1
|
Coppo R, Kondo J, Onuma K, Inoue M. Tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids. STAR Protoc 2023; 4:102395. [PMID: 37384521 PMCID: PMC10511865 DOI: 10.1016/j.xpro.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Patient-derived tumor organoids are three-dimensionally cultured cancer cells that enable a suitable platform for studying heterogeneity and plasticity of cancer. We present a protocol for tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids. We describe steps for organoid preparation and culturing using the cancer-tissue-originating spheroid method, maintaining cell-cell contact throughout. We then detail a single-cell-derived spheroid-forming and growth assay, confirming single-cell plating, monitoring growth over time, and isolating slow-growing cells. For complete details on the use and execution of this protocol, please refer to Coppo et al.1.
Collapse
Affiliation(s)
- Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Ohata H, Shiokawa D, Sakai H, Kanda Y, Okimoto Y, Kaneko S, Hamamoto R, Nakagama H, Okamoto K. PROX1 induction by autolysosomal activity stabilizes persister-like state of colon cancer via feedback repression of the NOX1-mTORC1 pathway. Cell Rep 2023; 42:112519. [PMID: 37224811 DOI: 10.1016/j.celrep.2023.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/06/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Cancer chemoresistance is often attributed to slow-cycling persister populations with cancer stem cell (CSC)-like features. However, how persister populations emerge and prevail in cancer remains obscure. We previously demonstrated that while the NOX1-mTORC1 pathway is responsible for proliferation of a fast-cycling CSC population, PROX1 expression is required for chemoresistant persisters in colon cancer. Here, we show that enhanced autolysosomal activity mediated by mTORC1 inhibition induces PROX1 expression and that PROX1 induction in turn inhibits NOX1-mTORC1 activation. CDX2, identified as a transcriptional activator of NOX1, mediates PROX1-dependent NOX1 inhibition. PROX1-positive and CDX2-positive cells are present in distinct populations, and mTOR inhibition triggers conversion of the CDX2-positive population to the PROX1-positive population. Inhibition of autophagy synergizes with mTOR inhibition to block cancer proliferation. Thus, mTORC1 inhibition-mediated induction of PROX1 stabilizes a persister-like state with high autolysosomal activity via a feedback regulation that involves a key cascade of proliferating CSCs.
Collapse
Affiliation(s)
- Hirokazu Ohata
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | | | - Hiroaki Sakai
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | - Yusuke Kanda
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | - Yoshie Okimoto
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | - Koji Okamoto
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan.
| |
Collapse
|
3
|
Miyako S, Matsuda T, Koma YI, Koide T, Sawada R, Hasegawa H, Yamashita K, Harada H, Urakawa N, Goto H, Kanaji S, Oshikiri T, Kakeji Y. Significance of Wnt/β-Catenin Signal Activation for Resistance to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Biomedicines 2023; 11:biomedicines11010174. [PMID: 36672681 PMCID: PMC9855965 DOI: 10.3390/biomedicines11010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Although a therapeutic response to neoadjuvant chemoradiotherapy (NACRT) is important to improve oncological outcomes after surgery in patients with locally advanced rectal cancer, there is no reliable predictor for this. The Wnt/β-catenin signal is known to be crucial for the tumorigenesis of colorectal cancer. This study aimed to investigate the association of Wnt/β-catenin signal activation with a pathological response to NACRT. The immunohistochemical expression of nuclear and membranous β-catenin was analyzed in biopsy samples obtained from 60 patients with locally advanced rectal cancer who received curative surgery following NACRT. The association of Wnt/β-catenin signal activation with their clinical outcomes was investigated. Notably, the body mass index of these patients was significantly higher in the low nuclear β-catenin expression group. Moreover, patients in the high nuclear β-catenin expression group tended to have more advanced disease and a higher rate of positive vascular invasion than those in the low expression group. Furthermore, the rate of good histological responses was significantly higher in the low nuclear β-catenin expression group (72% vs. 37.1%, p < 0.01). Overall, relapse-free survival tended to be better in patients with low nuclear/high membranous β-catenin expression (n = 9) than in other individuals (n = 51) (p = 0.093 and p = 0.214, respectively). Activation of the Wnt/β-catenin signal pathway represented by nuclear β-catenin accumulation was significantly associated with a poor response to NACRT in patients with rectal cancer. Analysis of nuclear β-catenin accumulation before starting treatment might help predict the therapeutic response to NACRT.
