysis was performed to identify the independent prognostic factors by the Cox regression model. Our results demonstrated that high expression of RNF187 was significantly associated with late FIGO stage, high histologic grade and pN1 stage in ovarian carcinoma (P < 0.05). Univariate analysis uncovered patients with the high expression of RNF187 have the worse overall survival and disease-free survival (P < 0.05). More surprisingly, multivariate analysis determined that the RNF187 expression was served as an independent prognostic factor in ovarian carcinoma. The high expression of RNF187 might influence a more aggressive biological behavior in ovarian carcinoma. Therefore, RNF187 expression could be useful to act as a new independent prognostic biomarker for patients with ovarian carcinoma.
Collapse
Affiliation(s)
- Jiewei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Keming Chen
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Zhishan Zhou
- Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lingbo Huang
- Department of Gynecology, Huazhou People's Hospital, Maoming, Guangdong Province, China
| | - Yubo Cai
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, Guangdong Province, China
| | - Hua Tu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Gynecology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xinke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
23
|
Qiu F, Han Y, Shao X, Paulo P, Li W, Zhu M, Tang N, Guo S, Chen Y, Wu H, Zhao D, Liu Y, Chu W. Knockdown of endogenous RNF4 exacerbates ischaemia-induced cardiomyocyte apoptosis in mice. J Cell Mol Med 2020; 24:9545-9559. [PMID: 32722882 PMCID: PMC7520334 DOI: 10.1111/jcmm.15363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/13/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
RNF4, a poly‐SUMO‐specific E3 ubiquitin ligase, is associated with protein degradation, DNA damage repair and tumour progression. However, the effect of RNF4 in cardiomyocytes remains to be explored. Here, we identified the alteration of RNF4 from ischaemic hearts and oxidative stress‐induced apoptotic cardiomyocytes. Upon myocardial infarction (MI) or H2O2/ATO treatment, RNF4 increased rapidly and then decreased gradually. PML SUMOylation and PML nuclear body (PML‐NB) formation first enhanced and then degraded upon oxidative stress. Reactive oxygen species (ROS) inhibitor was able to attenuate the elevation of RNF4 expression and PML SUMOylation. PML overexpression and RNF4 knockdown by small interfering RNA (siRNA) enhanced PML SUMOylation, promoted p53 recruitment and activation and exacerbated H2O2/ATO‐induced cardiomyocyte apoptosis which could be partially reversed by knockdown of p53. In vivo, knockdown of endogenous RNF4 via in vivo adeno‐associated virus infection deteriorated post‐MI structure remodelling including more extensive interstitial fibrosis and severely fractured and disordered structure. Furthermore, knockdown of RNF4 worsened ischaemia‐induced cardiac dysfunction of MI models. Our results reveal a novel myocardial apoptosis regulation model that is composed of RNF4, PML and p53. The modulation of these proteins may provide a new approach to tackling cardiac ischaemia.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yanna Han
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaoqi Shao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Petro Paulo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wenyue Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Mengying Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Nannan Tang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Shuaili Guo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yibing Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Han Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P.R. China
| | - Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wenfeng Chu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
24
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
25
|
Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, Lee JS, Lazar I, Sheikh Khalil S, Feiler Y, Kluger H, Kahana C, Brown K, Ruppin E, Ronai ZA, Orian A. Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. J Invest Dermatol 2020; 140:2466-2477. [PMID: 32360601 DOI: 10.1016/j.jid.2020.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Among the hallmarks of melanoma are impaired proteostasis and rapid development of resistance to targeted therapy that represent a major clinical challenge. However, the molecular machinery that links these processes is unknown. Here we describe that by stabilizing key melanoma oncoproteins, the ubiquitin ligase RNF4 promotes tumorigenesis and confers resistance to targeted therapy in melanoma cells, xenograft mouse models, and patient samples. In patients, RNF4 protein and mRNA levels correlate with poor prognosis and with resistance to MAPK inhibitors. Remarkably, RNF4 tumorigenic properties, including therapy resistance, require the translation initiation factor initiation elongation factor alpha (eIF2α). RNF4 binds, ubiquitinates, and stabilizes the phosphorylated eIF2α (p-eIF2α) but not activating transcription factor 4 or C/EBP homologous protein that mediates the eIF2α-dependent integrated stress response. In accordance, p-eIF2α levels were significantly elevated in high-RNF4 patient-derived melanomas. Thus, RNF4 and p-eIF2α establish a positive feed-forward loop connecting oncogenic translation and ubiquitin-dependent protein stabilization in melanoma.
