1
|
Rakheja I, Panda G, Maiti S, Ray A. Molecular Modeling of Non-Canonical Intramolecular RNA Triple Helix Structures Predicted from TRIPinRNA and Their In Vitro Biophysical Structure Validation. J Phys Chem B 2025; 129:4298-4308. [PMID: 40294393 DOI: 10.1021/acs.jpcb.5c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
RNA triple helices have traditionally been characterized by pyrimidine-type U·A-U or C·G-C triplets, with other base triplets considered to be destabilizing. However, the presence of non-canonical triplets in riboswitches and self-splicing introns suggests that triplexes containing longer stretches of such triplets may exist in the human genome too. Using molecular modeling, we investigated a chimeric triple helix derived from the FLRT2-AS1 lncRNA, confirming its stability over a 500 ns simulation. Biophysical analyses further support the formation of this triplex in vitro. Although these non-canonical structures exhibit less thermal stability compared to traditional U·A-U triplets found in lncRNAs like metastasis associated lung adenocarcinoma transcript 1 and NEAT1, they may serve distinct biological functions, suggesting a dynamic and more temporal role in cellular processes. The triplex selected for this study is found in a human long non-coding RNA gene, paving the way for investigating the intriguing roles of these triple helices in cell biology.
Collapse
Affiliation(s)
- Isha Rakheja
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| |
Collapse
|
2
|
He Y, Deng J, Lin X, Lu Z, Wang L, Xu L, Zhang Y, Wang J, Huang L. Structural basis for tRNA mimicry by mascRNA and menRNA. Cell Discov 2025; 10:128. [PMID: 39743619 DOI: 10.1038/s41421-024-00761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Yuanlin He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaowei Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Urology, Dafeng Hospital, Chaoyang District, Shantou, Guangdong, China
| | - Zhizhong Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Liangliang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Cellular and Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China.
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Rakheja I, Bharti V, Sahana S, Das PK, Ranjan G, Kumar A, Jain N, Maiti S. Development of an In Silico Platform (TRIPinRNA) for the Identification of Novel RNA Intramolecular Triple Helices and Their Validation Using Biophysical Techniques. Biochemistry 2024. [PMID: 39668452 DOI: 10.1021/acs.biochem.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
There are surprisingly few RNA intramolecular triple helices known in the human transcriptome. The structure has been most well-studied as a stability-element at the 3' end of lncRNAs such as MALAT1 and NEAT1, but the intrigue remains whether it is indeed as rare as it is understood to be or just waiting for a closer look from a new vantage point. TRIPinRNA, our Python-based in silico platform, allows for a comprehensive sequence-pattern search for potential triplex formation in the human transcriptome─noncoding as well as coding. Using this tool, we report the putative occurrence of homopyrimidine type (canonical) triple helices as well as heteropurine-pyrimidine strand type (noncanonical) triple helices in the human transcriptome and validate the formation of both types of triplexes using biophysical approaches. We find that the occurrence of triplex structures has a strong correlation with local GC content, which might be influencing their formation. By employing a search that encompasses both canonical and noncanonical triplex structures across the human transcriptome, this study enriches the understanding of RNA biology. Lastly, TRIPinRNA can be utilized in finding triplex structures for any organism with an annotated transcriptome.
