1
|
Martinez-Corral R, Park M, Biette KM, Friedrich D, Scholes C, Khalil AS, Gunawardena J, DePace AH. Transcriptional kinetic synergy: A complex landscape revealed by integrating modeling and synthetic biology. Cell Syst 2023; 14:324-339.e7. [PMID: 37080164 PMCID: PMC10472254 DOI: 10.1016/j.cels.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/22/2022] [Accepted: 02/10/2023] [Indexed: 04/22/2023]
Abstract
Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent work suggests that "kinetic synergy" can arise through TFs acting on distinct steps of the transcription cycle. These types of synergy are not mutually exclusive and are difficult to disentangle conceptually and experimentally. Here, we model and build a synthetic circuit in which TFs bind to a single shared site on DNA, such that TFs cannot synergize by simultaneous binding. We model mRNA production as a function of both TF binding and regulation of the transcription cycle, revealing a complex landscape dependent on TF concentration, DNA binding affinity, and regulatory activity. We use synthetic TFs to confirm that the transcription cycle must be integrated with recruitment for a quantitative understanding of gene regulation.
Collapse
Affiliation(s)
| | - Minhee Park
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kelly M Biette
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dhana Friedrich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Brophy JAN, Magallon KJ, Duan L, Zhong V, Ramachandran P, Kniazev K, Dinneny JR. Synthetic genetic circuits as a means of reprogramming plant roots. Science 2022; 377:747-751. [PMID: 35951698 DOI: 10.1126/science.abo4326] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The shape of a plant's root system influences its ability to reach essential nutrients in the soil and to acquire water during drought. Progress in engineering plant roots to optimize water and nutrient acquisition has been limited by our capacity to design and build genetic programs that alter root growth in a predictable manner. We developed a collection of synthetic transcriptional regulators for plants that can be compiled to create genetic circuits. These circuits control gene expression by performing Boolean logic operations and can be used to predictably alter root structure. This work demonstrates the potential of synthetic genetic circuits to control gene expression across tissues and reprogram plant growth.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Lina Duan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Kiril Kniazev
- Department of Biology, Stanford University, Stanford, CA, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Abstract
Complex spatial patterns of gene expression are engineered in plants to modulate root morphology.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
5
|
Le Poul Y, Xin Y, Ling L, Mühling B, Jaenichen R, Hörl D, Bunk R, Harz H, Leonhardt H, Wang Y, Osipova E, Museridze M, Dharmadhikari D, Murphy E, Rohs R, Preibisch S, Prud'homme B, Gompel N. Regulatory encoding of quantitative variation in spatial activity of a Drosophila enhancer. SCIENCE ADVANCES 2020; 6:eabe2955. [PMID: 33268361 PMCID: PMC7821883 DOI: 10.1126/sciadv.abe2955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Developmental enhancers control the expression of genes prefiguring morphological patterns. The activity of an enhancer varies among cells of a tissue, but collectively, expression levels in individual cells constitute a spatial pattern of gene expression. How the spatial and quantitative regulatory information is encoded in an enhancer sequence is elusive. To link spatial pattern and activity levels of an enhancer, we used systematic mutations of the yellow spot enhancer, active in developing Drosophila wings, and tested their effect in a reporter assay. Moreover, we developed an analytic framework based on the comprehensive quantification of spatial reporter activity. We show that the quantitative enhancer activity results from densely packed regulatory information along the sequence, and that a complex interplay between activators and multiple tiers of repressors carves the spatial pattern. Our results shed light on how an enhancer reads and integrates trans-regulatory landscape information to encode a spatial quantitative pattern.
Collapse
Affiliation(s)
- Yann Le Poul
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yaqun Xin
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Liucong Ling
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Bettina Mühling
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Rita Jaenichen
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - David Hörl
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Raven Bunk
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Hartmann Harz
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yingfei Wang
- Quantitative and Computational Biology, Departments of Biological Sciences, Chemistry, Physics and Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Elena Osipova
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Mariam Museridze
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Deepak Dharmadhikari
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Eamonn Murphy
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Remo Rohs
- Quantitative and Computational Biology, Departments of Biological Sciences, Chemistry, Physics and Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France.