Collapse
Affiliation(s)
- Shoji Miyako
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takeru Matsuda
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Minimally Invasive Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-chou, Chuo-ku, Kobe 650-0017, Japan
- Correspondence: ; Tel.: +81-78-382-5925; Fax: +81-78-382-5939
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takahiro Koide
- Department of Surgery, Sanda City Hospital, Sanda 669-1321, Japan
| | - Ryuichiro Sawada
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroshi Hasegawa
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hitoshi Harada
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naoki Urakawa
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hironobu Goto
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shingo Kanaji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Taro Oshikiri
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
4
|
Nag JK, Appasamy P, Sedley S, Malka H, Rudina T, Bar-Shavit R. RNF43 induces the turnover of protease-activated receptor 2 in colon cancer. FASEB J 2023; 37:e22675. [PMID: 36468684 DOI: 10.1096/fj.202200858rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modification of G-protein coupled receptors (GPCRs) plays a central role in tissue hemostasis and cancer. The molecular mechanism of post-translational regulation of protease-activated receptors (PARs), a subgroup of GPCRs is yet understudied. Here we show that the cell-surface transmembrane E3 ubiquitin ligase ring finger 43 (RNF43) is a negative feedback regulator of PAR2 , impacting PAR2 -induced signaling and colon cancer growth. RNF43 co-associates with PAR2 , promoting its membrane elimination and degradation as shown by reduced cell surface biotinylated PAR2 levels and polyubiquitination. PAR2 degradation is rescued by R-spondin2 in the presence of leucine-rich repeat-containing G-protein-coupled receptor5 (LGR5). In fact, PAR2 acts jointly with LGR5, as recapitulated by increased β-catenin levels, transcriptional activity, phospho-LRP6, and anchorage-independent colony growth in agar. Animal models of the chemically induced AOM/DSS colon cancer of wt versus Par2/f2rl1 KO mice as also the 'spleen-liver' colon cancer metastasis, allocated a central role for PAR2 in colon cancer growth and development. RNF43 is abundantly expressed in the Par2/f2rl1 KO-treated AOM/DSS colon tissues while its level is very low to nearly null in colon cancer adenocarcinomas of the wt mice. The same result is obtained in the 'spleen-liver' model of spleen-inoculated cells, metastasized to the liver. High RNF43 expression is observed in the liver upon shRNA -Par2 silencing. "Limited-dilution-assay" performed in mice in-vivo, assigned PAR2 as a member of the cancer stem cell niche compartment. Collectively, we elucidate an original regulation of PAR2 oncogene, a member of cancer stem cells, by RNF43 ubiquitin ligase. It impacts β-catenin signaling and colon cancer growth.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Priyanga Appasamy
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshana Sedley
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hodaya Malka
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
6
|
Wei D, Xu M, Wang Z, Tong J. The Development of Single-Cell Metabolism and Its Role in Studying Cancer Emergent Properties. Front Oncol 2022; 11:814085. [PMID: 35083160 PMCID: PMC8784738 DOI: 10.3389/fonc.2021.814085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is one of the hallmarks of malignant tumors, which provides energy and material basis for tumor rapid proliferation, immune escape, as well as extensive invasion and metastasis. Blocking the energy and material supply of tumor cells is one of the strategies to treat tumor, however tumor cell metabolic heterogeneity prevents metabolic-based anti-cancer treatment. Therefore, searching for the key metabolic factors that regulate cell cancerous change and tumor recurrence has become a major challenge. Emerging technology––single-cell metabolomics is different from the traditional metabolomics that obtains average information of a group of cells. Single-cell metabolomics identifies the metabolites of single cells in different states by mass spectrometry, and captures the molecular biological information of the energy and substances synthesized in single cells, which provides more detailed information for tumor treatment metabolic target screening. This review will combine the current research status of tumor cell metabolism with the advantages of single-cell metabolomics technology, and explore the role of single-cell sequencing technology in searching key factors regulating tumor metabolism. The addition of single-cell technology will accelerate the development of metabolism-based anti-cancer strategies, which may greatly improve the prognostic survival rate of cancer patients.