Collapse
Affiliation(s)
- Isha Rakheja
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Bharti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - S Sahana
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Gyan Ranjan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
| |
Collapse
|
4
|
Skeparnias I, Bou-Nader C, Anastasakis DG, Fan L, Wang YX, Hafner M, Zhang J. Structural basis of MALAT1 RNA maturation and mascRNA biogenesis. Nat Struct Mol Biol 2024; 31:1655-1668. [PMID: 38956168 DOI: 10.1038/s41594-024-01340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long noncoding RNA (lncRNA) has key roles in regulating transcription, splicing, tumorigenesis, etc. Its maturation and stabilization require precise processing by RNase P, which simultaneously initiates the biogenesis of a 3' cytoplasmic MALAT1-associated small cytoplasmic RNA (mascRNA). mascRNA was proposed to fold into a transfer RNA (tRNA)-like secondary structure but lacks eight conserved linking residues required by the canonical tRNA fold. Here we report crystal structures of human mascRNA before and after processing, which reveal an ultracompact, quasi-tRNA-like structure. Despite lacking all linker residues, mascRNA faithfully recreates the characteristic 'elbow' feature of tRNAs to recruit RNase P and ElaC homolog protein 2 (ELAC2) for processing, which exhibit distinct substrate specificities. Rotation and repositioning of the D-stem and anticodon regions preclude mascRNA from aminoacylation, avoiding interference with translation. Therefore, a class of metazoan lncRNA loci uses a previously unrecognized, unusually streamlined quasi-tRNA architecture to recruit select tRNA-processing enzymes while excluding others to drive bespoke RNA biogenesis, processing and maturation.
Collapse
Affiliation(s)
- Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, USA
| | - Yun-Xing Wang
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, USA
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
5
|
Skeparnias I, Zhang J. Structural basis of NEAT1 lncRNA maturation and menRNA instability. Nat Struct Mol Biol 2024; 31:1650-1654. [PMID: 39026030 DOI: 10.1038/s41594-024-01361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
NEAT1 long noncoding RNA orchestrates paraspeckle assembly and impacts tumorigenesis, fertility and immunity. Its maturation requires RNase P cleavage yielding an unstable transfer RNA-like multiple endocrine neoplasia-β tRNA-like transcript (menRNA) due to CCACCA addition. Here we report the crystal structure of human menRNA, which partially mimics tRNAs to drive RNase P and ELAC2 processing. Biophysical analyses uncover an RNA-centric, riboswitch-like mechanism whereby the nascent CCA reshapes the RNA folding landscape and propels a spontaneous conformational isomerization that directs repeat CCA addition, marking the menRNA and defective tRNAs for degradation.
Collapse
Affiliation(s)
- Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
6
|
Mishra A, Mishra S. Metastasis-Associated Lung Adenocarcinoma Transcript 1 ( MALAT1) lncRNA Conformational Dynamics in Complex with RNA-Binding Protein with Serine-Rich Domain 1 (RNPS1) in the Pan-cancer Splicing and Gene Expression. ACS OMEGA 2024; 9:42212-42226. [PMID: 39431102 PMCID: PMC11483381 DOI: 10.1021/acsomega.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Alternative splicing events increase the transcriptomic and proteomic complexity in cancers. Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a highly conserved lncRNA, is widely known to promote cancer development, one mechanism for which may be through the regulation of alternative splicing and, thereby, gene expression. Its regulatory interactions with proteins have been a subject of much interest, yet little research has been carried out on the mechanisms adopted. It has been observed that MALAT1 binds to RNA-binding protein with serine-rich domain 1 (RNPS1), being colocalized in the nuclear speckles, and together, these two binding partners may regulate alternative splicing. Upregulated RNPS1 is predicted to play a key role in the pan-cancer development. Experimental tertiary structure of full-length MALAT1 is currently lacking despite the availability of the 3D structure of 3' expression and nuclear retention element. We hypothesize that the computationally modeled tertiary structures of the specific binding motifs in the M-region, E-region, and full-length structures of MALAT1 may adopt a modular structure and bind to the RNPS1 loop region of RS/P domain involved in exon skipping, interacting in a manner fully consistent with the biochemical experiments. Extensive observations using the powerful molecular dynamics (MD) simulations of MALAT1 regions bound to RNPS1 suggested that all three regions form interactive, yet stable complexes. The ranking of the MM-GBSA- and MM-PBSA-derived binding free energies between these complexes corroborated well in the MD simulations and experiments. Energy decomposition analyses suggested that arginines in the RNPS1 protein are among the major contributors toward the binding free energies as calculated by MM-GBSA present in the Amber package; while among the nucleotides, the major contributors were nucleotides with G and A nucleobases, with more contributory effect in comparison to arginines, across the bound M-region, E-region, and full-length MALAT1. This suggests that specific purines play a greater role in the complex formation, in a loop-specific manner, and the more proactive approach in complexation tilts toward MALAT1. To the best of our knowledge, our studies are the first studies taking a unique approach, utilizing the binding motifs to deduce a tertiary structure of MALAT1, toward our understanding of the lncRNA-protein interactions, stability, and binding on a structural basis. The therapeutic implications of targeting this complex formation to regulate splicing and hence, oncogenesis, is further envisaged.