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
A sensitive mNeonGreen reporter system to measure transcriptional dynamics in Drosophila development. Commun Biol 2020; 3:663. [PMID: 33184447 PMCID: PMC7665215 DOI: 10.1038/s42003-020-01375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
The gene regulatory network governing anterior–posterior axis formation in Drosophila is a well-established paradigm to study transcription in developmental biology. The rapid temporal dynamics of gene expression during early stages of development, however, are difficult to track with standard techniques. We optimized the bright and fast-maturing fluorescent protein mNeonGreen as a real-time, quantitative reporter of enhancer expression. We derive enhancer activity from the reporter fluorescence dynamics with high spatial and temporal resolution, using a robust reconstruction algorithm. By comparing our results with data obtained with the established MS2-MCP system, we demonstrate the higher detection sensitivity of our reporter. We used the reporter to quantify the activity of variants of a simple synthetic enhancer, and observe increased activity upon reduction of enhancer–promoter distance or addition of binding sites for the pioneer transcription factor Zelda. Our reporter system constitutes a powerful tool to study spatio-temporal gene expression dynamics in live embryos. Ceolin et al. optimise the fluorescent protein mNeonGreen to generate a reporter to measure enhancer expression in living Drosophila embryos. They also find that reduced enhancer–promoter distance or addition of binding sites for the pioneer transcription factor Zelda increases enhancer activity.
Collapse
|
7
|
Fuqua T, Jordan J, van Breugel ME, Halavatyi A, Tischer C, Polidoro P, Abe N, Tsai A, Mann RS, Stern DL, Crocker J. Dense and pleiotropic regulatory information in a developmental enhancer. Nature 2020; 587:235-239. [PMID: 33057197 DOI: 10.1038/s41586-020-2816-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
Changes in gene regulation underlie much of phenotypic evolution1. However, our understanding of the potential for regulatory evolution is biased, because most evidence comes from either natural variation or limited experimental perturbations2. Using an automated robotics pipeline, we surveyed an unbiased mutation library for a developmental enhancer in Drosophila melanogaster. We found that almost all mutations altered gene expression and that parameters of gene expression-levels, location, and state-were convolved. The widespread pleiotropic effects of most mutations may constrain the evolvability of developmental enhancers. Consistent with these observations, comparisons of diverse Drosophila larvae revealed apparent biases in the phenotypes influenced by the enhancer. Developmental enhancers may encode a higher density of regulatory information than has been appreciated previously, imposing constraints on regulatory evolution.
Collapse
Affiliation(s)
- Timothy Fuqua
- European Molecular Biology Laboratory, Heidelberg, Germany.,Joint PhD Collaboration, EMBL and Faculty of Biosciences Heidelberg University, Heidelberg, Germany
| | | | | | | | | | | | - Namiko Abe
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Albert Tsai
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Justin Crocker
- European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
8
|
Abstract
Reconstitution is an experimental strategy that seeks to recapitulate biological events outside their natural contexts using a reduced set of components. Classically, biochemical reconstitution has been extensively applied to identify the minimal set of molecules sufficient for recreating the basic chemistry of life. By analogy, reconstitution approaches to developmental biology recapitulate aspects of developmental events outside an embryo, with the goal of revealing the basic genetic circuits or physical cues sufficient for recreating developmental decisions. The rapidly growing repertoire of genetic, molecular, microscopic, and bioengineering tools is expanding the complexity and precision of reconstitution experiments. We review the emerging field of synthetic developmental biology, with a focus on the ways in which reconstitution strategies and new biological tools have enhanced our modern understanding of fundamental questions in developmental biology.