Collapse
Affiliation(s)
- Dingju Wei
- School of Life Science, Central China Normal University, Wuhan, China
| | - Meng Xu
- School of Life Science, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Tong
- School of Life Science, Central China Normal University, Wuhan, China
| |
Collapse
|
7
|
Possible Therapeutic Strategy Involving the Purine Synthesis Pathway Regulated by ITK in Tongue Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133333. [PMID: 34283052 PMCID: PMC8269312 DOI: 10.3390/cancers13133333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
The epidermal growth factor receptor is the only available tyrosine kinase molecular target for treating oral cancer. To improve the prognosis of tongue squamous cell carcinoma (TSCC) patients, a novel molecular target for tyrosine kinases is thus needed. We examined the expression of interleukin-2-inducible T-cell kinase (ITK) using immunohistochemistry, and the biological function of ITK was investigated using biochemical, phosphoproteomic, and metabolomic analyses. We found that ITK is overexpressed in TSCC patients with poor outcomes. The proliferation of oral cancer cell lines expressing ITK via transfection exhibited significant increases in three-dimensional culture assays and murine inoculation models with athymic male nude mice as compared with mock control cells. Suppressing the kinase activity using chemical inhibitors significantly reduced the increase in cell growth induced by ITK expression. Phosphoproteomic analyses revealed that ITK expression triggered phosphorylation of a novel tyrosine residue in trifunctional purine biosynthetic protein adenosine-3, an enzyme in the purine biosynthesis pathway. A significant increase in de novo biosynthesis of purines was observed in cells expressing ITK, which was abolished by the ITK inhibitor. ITK thus represents a potentially useful target for treating TSCC through modulation of purine biosynthesis.
Collapse
|
8
|
LncRNA FENDRR Expression Correlates with Tumor Immunogenicity. Genes (Basel) 2021; 12:genes12060897. [PMID: 34200642 PMCID: PMC8226633 DOI: 10.3390/genes12060897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
FENDRR (Fetal-lethal non-coding developmental regulatory RNA, LncRNA FOXF1-AS1) is a recently identified tumor suppressor long non-coding (LncRNA) RNA, and its expression has been linked with epigenetic modulation of the target genes involved in tumor immunity. In this study, we aimed to understand the role of FENDRR in predicting immune-responsiveness and the inflammatory tumor environment. Briefly, FENDRR expression and its relationship to immune activation signals were assessed in murine cell lines. Data suggested that tumor cells (e.g., C26 colon, 4T1 breast) that typically upregulate immune activation genes and the MHC class I molecule exhibited high FENDRR expression levels. Conversely, tumor cells with a generalized downregulation of immune-related gene expression (e.g., B16F10 melanoma) demonstrated low to undetectable FENDRR levels. Mechanistically, the modulation of FENDRR expression enhanced the inflammatory and WNT signaling pathways in tumors. Our early data suggest that FENDRR can play an important role in the development of immune-relevant phenotypes in tumors, and thereby improve cancer immunotherapy.
Collapse
|
9
|
TAp63α targeting of Lgr5 mediates colorectal cancer stem cell properties and sulforaphane inhibition. Oncogenesis 2020; 9:89. [PMID: 33040081 PMCID: PMC7548006 DOI: 10.1038/s41389-020-00273-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) have an established role in cancer progression and therapeutic resistance. The p63 proteins are important transcription factors which belong to the p53 family, but their function and mechanism in CSCs remain elusive. Here, we investigated the role of TAp63α in colorectal CSCs and the effects of sulforaphane on TAp63α. We found that TAp63α was upregulated in spheres with stem cell properties compared to the parental cells. Overexpression of TAp63α promoted self-renewal capacity and enhanced CSC markers expression in colorectal sphere-forming cells. Furthermore, we showed that TAp63α directly bound to the promoter region of Lgr5 to enhance its expression and activate its downstream β-catenin pathway. Functional experiments revealed that sulforaphane suppressed the stemness of colorectal CSCs both in vitro and in vivo. Upregulation of TAp63α attenuated the inhibitory effect of sulforaphane on colorectal CSCs, indicating the role of TAp63α in sulforaphane suppression of the stemness in colorectal cancer. The present study elucidated for the first time that TAp63α promoted CSCs through targeting Lgr5/β-catenin axis and participated in sulforaphane inhibition of the stem cell properties in colorectal cancer.