Collapse
Affiliation(s)
- Aanchal Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| | - Seema Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| |
Collapse
|
7
|
Davis WJH, Drummond CJ, Diermeier S, Reid G. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma. Genes (Basel) 2024; 15:906. [PMID: 39062685 PMCID: PMC11276205 DOI: 10.3390/genes15070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- William J. H. Davis
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Catherine J. Drummond
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Sarah Diermeier
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Amaroq Therapeutics, Auckland 1010, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| |
Collapse
|
8
|
Weghorst F, Torres Marcén M, Faridi G, Lee YCG, Cramer KS. Deep Conservation and Unexpected Evolutionary History of Neighboring lncRNAs MALAT1 and NEAT1. J Mol Evol 2024; 92:30-41. [PMID: 38189925 PMCID: PMC10869381 DOI: 10.1007/s00239-023-10151-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) have begun to receive overdue attention for their regulatory roles in gene expression and other cellular processes. Although most lncRNAs are lowly expressed and tissue-specific, notable exceptions include MALAT1 and its genomic neighbor NEAT1, two highly and ubiquitously expressed oncogenes with roles in transcriptional regulation and RNA splicing. Previous studies have suggested that NEAT1 is found only in mammals, while MALAT1 is present in all gnathostomes (jawed vertebrates) except birds. Here we show that these assertions are incomplete, likely due to the challenges associated with properly identifying these two lncRNAs. Using phylogenetic analysis and structure-aware annotation of publicly available genomic and RNA-seq coverage data, we show that NEAT1 is a common feature of tetrapod genomes except birds and squamates. Conversely, we identify MALAT1 in representative species of all major gnathostome clades, including birds. Our in-depth examination of MALAT1, NEAT1, and their genomic context in a wide range of vertebrate species allows us to reconstruct the series of events that led to the formation of the locus containing these genes in taxa from cartilaginous fish to mammals. This evolutionary history includes the independent loss of NEAT1 in birds and squamates, since NEAT1 is found in the closest living relatives of both clades (crocodilians and tuataras, respectively). These data clarify the origins and relationships of MALAT1 and NEAT1 and highlight an opportunity to study the change and continuity in lncRNA structure and function over deep evolutionary time.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Martí Torres Marcén
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Garrison Faridi
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, USA.
| |
Collapse
|
9
|
Neugroschl A, Catrina IE. TFOFinder: Python program for identifying purine-only double-stranded stretches in the predicted secondary structure(s) of RNA targets. PLoS Comput Biol 2023; 19:e1011418. [PMID: 37624852 PMCID: PMC10484449 DOI: 10.1371/journal.pcbi.1011418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleic acid probes are valuable tools in biology and chemistry and are indispensable for PCR amplification of DNA, RNA quantification and visualization, and downregulation of gene expression. Recently, triplex-forming oligonucleotides (TFO) have received increased attention due to their improved selectivity and sensitivity in recognizing purine-rich double-stranded RNA regions at physiological pH by incorporating backbone and base modifications. For example, triplex-forming peptide nucleic acid (PNA) oligomers have been used for imaging a structured RNA in cells and inhibiting influenza A replication. Although a handful of programs are available to identify triplex target sites (TTS) in DNA, none are available that find such regions in structured RNAs. Here, we describe TFOFinder, a Python program that facilitates the identification of intramolecular purine-only RNA duplexes that are amenable to forming parallel triple helices (pyrimidine/purine/pyrimidine) and the design of the corresponding TFO(s). We performed genome- and transcriptome-wide analyses of TTS in Drosophila melanogaster and found that only 0.3% (123) of total unique transcripts (35,642) show the potential of forming 12-purine long triplex forming sites that contain at least one guanine. Using minimization algorithms, we predicted the secondary structure(s) of these transcripts, and using TFOFinder, we found that 97 (79%) of the identified 123 transcripts are predicted to fold to form at least one TTS for parallel triple helix formation. The number of transcripts with potential purine TTS increases when the strict search conditions are relaxed by decreasing the length of the probe or by allowing up to two pyrimidine inversions or 1-nucleotide bulge in the target site. These results are encouraging for the use of modified triplex forming probes for live imaging of endogenous structured RNA targets, such as pre-miRNAs, and inhibition of target-specific translation and viral replication.