Collapse
Affiliation(s)
- Gavin Schlissel
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
9
|
Abstract
Form diversity is fueled by changes in the expression of genes that build organisms. New expression often results from the emergence of new DNA switches, known as transcriptional enhancers. Many enhancers are thought to appear through the recycling of older enhancers, a process called evolutionary co-option. Enhancer co-option is difficult to assess, and the molecular mechanisms explaining its prevalence are elusive. Using state-of-the-art quantification and analyses, we reveal that the sequences of an ancestral and a derived enhancer overlap extensively. They contain specific binding sites for regulators imparting spatial activities. We found that the two enhancers also share a site facilitating access to chromatin in a region where they overlap. The diversity of forms in multicellular organisms originates largely from the spatial redeployment of developmental genes [S. B. Carroll, Cell 134, 25–36 (2008)]. Several scenarios can explain the emergence of cis-regulatory elements that govern novel aspects of a gene expression pattern [M. Rebeiz, M. Tsiantis, Curr. Opin. Genet. Dev. 45, 115–123 (2017)]. One scenario, enhancer co-option, holds that a DNA sequence producing an ancestral regulatory activity also becomes the template for a new regulatory activity, sharing regulatory information. While enhancer co-option might fuel morphological diversification, it has rarely been documented [W. J. Glassford et al., Dev. Cell 34, 520–531 (2015)]. Moreover, if two regulatory activities are borne from the same sequence, their modularity, considered a defining feature of enhancers [J. Banerji, L. Olson, W. Schaffner, Cell 33, 729–740 (1983)], might be affected by pleiotropy. Sequence overlap may thereby play a determinant role in enhancer function and evolution. Here, we investigated this problem with two regulatory activities of the Drosophila gene yellow, the novel spot enhancer and the ancestral wing blade enhancer. We used precise and comprehensive quantification of each activity in Drosophila wings to systematically map their sequences along the locus. We show that the spot enhancer has co-opted the sequences of the wing blade enhancer. We also identified a pleiotropic site necessary for DNA accessibility of a shared regulatory region. While the evolutionary steps leading to the derived activity are still unknown, such pleiotropy suggests that enhancer accessibility could be one of the molecular mechanisms seeding evolutionary co-option.
Collapse
|
10
|
Bozek M, Gompel N. Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity. Bioessays 2020; 42:e1900188. [PMID: 32142172 DOI: 10.1002/bies.201900188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Measurements of open chromatin in specific cell types are widely used to infer the spatiotemporal activity of transcriptional enhancers. How reliable are these predictions? In this review, it is argued that the relationship between the accessibility and activity of an enhancer is insufficiently described by simply considering open versus closed chromatin, or active versus inactive enhancers. Instead, recent studies focusing on the quantitative nature of accessibility signal reveal subtle differences between active enhancers and their different inactive counterparts: the closed silenced state and the accessible primed and repressed states. While the open structure as such is not a specific indicator of enhancer activity, active enhancers display a higher degree of accessibility than the primed and repressed states. Molecular mechanisms that may account for these quantitative differences are discussed. A model that relates molecular events at an enhancer to changes in its activity and accessibility in a developing tissue is also proposed.
Collapse
Affiliation(s)
- Marta Bozek
- Department Biochemie, Ludwig-Maximilians Universität München, Genzentrum, 81377, München, Germany
| | - Nicolas Gompel
- Fakultät für Biologie, Ludwig-Maximilians Universität München, Biozentrum, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
11
|
The 3D Genome Shapes the Regulatory Code of Developmental Genes. J Mol Biol 2020; 432:712-723. [DOI: 10.1016/j.jmb.2019.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
|
12
|
Brouwer I, Lenstra TL. Visualizing transcription: key to understanding gene expression dynamics. Curr Opin Chem Biol 2019; 51:122-129. [DOI: 10.1016/j.cbpa.2019.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
|
13
|
Park J, Estrada J, Johnson G, Vincent BJ, Ricci-Tam C, Bragdon MDJ, Shulgina Y, Cha A, Wunderlich Z, Gunawardena J, DePace AH. Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity. eLife 2019; 8:e41266. [PMID: 31223115 PMCID: PMC6588347 DOI: 10.7554/elife.41266] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Developmental enhancers integrate graded concentrations of transcription factors (TFs) to create sharp gene expression boundaries. Here we examine the hunchback P2 (HbP2) enhancer which drives a sharp expression pattern in the Drosophila blastoderm embryo in response to the transcriptional activator Bicoid (Bcd). We systematically interrogate cis and trans factors that influence the shape and position of expression driven by HbP2, and find that the prevailing model, based on pairwise cooperative binding of Bcd to HbP2 is not adequate. We demonstrate that other proteins, such as pioneer factors, Mediator and histone modifiers influence the shape and position of the HbP2 expression pattern. Comparing our results to theory reveals how higher-order cooperativity and energy expenditure impact boundary location and sharpness. Our results emphasize that the bacterial view of transcription regulation, where pairwise interactions between regulatory proteins dominate, must be reexamined in animals, where multiple molecular mechanisms collaborate to shape the gene regulatory function.