Collapse
Affiliation(s)
- Emily Avitan-Hersh
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Avital Oknin Vaisman
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yamen Abu Ahmad
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA; Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Saeed Sheikh Khalil
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Feiler
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Harriet Kluger
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chaim Kahana
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Kevin Brown
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA
| | - Ze'ev A Ronai
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
26
|
Kumar R, Sabapathy K. RNF4—A Paradigm for SUMOylation‐Mediated Ubiquitination. Proteomics 2019; 19:e1900185. [DOI: 10.1002/pmic.201900185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Ramesh Kumar
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
| | - Kanaga Sabapathy
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
- Laboratory of Molecular Carcinogenesis Division of Cellular & Molecular Research Humphrey Oei Institute of Cancer Research National Cancer Centre Singapore 11 Hospital Drive Singapore 169610 Singapore
- Department of Biochemistry National University of Singapore 8 Medical Drive Singapore 117597 Singapore
- Institute of Molecular and Cellular Biology 61 Biopolis Drive Singapore 138673 Singapore
| |
Collapse
|
27
|
Wu Z, Huang R, Yuan L. Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys 2019; 676:108138. [PMID: 31606391 DOI: 10.1016/j.abb.2019.108138] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Post-translational modifications (PTMs) have been reported to play pivotal roles in numerous cellular biochemical and physiological processes. Multiple PTMs can influence the actions of each other positively or negatively, termed as PTM crosstalk or PTM code. During recent years, development of identification strategies for PTMs co-occurrence has revealed abundant information of interplay between PTMs. Increasing evidence demonstrates that deregulation of PTMs crosstalk is involved in the genesis and development of various diseases. Insight into the complexity of PTMs crosstalk will help us better understand etiology and provide novel targets for drug therapy. In the present review, we will discuss the important functional roles of PTMs crosstalk in proteins associated with cancer diseases.
Collapse
Affiliation(s)
- Zheng Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Rongting Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liang Yuan
- Peking University International Hospital, Beijing, 102200, China
| |
Collapse
|
28
|
Chen Y, Sun XX, Sears RC, Dai MS. Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis 2019; 6:359-371. [PMID: 31832515 PMCID: PMC6889025 DOI: 10.1016/j.gendis.2019.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) controls diverse transcription programs and plays a key role in the development of many human cancers. Cells develop multiple mechanisms to ensure that MYC levels and activity are precisely controlled in normal physiological context. As a short half-lived protein, MYC protein levels are tightly regulated by the ubiquitin proteasome system. Over a dozen of ubiquitin ligases have been found to ubiquitinate MYC whereas a number of deubiquitinating enzymes counteract this process. Recent studies show that SUMOylation and deSUMOylation can also regulate MYC protein stability and activity. Interestingly, evidence suggests an intriguing crosstalk between MYC ubiquitination and SUMOylation. Deregulation of the MYC ubiquitination-SUMOylation regulatory network may contribute to tumorigenesis. This review is intended to provide the current understanding of the complex regulation of the MYC biology by dynamic ubiquitination and SUMOylation and their crosstalk.
Collapse
Affiliation(s)
- Yingxiao Chen
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C Sears
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
29
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
30
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
31
|
Höpfler M, Kern MJ, Straub T, Prytuliak R, Habermann BH, Pfander B, Jentsch S. Slx5/Slx8-dependent ubiquitin hotspots on chromatin contribute to stress tolerance. EMBO J 2019; 38:embj.2018100368. [PMID: 31015336 PMCID: PMC6545562 DOI: 10.15252/embj.2018100368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Chromatin is a highly regulated environment, and protein association with chromatin is often controlled by post‐translational modifications and the corresponding enzymatic machinery. Specifically, SUMO‐targeted ubiquitin ligases (STUbLs) have emerged as key players in nuclear quality control, genome maintenance, and transcription. However, how STUbLs select specific substrates among myriads of SUMOylated proteins on chromatin remains unclear. Here, we reveal a remarkable co‐localization of the budding yeast STUbL Slx5/Slx8 and ubiquitin at seven genomic loci that we term “ubiquitin hotspots”. Ubiquitylation at these sites depends on Slx5/Slx8 and protein turnover on the Cdc48 segregase. We identify the transcription factor‐like Ymr111c/Euc1 to associate with these sites and to be a critical determinant of ubiquitylation. Euc1 specifically targets Slx5/Slx8 to ubiquitin hotspots via bipartite binding of Slx5 that involves the Slx5 SUMO‐interacting motifs and an additional, novel substrate recognition domain. Interestingly, the Euc1‐ubiquitin hotspot pathway acts redundantly with chromatin modifiers of the H2A.Z and Rpd3L pathways in specific stress responses. Thus, our data suggest that STUbL‐dependent ubiquitin hotspots shape chromatin during stress adaptation.