Collapse
Affiliation(s)
- Atara Neugroschl
- Department of Chemistry and Biochemistry, Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Irina E. Catrina
- Department of Chemistry and Biochemistry, Yeshiva College, Yeshiva University, New York, New York, United States of America
| |
Collapse
|
10
|
Tufail M. The MALAT1-breast cancer interplay: insights and implications. Expert Rev Mol Diagn 2023; 23:665-678. [PMID: 37405385 DOI: 10.1080/14737159.2023.2233902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Breast cancer (BC) is a major public health concern, and identifying new biomarkers and therapeutic targets is critical to improving patient outcomes. MALAT1, a long noncoding RNA, has emerged as a promising candidate due to its overexpression in BC and the associated poor prognosis. Understanding the role of MALAT1 in BC progression is paramount for the development of effective therapeutic strategies. COVERED AREA This review delves into the structure and function of MALAT1, and examines its expression pattern in breast cancer (BC) and its association with different BC subtypes. This review focuses on the interactions between MALAT1 and microRNAs (miRNAs) and the various signaling pathways involved in BC. Furthermore, this study investigates the influence of MALAT1 on the BC tumor microenvironment and the possible influence of MALAT1 on immune checkpoint regulation. This study also sheds light the role of MALAT1 in breast cancer resistance. EXPERT OPINION MALAT1 has been shown to play a key role in the progression of BC, highlighting its importance as a potential therapeutic target. Further studies are needed to elucidate the underlying molecular mechanisms by which MALAT1 contributes to the development of BC. In combination with standard therapy, there is a need to evaluates the potential of treatments targeting MALAT1, which may lead to improved treatment outcomes. Moreover, study of MALAT1 as a diagnostic and prognostic marker promises improved BC management. Continued efforts to decipher the functional role of MALAT1 and explore its clinical utility are critical to advancing the BC research field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
11
|
Ma T, Qiu F, Gong Y, Cao H, Dai G, Sun D, Zhu D, Lei H, Liu Z, Gao L. Therapeutic silencing of lncRNA RMST alleviates cardiac fibrosis and improves heart function after myocardial infarction in mice and swine. Theranostics 2023; 13:3826-3843. [PMID: 37441584 PMCID: PMC10334841 DOI: 10.7150/thno.82543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Cardiac fibrosis is an adverse consequence of aberrant fibroblast activation and extracellular matrix (ECM) deposition following myocardial infarction (MI). Recently, long noncoding RNAs (lncRNAs) have been reported to participate in multiple cardiac diseases. However, the biological functions of lncRNA rhabdomyosarcoma 2-associated transcript (RMST) in cardiac fibrosis remain largely unknown. Methods: The role of RMST in regulating cardiac fibroblast (CF) proliferation, fibroblast-to-myofibroblast transition (FMT), and ECM production, which were induced by transforming growth factor-β1, was evaluated through immunofluorescence staining, cell contraction assay, cell migration assay, qRT-PCR, and western blot. The therapeutic effect of RMST silencing was assessed in murine and porcine MI models. Results: The present study showed that RMST expression was upregulated and associated with cardiac fibrosis in murine and porcine MI models. Further loss-of-function studies demonstrated that RMST silencing in vitro significantly inhibited CF proliferation, FMT, and ECM production. Accordingly, RMST knockdown in vivo alleviated cardiac fibrosis and improved cardiac contractile function in MI mice. Moreover, RMST acted as a competitive endogenous RNA of miR-24-3p. miR-24-3p inhibition abolished, while miR-24-3p agomir reproduced, the RMST knockdown-mediated effects on CF fibrosis by regulating the lysyl oxidase signaling pathway. Finally, the therapeutic potential of RMST knockdown was evaluated in a porcine MI model, and local RMST knockdown significantly inhibited cardiac fibrosis and improved myocardial contractile function in pigs after MI. Conclusion: Our findings identified RMST as a crucial regulator of cardiac fibrosis, and targeting RMST may develop a novel and efficient therapeutic strategy for treating fibrosis-related cardiac diseases.