Collapse
|
10
|
Ohata H, Shiokawa D, Obata Y, Sato A, Sakai H, Fukami M, Hara W, Taniguchi H, Ono M, Nakagama H, Okamoto K. NOX1-Dependent mTORC1 Activation via S100A9 Oxidation in Cancer Stem-like Cells Leads to Colon Cancer Progression. Cell Rep 2020; 28:1282-1295.e8. [PMID: 31365870 DOI: 10.1016/j.celrep.2019.06.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/15/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are associated with the refractory nature of cancer, and elucidating the targetable pathways for CSCs is crucial for devising innovative antitumor therapies. We find that the proliferation of CSC-enriched colon spheroids from clinical specimen is dependent on mTORC1 kinase, which is activated by reactive oxygen species (ROS) produced by NOX1, an NADPH oxidase. In the spheroid-derived xenograft tumors, NOX1 is preferentially expressed in LGR5-positive cells. Dependence on NOX1 expression or mTOR kinase activity is corroborated in the xenograft tumors and mouse colon cancer-derived organoids. NOX1 co-localizes with mTORC1 in VPS41-/VPS39-positive lysosomes, where mTORC1 binds to S100A9, a member of S100 calcium binding proteins, in a NOX1-produced ROS-dependent manner. S100A9 is oxidized by NOX1-produced ROS, which facilitates binding to mTORC1 and its activation. We propose that NOX1-dependent mTORC1 activation via S100A9 oxidation in VPS41-/VPS39-positive lysosomes is crucial for colon CSC proliferation and colon cancer progression.
Collapse
Affiliation(s)
- Hirokazu Ohata
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Daisuke Shiokawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yuuki Obata
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ai Sato
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Sakai
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mayu Fukami
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Wakako Hara
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirokazu Taniguchi
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
11
|
Shiokawa D, Sakai H, Ohata H, Miyazaki T, Kanda Y, Sekine S, Narushima D, Hosokawa M, Kato M, Suzuki Y, Takeyama H, Kambara H, Nakagama H, Okamoto K. Slow-Cycling Cancer Stem Cells Regulate Progression and Chemoresistance in Colon Cancer. Cancer Res 2020; 80:4451-4464. [PMID: 32816913 DOI: 10.1158/0008-5472.can-20-0378] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/03/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022]
Abstract
Cancer chemoresistance is often attributed to the presence of cancer stem cell (CSC)-like cells, but whether they are homogeneously chemoresistant remains unclear. We previously showed that in colon tumors, a subpopulation of LGR5+ CSC-like cells driven by TCF1 (TCF7), a Wnt-responsive transcription factor, were responsible for tumorigenicity. Here we demonstrate that the tumorigenic subpopulation of mouse LGR5+ cells exists in a slow-cycling state and identify a unique 22-gene signature that characterizes these slow-cycling CSC. Seven of the signature genes are specifically expressed in slow-cycling LGR5+ cells from xenografted human colon tumors and are upregulated in colon cancer clinical specimens. Among these seven, four genes (APCDD1, NOTUM, PROX1, and SP5) are known to be direct Wnt target genes, and PROX1 was expressed in the invasive fronts of colon tumors. PROX1 was activated by TCF1 to induce CDKN1C and maintain a slow-cycling state in colon cancer organoids. Strikingly, PROX1 was required for recurrent growth after chemotherapeutic treatment, suggesting that inhibition of slow-cycling CSC by targeting the TCF1-PROX1-CDKN1C pathway is an effective strategy to combat refractory colon cancer in combination with conventional chemotherapy. SIGNIFICANCE: These findings illustrate the importance of a slow-cycling CSC subpopulation in colon cancer development and chemoresistance, with potential implications for the identified slow-cycling CSC signatures and the TCF1-PROX1-CDKN1C pathway as therapeutic targets.