Collapse
Affiliation(s)
- Markus Höpfler
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| | - Maximilian J Kern
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| | - Tobias Straub
- Biomedizinisches Centrum, Core Facility Bioinformatics, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Roman Prytuliak
- Max Planck Institute of Biochemistry, Computational Biology Group, Martinsried, Germany
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Computational Biology Group, Martinsried, Germany.,Aix-Marseille Univ, CNRS, IBDM UMR 7288, Marseille Cedex 9, France
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Stefan Jentsch
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| |
Collapse
|
32
|
Steinacher R, Barekati Z, Botev P, Kuśnierczyk A, Slupphaug G, Schär P. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J 2018; 38:embj.201899242. [PMID: 30523148 DOI: 10.15252/embj.201899242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.
Collapse
Affiliation(s)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petar Botev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Sun XX, Chen Y, Su Y, Wang X, Chauhan KM, Liang J, Daniel CJ, Sears RC, Dai MS. SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proc Natl Acad Sci U S A 2018; 115:10983-10988. [PMID: 30305424 PMCID: PMC6205424 DOI: 10.1073/pnas.1802932115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Posttranslational modifications play a crucial role in the proper control of c-Myc protein stability and activity. c-Myc can be modified by small ubiquitin-like modifier (SUMO). However, how SUMOylation regulates c-Myc stability and activity remains to be elucidated. The deSUMOylation enzyme, SENP1, has recently been shown to have a prooncogenic role in cancer; however, mechanistic understanding of this is limited. Here we show that SENP1 is a c-Myc deSUMOylating enzyme. SENP1 interacts with and deSUMOylates c-Myc in cells and in vitro. Overexpression of wild-type SENP1, but not its catalytically inactive C603S mutant, markedly stabilizes c-Myc and increases its levels and activity. Knockdown of SENP1 reduces c-Myc levels, induces cell cycle arrest, and drastically suppresses cell proliferation. We further show that c-Myc can be comodified by both ubiquitination and SUMOylation. SENP1-mediated deSUMOylation reduces c-Myc polyubiquitination, suggesting that SUMOylation promotes c-Myc degradation through the proteasome system. Interestingly, SENP1-mediated deSUMOylation promotes the accumulation of monoubiquitinated c-Myc and its phosphorylation at serine 62 and threonine 58. SENP1 is frequently overexpressed, correlating with the high expression of c-Myc, in breast cancer tissues. Together, these results reveal that SENP1 is a crucial c-Myc deSUMOylating enzyme that positively regulates c-Myc's stability and activity.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239;
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Yingxiao Chen
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Yulong Su
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Xiaoyan Wang
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Krishna Mohan Chauhan
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Juan Liang
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Colin J Daniel
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Rosalie C Sears
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239;
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239;
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
34
|
Yanku Y, Bitman-Lotan E, Zohar Y, Kurant E, Zilke N, Eilers M, Orian A. Drosophila HUWE1 Ubiquitin Ligase Regulates Endoreplication and Antagonizes JNK Signaling During Salivary Gland Development. Cells 2018; 7:E151. [PMID: 30261639 PMCID: PMC6210797 DOI: 10.3390/cells7100151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 01/18/2023] Open
Abstract
The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development.
Collapse
Affiliation(s)
- Yifat Yanku
- Rappaport Research Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Eliya Bitman-Lotan
- Rappaport Research Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Yaniv Zohar
- Rappaport Research Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
- Institute of Pathology, RAMBAM Medical Center, Haifa 30196, Israel.
| | - Estee Kurant
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| | - Norman Zilke
- Genome-Scale Biology Research Program Institute of Biomedicine University of Helsinki, 00290 Helsinki, Finland.