Collapse
Affiliation(s)
- Teng Ma
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Fan Qiu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Yanshan Gong
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hao Cao
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Gonghua Dai
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Daohan Sun
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Dongling Zhu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Han Lei
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| |
Collapse
|
12
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
13
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Wang Q, Feng J, Tang L. Non-Coding RNA Related to MAPK Signaling Pathway in Liver Cancer. Int J Mol Sci 2022; 23:11908. [PMID: 36233210 PMCID: PMC9570382 DOI: 10.3390/ijms231911908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The advancement in high-throughput sequencing analysis and the evaluation of chromatin state maps have revealed that eukaryotic cells produce many non-coding transcripts/RNAs. Further, a strong association was observed between some non-coding RNAs and cancer development. The mitogen-activated protein kinases (MAPK) belong to the serine-threonine kinase family and are the primary signaling pathways involved in cell proliferation from the cell surface to the nucleus. They play an important role in various human diseases. A few non-coding RNAs associated with the MAPK signaling pathway play a significant role in the development of several malignancies, including liver cancer. In this review, we summarize the molecular mechanisms and interactions of microRNA, lncRNA, and other non-coding RNAs in the development of liver cancer that are associated with the MAPK signaling pathway. Further, we briefly discuss the therapeutic strategies for liver cancer related to ncRNA and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiuxia Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Ross CJ, Ulitsky I. Discovering functional motifs in long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1708. [PMID: 34981665 DOI: 10.1002/wrna.1708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are products of pervasive transcription that closely resemble messenger RNAs on the molecular level, yet function through largely unknown modes of action. The current model is that the function of lncRNAs often relies on specific, typically short, conserved elements, connected by linkers in which specific sequences and/or structures are less important. This notion has fueled the development of both computational and experimental methods focused on the discovery of functional elements within lncRNA genes, based on diverse signals such as evolutionary conservation, predicted structural elements, or the ability to rescue loss-of-function phenotypes. In this review, we outline the main challenges that the different methods need to overcome, describe the recently developed approaches, and discuss their respective limitations. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Zhang M, Hwang IT, Li K, Bai J, Chen JF, Weissman T, Zou JY, Lu Z. Classification and clustering of RNA crosslink-ligation data reveal complex structures and homodimers. Genome Res 2022; 32:968-985. [PMID: 35332099 PMCID: PMC9104705 DOI: 10.1101/gr.275979.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022]
Abstract
The recent development and application of methods based on the general principle of "crosslinking and proximity ligation" (crosslink-ligation) are revolutionizing RNA structure studies in living cells. However, extracting structure information from such data presents unique challenges. Here, we introduce a set of computational tools for the systematic analysis of data from a wide variety of crosslink-ligation methods, specifically focusing on read mapping, alignment classification, and clustering. We design a new strategy to map short reads with irregular gaps at high sensitivity and specificity. Analysis of previously published data reveals distinct properties and bias caused by the crosslinking reactions. We perform rigorous and exhaustive classification of alignments and discover eight types of arrangements that provide distinct information on RNA structures and interactions. To deconvolve the dense and intertwined gapped alignments, we develop a network/graph-based tool Crosslinked RNA Secondary Structure Analysis using Network Techniques (CRSSANT), which enables clustering of gapped alignments and discovery of new alternative and dynamic conformations. We discover that multiple crosslinking and ligation events can occur on the same RNA, generating multisegment alignments to report complex high-level RNA structures and multi-RNA interactions. We find that alignments with overlapped segments are produced from potential homodimers and develop a new method for their de novo identification. Analysis of overlapping alignments revealed potential new homodimers in cellular noncoding RNAs and RNA virus genomes in the Picornaviridae family. Together, this suite of computational tools enables rapid and efficient analysis of RNA structure and interaction data in living cells.