Collapse
Affiliation(s)
- Daisuke Shiokawa
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Hiroaki Sakai
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Hirokazu Ohata
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Toshiaki Miyazaki
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Yusuke Kanda
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Shigeki Sekine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Daichi Narushima
- Fundamental Innovate Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mamoru Kato
- Fundamental Innovate Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hideki Kambara
- Research Organization for Nano and Life Innovation, Tokyo, Japan
| | | | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
12
|
Diverse LEF/TCF Expression in Human Colorectal Cancer Correlates with Altered Wnt-Regulated Transcriptome in a Meta-Analysis of Patient Biopsies. Genes (Basel) 2020; 11:genes11050538. [PMID: 32403323 PMCID: PMC7288467 DOI: 10.3390/genes11050538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Aberrantly activated Wnt signaling causes cellular transformation that can lead to human colorectal cancer. Wnt signaling is mediated by Lymphoid Enhancer Factor/T-Cell Factor (LEF/TCF) DNA-binding factors. Here we investigate whether altered LEF/TCF expression is conserved in human colorectal tumor sample and may potentially be correlated with indicators of cancer progression. We carried out a meta-analysis of carefully selected publicly available gene expression data sets with paired tumor biopsy and adjacent matched normal tissues from colorectal cancer patients. Our meta-analysis confirms that among the four human LEF/TCF genes, LEF1 and TCF7 are preferentially expressed in tumor biopsies, while TCF7L2 and TCF7L1 in normal control tissue. We also confirm positive correlation of LEF1 and TCF7 expression with hallmarks of active Wnt signaling (i.e., AXIN2 and LGR5). We are able to correlate differential LEF/TCF gene expression with distinct transcriptomes associated with cell adhesion, extracellular matrix organization, and Wnt receptor feedback regulation. We demonstrate here in human colorectal tumor sample correlation of altered LEF/TCF gene expression with quantitatively and qualitatively different transcriptomes, suggesting LEF/TCF-specific transcriptional regulation of Wnt target genes relevant for cancer progression and survival. This bioinformatics analysis provides a foundation for future more detailed, functional, and molecular analyses aimed at dissecting such functional differences.
Collapse
|
13
|
Lai KP, Cheung A, Ho CH, Tam NYK, Li JW, Lin X, Chan TF, Lee NPY, Li R. Transcriptomic analysis reveals the oncogenic role of S6K1 in hepatocellular carcinoma. J Cancer 2020; 11:2645-2655. [PMID: 32201535 PMCID: PMC7065997 DOI: 10.7150/jca.40726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
The p70 ribosomal protein S6 kinase 1 (S6K1), a serine/threonine kinase, is commonly overexpressed in a variety of cancers. However, its expression level and functional roles in hepatocellular carcinoma (HCC), which ranks as the third leading cause of cancer-related death worldwide, is still largely unknown. In the current report, we show the in vivo and in vitro overexpression of S6K1 in HCC. In the functional analysis, we demonstrate that S6K1 is required for the proliferation and colony formation abilities in HCC. By using comparative transcriptomic analysis followed by gene ontology enrichment analysis and Ingenuity Pathway Analysis, we find that the depletion of S6K1 can elevate the expression of a cluster of apoptotic genes, tumor suppressor genes and immune responsive genes. Moreover, the knockdown of S6K1 is predicted to reduce the tumorigenicity of HCC through the regulation of hubs of genes including STAT1, HDAC4, CEBPA and ONECUT1. In conclusion, we demonstrate the oncogenic role of S6K1 in HCC, suggesting the possible use of S6K1 as a therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Keng Po Lai
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.,Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Angela Cheung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Cheuk Hin Ho
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Nathan Yi-Kan Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jing Woei Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nikki Pui-Yue Lee
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - Rong Li
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| |
Collapse
|
14
|
Hou P, Ma X, Zhang Q, Wu CJ, Liao W, Li J, Wang H, Zhao J, Zhou X, Guan C, Ackroyd J, Jiang S, Zhang J, Spring DJ, Wang YA, DePinho RA. USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes Dev 2019; 33:1361-1366. [PMID: 31488580 PMCID: PMC6771391 DOI: 10.1101/gad.326314.119] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The ubiquitin-specific protease (USP) family is the largest group of cysteine proteases. Cancer genomic analysis identified frequent amplification of USP21 (22%) in human pancreatic ductal adenocarcinoma (PDAC). USP21 overexpression correlates with human PDAC progression, and enforced expression of USP21 accelerates murine PDAC tumor growth and drives PanIN to PDAC progression in immortalized human pancreatic ductal cells. Conversely, depletion of USP21 impairs PDAC tumor growth. Mechanistically, USP21 deubiquitinates and stabilizes the TCF/LEF transcription factor TCF7, which promotes cancer cell stemness. Our work identifies and validates USP21 as a PDAC oncogene, providing a potential druggable target for this intractable disease.