Collapse
Affiliation(s)
- Jeehae Park
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Javier Estrada
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Gemma Johnson
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ben J Vincent
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Chiara Ricci-Tam
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Meghan DJ Bragdon
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | | | - Anna Cha
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Zeba Wunderlich
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | | | - Angela H DePace
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| |
Collapse
|
14
|
Bozek M, Cortini R, Storti AE, Unnerstall U, Gaul U, Gompel N. ATAC-seq reveals regional differences in enhancer accessibility during the establishment of spatial coordinates in the Drosophila blastoderm. Genome Res 2019; 29:771-783. [PMID: 30962180 PMCID: PMC6499308 DOI: 10.1101/gr.242362.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Establishment of spatial coordinates during Drosophila embryogenesis relies on differential regulatory activity of axis patterning enhancers. Concentration gradients of activator and repressor transcription factors (TFs) provide positional information to each enhancer, which in turn promotes transcription of a target gene in a specific spatial pattern. However, the interplay between an enhancer regulatory activity and its accessibility as determined by local chromatin organization is not well understood. We profiled chromatin accessibility with ATAC-seq in narrow, genetically tagged domains along the antero-posterior axis in the Drosophila blastoderm. We demonstrate that one-quarter of the accessible genome displays significant regional variation in its ATAC-seq signal immediately after zygotic genome activation. Axis patterning enhancers are enriched among the most variable intervals, and their accessibility changes correlate with their regulatory activity. In an embryonic domain where an enhancer receives a net activating TF input and promotes transcription, it displays elevated accessibility in comparison to a domain where it receives a net repressive input. We propose that differential accessibility is a signature of patterning cis-regulatory elements in the Drosophila blastoderm and discuss potential mechanisms by which accessibility of enhancers may be modulated by activator and repressor TFs.
Collapse
Affiliation(s)
- Marta Bozek
- Ludwig-Maximilians-Universität München, Department Biochemie, Genzentrum, 81377 München, Germany
| | - Roberto Cortini
- Ludwig-Maximilians-Universität München, Department Biochemie, Genzentrum, 81377 München, Germany
| | - Andrea Ennio Storti
- Ludwig-Maximilians-Universität München, Department Biochemie, Genzentrum, 81377 München, Germany
| | - Ulrich Unnerstall
- Ludwig-Maximilians-Universität München, Department Biochemie, Genzentrum, 81377 München, Germany
| | - Ulrike Gaul
- Ludwig-Maximilians-Universität München, Department Biochemie, Genzentrum, 81377 München, Germany
| | - Nicolas Gompel
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Galstyan V, Funk L, Einav T, Phillips R. Combinatorial Control through Allostery. J Phys Chem B 2019; 123:2792-2800. [PMID: 30768906 DOI: 10.1021/acs.jpcb.8b12517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many instances of cellular signaling and transcriptional regulation involve switch-like molecular responses to the presence or absence of input ligands. To understand how these responses come about and how they can be harnessed, we develop a statistical mechanical model to characterize the types of Boolean logic that can arise from allosteric molecules following the Monod-Wyman-Changeux (MWC) model. Building upon previous work, we show how an allosteric molecule regulated by two inputs can elicit AND, OR, NAND, and NOR responses but is unable to realize XOR or XNOR gates. Next, we demonstrate the ability of an MWC molecule to perform ratiometric sensing-a response behavior where activity depends monotonically on the ratio of ligand concentrations. We then extend our analysis to more general schemes of combinatorial control involving either additional binding sites for the two ligands or an additional third ligand and show how these additions can cause a switch in the logic behavior of the molecule. Overall, our results demonstrate the wide variety of control schemes that biological systems can implement using simple mechanisms.