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| | - Amir Orian
- Rappaport Research Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
35
|
Whitcomb EA, Tsai YC, Basappa J, Liu K, Le Feuvre AK, Weissman AM, Taylor A. Stabilization of p27 Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control. FASEB J 2018; 33:1235-1247. [PMID: 30113882 DOI: 10.1096/fj.201800960r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ubiquitinylation drives many cellular processes by targeting proteins for proteasomal degradation. Ubiquitin conjugation enzymes promote ubiquitinylation and, thus, degradation of protein substrates. Ubiquitinylation is a well-known posttranslational modification controlling cell-cycle transitions and levels or/and activation levels of ubiquitin-conjugating enzymes change during development and cell cycle. Progression through the cell cycle is tightly controlled by CDK inhibitors such as p27Kip1. Here we show that, in contrast to promoting its degradation, the ubiquitin-conjugating enzyme UBCH7/UBE2L3 specifically protects p27Kip1 from degradation. Overexpression of UBCH7/UBE2L3 stabilizes p27Kip1 and delays the G1-to-S transition, while depletion of UBCH7/UBE2L3 increases turnover of p27Kip1. Levels of p21Cip1/Waf1, p57Kip2, cyclin A and cyclin E, all of which are also involved in regulating the G1/S transition are not affected by UBCH7/UBE2L3 depletion. The effect of UBCH7/UBE2L3 on p27Kip1 is not due to alteration of the levels of any of the ubiquitin ligases known to ubiquitinylate p27Kip1. Rather, UBCH7/UBE2L3 catalyzes the conjugation of heterotypic ubiquitin chains on p27Kip1 that are proteolytically incompetent. These data reveal new controls and concepts about the ubiquitin proteasome system in which a ubiquitin-conjugating enzyme selectively inhibits and may even protect, rather than promote degradation of a crucial cell-cycle regulatory molecule.-Whitcomb, E. A., Tsai, Y. C., Basappa, J., Liu, K., Le Feuvre, A. K., Weissman, A. M., Taylor, A. Stabilization of p27Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control.
Collapse
Affiliation(s)
- Elizabeth A Whitcomb
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Johnvesly Basappa
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Ke Liu
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Aurélie K Le Feuvre
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Qu Q, Pan M, Gao S, Zheng Q, Yu Y, Su J, Li X, Hu H. A Highly Efficient Synthesis of Polyubiquitin Chains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800234. [PMID: 30027052 PMCID: PMC6051384 DOI: 10.1002/advs.201800234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
A robust, microwave-assisted, highly efficient, solid-phase peptide synthesis method for preparing isopeptide-linked 62-mer and 76-mer isoubiquitins and polyubiquitin is developed. The strategy avoids the use of costly resins and pseudoprolines, and the isopeptide-linked building blocks can be assembled with high initial purity within 1 day. All seven diubiquitins are successfully synthesized on a multi-milligram scale; a four-segment, three-ligation method is used to obtain a K33-/K11-linked mixed triubiquitin in excellent yield. Circular dichroism and crystallographic analyses are used to verify the structures of the well-folded, synthetic polyubiquitin chains. The facile synthetic strategy is expected to be generally applicable for the rapid synthesis of isopeptide-linked isoUbs and to pave the way for the study of longer polyubiquitin chains.