Collapse
Affiliation(s)
- Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Wenting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xin Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Carolyn Guan
- Princeton University, Princeton, New Jersey 08544, USA
| | - Jeffery Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
15
|
Prieto-Vila M, Usuba W, Takahashi RU, Shimomura I, Sasaki H, Ochiya T, Yamamoto Y. Single-Cell Analysis Reveals a Preexisting Drug-Resistant Subpopulation in the Luminal Breast Cancer Subtype. Cancer Res 2019; 79:4412-4425. [PMID: 31289135 DOI: 10.1158/0008-5472.can-19-0122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Drug resistance is a major obstacle in the treatment of breast cancer. Surviving cells lead to tumor recurrence and metastasis, which remains the main cause of cancer-related mortality. Breast cancer is also highly heterogeneous, which hinders the identification of individual cells with the capacity to survive anticancer treatment. To address this, we performed extensive single-cell gene-expression profiling of the luminal-type breast cancer cell line MCF7 and its derivatives, including docetaxel-resistant cells. Upregulation of epithelial-to-mesenchymal transition and stemness-related genes and downregulation of cell-cycle-related genes, which were mainly regulated by LEF1, were observed in the drug-resistant cells. Interestingly, a small number of cells in the parental population exhibited a gene-expression profile similar to that of the drug-resistant cells, indicating that the untreated parental cells already contained a rare subpopulation of stem-like cells with an inherent predisposition toward docetaxel resistance. Our data suggest that during chemotherapy, this population may be positively selected, leading to treatment failure. SIGNIFICANCE: This study highlights the role of breast cancer intratumor heterogeneity in drug resistance at a single-cell level.
Collapse
Affiliation(s)
- Marta Prieto-Vila
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Wataru Usuba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Ryou-U Takahashi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular and Molecular Biology, Hiroshima University, Hiroshima, Japan
| | - Iwao Shimomura
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideo Sasaki
- Department of Urology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takahiro Ochiya
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
16
|
WNT ligands control initiation and progression of human papillomavirus-driven squamous cell carcinoma. Oncogene 2018; 37:3753-3762. [PMID: 29662191 PMCID: PMC6033839 DOI: 10.1038/s41388-018-0244-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
Human papillomavirus (HPV)-driven cutaneous squamous cell carcinoma (cSCC) is the most common cancer in immunosuppressed patients. Despite indications suggesting that HPV promotes genomic instability during cSCC development, the molecular pathways underpinning HPV-driven cSCC development remain unknown. We compared the transcriptome of HPV-driven mouse cSCC with normal skin and observed higher amounts of transcripts for Porcupine and WNT ligands in cSCC, suggesting a role for WNT signaling in cSCC progression. We confirmed increased Porcupine expression in human cSCC samples. Blocking the secretion of WNT ligands by the Porcupine inhibitor LGK974 significantly diminished initiation and progression of HPV-driven cSCC. Administration of LGK974 to mice with established cSCC resulted in differentiation of cancer cells and significant reduction of the cancer stem cell compartment. Thus, WNT/β-catenin signaling is essential for HPV-driven cSCC initiation and progression as well as for maintaining the cancer stem cell niche. Interference with WNT secretion may thus represent a promising approach for therapeutic intervention.
Collapse
|
17
|
Shiokawa D, Okamoto K. Heterogeneity among Lgr5-positive colon stem cells. Mol Cell Oncol 2017; 4:e1335271. [PMID: 28868346 DOI: 10.1080/23723556.2017.1335271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is considered a representative marker of intestinal stem cells from both non-tumor and tumor tissues. However, it remains unclear whether all or only a fraction of Lgr5-positive cells behave as stem cells. Recently, we reported that Lgr5-positive cells from non-tumor and tumor tissues can be classified into overlapping yet distinct groups and that the tumor-specific groups are associated with tumorigenic capability, suggesting that these cells could represent targets for therapeutic intervention.
Collapse
Affiliation(s)
- Daisuke Shiokawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Fujii M, Sato T. Defining the role of Lgr5 + stem cells in colorectal cancer: from basic research to clinical applications. Genome Med 2017; 9:66. [PMID: 28720124 PMCID: PMC5516356 DOI: 10.1186/s13073-017-0460-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intestinal epithelium is structured by two distinct components: the villi and the crypts. The crypts harbor stem cells expressing Lgr5 and thus have been a representative model to study tissue stem cell functions. Recent advances in organoid technology and analytical modalities have enabled precise characterization of Lgr5+ intestinal stem cells, providing insights into their roles in homeostasis and cancer.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|