Collapse
Affiliation(s)
| | - Luke Funk
- Harvard-MIT Division of Health Sciences and Technology and the Broad Institute of MIT and Harvard , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | |
Collapse
|
16
|
Denton JA, Gokhale CS. Synthetic Mutualism and the Intervention Dilemma. Life (Basel) 2019; 9:E15. [PMID: 30696090 PMCID: PMC6463046 DOI: 10.3390/life9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023] Open
Abstract
Ecosystems are complex networks of interacting individuals co-evolving with their environment. As such, changes to an interaction can influence the whole ecosystem. However, to predict the outcome of these changes, considerable understanding of processes driving the system is required. Synthetic biology provides powerful tools to aid this understanding, but these developments also allow us to change specific interactions. Of particular interest is the ecological importance of mutualism, a subset of cooperative interactions. Mutualism occurs when individuals of different species provide a reciprocal fitness benefit. We review available experimental techniques of synthetic biology focused on engineered synthetic mutualistic systems. Components of these systems have defined interactions that can be altered to model naturally occurring relationships. Integrations between experimental systems and theoretical models, each informing the use or development of the other, allow predictions to be made about the nature of complex relationships. The predictions range from stability of microbial communities in extreme environments to the collapse of ecosystems due to dangerous levels of human intervention. With such caveats, we evaluate the promise of synthetic biology from the perspective of ethics and laws regarding biological alterations, whether on Earth or beyond. Just because we are able to change something, should we?
Collapse
Affiliation(s)
- Jai A Denton
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Onna-son 904-0412, Japan.
| | - Chaitanya S Gokhale
- Research Group for Theoretical models of Eco-Evolutionary Dynamics, Max Planck Institute for Evolutionary Biology, 24304 Plön, Germany.
| |
Collapse
|
17
|
Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat Commun 2018; 9:5194. [PMID: 30518940 PMCID: PMC6281682 DOI: 10.1038/s41467-018-07613-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Pioneer transcription factors can engage nucleosomal DNA, which leads to local chromatin remodeling and to the establishment of transcriptional competence. However, the impact of enhancer priming by pioneer factors on the temporal control of gene expression and on mitotic memory remains unclear. Here we employ quantitative live imaging methods and mathematical modeling to test the effect of the pioneer factor Zelda on transcriptional dynamics and memory in Drosophila embryos. We demonstrate that increasing the number of Zelda binding sites accelerates the kinetics of nuclei transcriptional activation regardless of their transcriptional past. Despite its known pioneering activities, we show that Zelda does not remain detectably associated with mitotic chromosomes and is neither necessary nor sufficient to foster memory. We further reveal that Zelda forms sub-nuclear dynamic hubs where Zelda binding events are transient. We propose that Zelda facilitates transcriptional activation by accumulating in microenvironments where it could accelerate the duration of multiple pre-initiation steps.