Collapse
Affiliation(s)
- Qian Qu
- School of PharmacySecond Military Medical University325 Guohe RoadShanghai200433China
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Man Pan
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Shuai Gao
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Qing‐Yun Zheng
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Yuan‐Yuan Yu
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Jia‐Can Su
- Changhai HospitalSecond Military Medical University168 Changhai RoadShanghai200433China
| | - Xiang Li
- School of PharmacySecond Military Medical University325 Guohe RoadShanghai200433China
| | - Hong‐Gang Hu
- School of PharmacySecond Military Medical University325 Guohe RoadShanghai200433China
| |
Collapse
|
37
|
McIntosh DJ, Walters TS, Arinze IJ, Davis J. Arkadia (RING Finger Protein 111) Mediates Sumoylation-Dependent Stabilization of Nrf2 Through K48-Linked Ubiquitination. Cell Physiol Biochem 2018; 46:418-430. [PMID: 29597191 DOI: 10.1159/000488475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/AIMS The transcription factor Nrf2 is a master regulator of the antioxidant defense system, protecting cells from oxidative damage. We previously reported that the SUMO-targeted E3 ubiquitin ligase (STUbL), RING finger protein 4 (RNF4) accelerated the degradation rate of Nrf2 in promyelocytic leukemia-nuclear body (PML-NB)-enriched fractions and decreased Nrf2-mediated gene transcription. The mechanisms that regulate Nrf2 nuclear levels are poorly understood. In this study, we aim to explore the role of the second mammalian STUbL, Arkadia/RNF111 on Nrf2. METHODS Arkadia mediated ubiquitination was detected using co-immunoprecipitation assays in which whole cell lysates were immunoprecipated with anti-Nrf2 antibody and Western blotted with anti-hemagglutinin (HA) antibody or anti-Lys-48 ubiquitin-specific antibody. The half-life of Nrf2 was detected in whole cell lysates and promyelocytic leukemia-nuclear body enriched fractions by cycloheximide-chase. Reporter gene assays were performed using the antioxidant response element (ARE)-containing promoter Heme oxygenase-1 (HO-1). RESULTS We show that Arkadia/RNF111 is able to ubiquitinate Nrf2 resulting in the stabilization of Nrf2. This stabilization was mediated through Lys-48 ubiquitin chains, contrary to traditionally degradative role of Lys-48 ubiquitination, suggesting that Lys-48 ubiquitination of Nrf2 protects Nrf2 from degradation thereby allowing Nrf2-dependent gene transcription. CONCLUSION Collectively, these findings highlight a novel mechanism to positively regulate nuclear Nrf2 levels in response to oxidative stress through Arkadia-mediated K48-linked ubiquitination of Nrf2.
Collapse
Affiliation(s)
- Deneshia J McIntosh
- Departments of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Treniqka S Walters
- Departments of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Ifeanyi J Arinze
- Departments of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Jamaine Davis
- Departments of Biochemsitry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
38
|
The Biology of SUMO-Targeted Ubiquitin Ligases in Drosophila Development, Immunity, and Cancer. J Dev Biol 2018; 6:jdb6010002. [PMID: 29615551 PMCID: PMC5875560 DOI: 10.3390/jdb6010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin and SUMO (small ubiquitin-like modifier) pathways modify proteins that in turn regulate diverse cellular processes, embryonic development, and adult tissue physiology. These pathways were originally discovered biochemically in vitro, leading to a long-standing challenge of elucidating both the molecular cross-talk between these pathways and their biological importance. Recent discoveries in Drosophila established that ubiquitin and SUMO pathways are interconnected via evolutionally conserved SUMO-targeted ubiquitin ligase (STUbL) proteins. STUbL are RING ubiquitin ligases that recognize SUMOylated substrates and catalyze their ubiquitination, and include Degringolade (Dgrn) in Drosophila and RNF4 and RNF111 in humans. STUbL are essential for early development of both the fly and mouse embryos. In the fly embryo, Dgrn regulates early cell cycle progression, sex determination, zygotic gene transcription, segmentation, and neurogenesis, among other processes. In the fly adult, Dgrn is required for systemic immune response to pathogens and intestinal stem cell regeneration upon infection. These functions of Dgrn are highly conserved in humans, where RNF4-dependent ubiquitination potentiates key oncoproteins, thereby accelerating tumorigenesis. Here, we review the lessons learned to date in Drosophila and highlight their relevance to cancer biology.
Collapse
|
39
|
Cuijpers SAG, Willemstein E, Vertegaal ACO. Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins. Mol Cell Proteomics 2017; 16:2281-2295. [PMID: 28951443 PMCID: PMC5724187 DOI: 10.1074/mcp.tir117.000152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Post-translational protein modifications (PTMs) including small chemical groups and small proteins, belonging to the ubiquitin family, are essential for virtually all cellular processes. In addition to modification by a single PTM, proteins can be modified by a combination of different modifiers, which are able to influence each other. Because little is known about crosstalk among different ubiquitin family members, we developed an improved method enabling identification of co-modified proteins on a system-wide level using mass spectrometry. We focused on the role of crosstalk between SUMO and ubiquitin during proteasomal degradation. Using two complementary approaches, we identified 498 proteins to be significantly co-modified by SUMO and ubiquitin upon MG132 treatment. These targets included many enzymatic components of PTM machinery, involved in SUMOylation and ubiquitylation, but also phosphorylation, methylation and acetylation, revealing a highly complex interconnected network of crosstalk among different PTMs. In addition, various other biological processes were found to be significantly enriched within the group of co-modified proteins, including transcription, DNA repair and the cell cycle. Interestingly, the latter group mostly consisted of proteins involved in mitosis, including a subset of chromosome segregation regulators. We hypothesize that group modification by SUMO-targeted ubiquitin ligases regulates the stability of the identified subset of mitotic proteins, which ensures proper chromosome segregation. The mitotic regulators KIF23 and MIS18BP1 were verified to be co-modified by SUMO and ubiquitin on inhibition of the proteasome and subsequently identified as novel RNF4 targets. Both modifications on MIS18BP1 were observed to increase simultaneously during late mitosis, whereas the total protein level decreased immediately afterward. These results confirm the regulation of MIS18BP1 via SUMO-ubiquitin crosstalk during mitosis. Combined, our work highlights extensive crosstalk between SUMO and ubiquitin, providing a resource for further unraveling of SUMO-ubiquitin crosstalk.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- From the ‡Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Edwin Willemstein
- From the ‡Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Alfred C O Vertegaal
- From the ‡Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
40
|
Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene 2017; 37:148-159. [PMID: 28925398 PMCID: PMC5770599 DOI: 10.1038/onc.2017.313] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Accumulative studies revealed that E3 ubiquitin ligases have important roles in colorectal carcinogenesis. The pathogenic mechanisms of colorectal cancer (CRC) initiation and progression are complex and heterogeneous, involving somatic mutations, abnormal gene fusion, deletion or amplification and epigenetic alteration, which may cause aberrant expression or altered function of E3 ligases in CRC. Defects of E3 ligases have been reported to be involved in the molecular etiology and pathogenesis of CRC. The aberrant expressed E3 ligases can function as either oncogenes or tumor suppressors depending on ubiquiting target substrates in CRC. Recently, considerable progress has been made in our understanding of the potential roles of E3 ligase-mediated ubiquitylation in colorectal carcinogenesis. There are mainly two subtypes of E3 ubiquitin ligases in humans, as defined by the presence of either a HECT domain or a RING finger domain on the basis of structural similitude. Most cancer-associated E3 ligases participate in regulating the cell cycle, apoptosis, gene transcription, cell signaling and DNA repair, the critical parts of CRC tumorigenesis. In this review, we have provided a comprehensive summary of abnormally expressed E3 ligases and their related pivotal mechanistic effects in CRC. In particular, we have highlighted the function of RING-type E3 ubiquitin enzymes in modulating cancer signaling pathways, immunity and tumor microenvironment in CRC development and progression; their mechanism(s) of action in CRC involving both ubiquitylation-dependent and ubiquitylation-independent effects; and the potential of RING E3 ligases as molecular biomarkers for predicting patient prognosis and as therapeutic targets in CRC. A better understanding of E3 ligase-mediated substrates' ubiquitylation involved in the development of CRC will provide new insights into the pathophysiology mechanisms of CRC, and unravel novel prognostic markers and therapeutic strategies for CRC.
Collapse
|
41
|
|
42
|
Diefenbacher M, Orian A. Stabilization of nuclear oncoproteins by RNF4 and the ubiquitin system in cancer. Mol Cell Oncol 2016; 4:e1260671. [PMID: 28197534 PMCID: PMC5287002 DOI: 10.1080/23723556.2016.1260671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
RNF4, a SUMO-targeted ubiquitin ligase, stabilizes a selected group of oncoproteins. It potentiates oncoprotein activity and serves as a positive feedback agonist of Wnt and Notch pathways. RNF4 is essential for cancer cell survival and its levels are elevated in human cancers, correlating with poor outcome in a subset of cancer patients.
Collapse
Affiliation(s)
| | - A. Orian
- Rappaport Research Institute and Faculty of Medicine, TICC, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|