Collapse
|
18
|
Rickels R, Shilatifard A. Enhancer Logic and Mechanics in Development and Disease. Trends Cell Biol 2018; 28:608-630. [PMID: 29759817 DOI: 10.1016/j.tcb.2018.04.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Enhancers are distally located genomic cis-regulatory elements that integrate spatiotemporal cues to coordinate gene expression in a tissue-specific manner during metazoan development. Enhancer function depends on a combination of bound transcription factors and cofactors that regulate local chromatin structure, as well as on the topological interactions that are necessary for their activity. Numerous genome-wide studies concur that the vast majority of disease-associated variations occur within non-coding genomic sequences, in other words the 'cis-regulome', and this underscores their relevance for human health. Advances in DNA sequencing and genome-editing technologies have dramatically expanded our ability to identify enhancers and investigate their properties in vivo, revealing an extraordinary level of interconnectivity underlying cis-regulatory networks. We discuss here these recently developed methodologies, as well as emerging trends and remaining questions in the field of enhancer biology, and how perturbation of enhancer activities/functions results in enhanceropathies.
Collapse
Affiliation(s)
- Ryan Rickels
- Simpson Querrey Center for Epigenetics, and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
19
|
Crocker J, Ilsley GR. Using synthetic biology to study gene regulatory evolution. Curr Opin Genet Dev 2017; 47:91-101. [DOI: 10.1016/j.gde.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
|
20
|
Bentovim L, Harden TT, DePace AH. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 2017; 144:3855-3866. [PMID: 29089359 PMCID: PMC5702068 DOI: 10.1242/dev.146563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During development, genes are transcribed at specific times, locations and levels. In recent years, the emergence of quantitative tools has significantly advanced our ability to measure transcription with high spatiotemporal resolution in vivo. Here, we highlight recent studies that have used these tools to characterize transcription during development, and discuss the mechanisms that contribute to the precision and accuracy of the timing, location and level of transcription. We attempt to disentangle the discrepancies in how physicists and biologists use the term ‘precision' to facilitate interactions using a common language. We also highlight selected examples in which the coupling of mathematical modeling with experimental approaches has provided important mechanistic insights, and call for a more expansive use of mathematical modeling to exploit the wealth of quantitative data and advance our understanding of animal transcription. Summary: This Review highlights how high-resolution quantitative tools and theoretical models have formed our current view of the mechanisms determining precision and accuracy in the timing, location and level of transcription in the Drosophila embryo.
Collapse
Affiliation(s)
- Lital Bentovim
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Tsai A, Muthusamy AK, Alves MR, Lavis LD, Singer RH, Stern DL, Crocker J. Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 2017; 6:28975. [PMID: 29095143 PMCID: PMC5695909 DOI: 10.7554/elife.28975] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/29/2017] [Indexed: 02/07/2023] Open
Abstract
Transcription factors bind low-affinity DNA sequences for only short durations. It is not clear how brief, low-affinity interactions can drive efficient transcription. Here, we report that the transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila melanogaster shavenbaby (svb) locus and related enhancers in nuclear microenvironments of high Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of their chromosomal location, suggesting that microenvironments are highly differentiated transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high local transcription factor and cofactor concentrations could help low-affinity sites overcome their kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature of eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Albert Tsai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Anand K Muthusamy
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert H Singer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, United States
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
22
|
Crocker J, Stern DL. Functional regulatory evolution outside of the minimal even-skipped stripe 2 enhancer. Development 2017; 144:3095-3101. [PMID: 28760812 DOI: 10.1242/dev.149427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
Abstract
Transcriptional enhancers are regions of DNA that drive precise patterns of gene expression. Although many studies have elucidated how individual enhancers can evolve, most of this work has focused on what are called 'minimal' enhancers, the smallest DNA regions that drive expression that approximates an aspect of native gene expression. Here, we explore how the Drosophila erecta even-skipped (eve) locus has evolved by testing its activity in the divergent D. melanogaster genome. We found, as has been reported previously, that the D. erecta eve stripe 2 enhancer (eveS2) fails to drive appreciable expression in D. melanogaster However, we found that a large transgene carrying the entire D. erecta eve locus drives normal eve expression, including in stripe 2. We performed a functional dissection of the region upstream of the D. erecta eveS2 region and found multiple Zelda motifs that are required for normal expression. Our results illustrate how sequences outside of minimal enhancer regions can evolve functionally through mechanisms other than changes in transcription factor-binding sites that drive patterning.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|