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Irena T Hwang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Kongpan Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jianhui Bai
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, California 90033, USA
| | - Tsachy Weissman
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - James Y Zou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science and Chan-Zuckerberg Biohub, Stanford University, Palo Alto, California 94305, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
Zafferani M, Muralidharan D, Montalvan NI, Hargrove AE. RT-qPCR as a screening platform for mutational and small molecule impacts on structural stability of RNA tertiary structures. RSC Chem Biol 2022; 3:905-915. [PMID: 35866161 PMCID: PMC9257624 DOI: 10.1039/d2cb00015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
The exponential increase in the discovery and characterization of RNA tertiary structures has highlighted their active role in a variety of human diseases, yet often their interactome and specific function remain unknown. Small molecules offer opportunities to both decode these cellular roles and develop therapeutics, however there are few examples of small molecules that target biologically relevant RNA tertiary structures. While RNA triple helices are a particularly attractive target, discovery of triple helix modulators has been hindered by the lack of correlation between small molecule affinity and effect on structural modulation, thereby limiting the utility of affinity-based screening as a primary filtering method. To address this challenge, we developed a high-throughput RT-qPCR screening platform that reports on the effect of mutations and additives, such as small molecules, on the stability of triple helices. Using the 3′-end of the oncogenic long non-coding RNA MALAT1 as a proof-of-concept, we demonstrated the applicability of both a two-step and a one-pot method to assess the impact of mutations and small molecules on the stability of the triple helix. We demonstrated the adaptability of the assay to diverse RNA tertiary structures by applying it to the SARS-CoV-2 pseudoknot, a key viral RNA structure recently identified as an attractive therapeutic target for the development of antivirals. Employment of a functional high-throughput assay as a primary screen will significantly expedite the discovery of probes that modulate the structural landscape of RNA structures and, consequently, help gain insight into the roles of these pervasive structures. RT-qPCR can be harnessed as a small molecule screening platform to read out the effect of small molecules on the structural stability of a variety of RNA targets.![]()
Collapse
Affiliation(s)
- Martina Zafferani
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | | | - Nadeska I. Montalvan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
18
|
Zhu Y, Zhou Y, Jiang H, Chen Z, Lu B. Analysis of core genes for colorectal cancer prognosis based on immune and stromal scores. PeerJ 2021; 9:e12452. [PMID: 34820188 PMCID: PMC8607933 DOI: 10.7717/peerj.12452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies.An early diagnosis and an accurate prognosis are major focuses of CRC research. Tumor microenvironment cells and the extent of infiltrating immune and stromal cells contribute significantly to the tumor prognosis. Methods Immune and stromal scores were calculated based on the ESTIMATE algorithm using the sample expression profile of the The Cancer Genome Atlas (TCGA) database. GSE102479 was used as the validation database. Differentially expressed genes whose expression was significantly associated with the prognosis of CRC patients were identified based on the immune matrix score. Survival analysis was conducted on the union of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed using the STRING database to identify the closely connected modules. To conduct functional enrichment analysis of the relevant genes, GO and KEGG pathway analyses were performed with Cluster Profiler. Pivot analysis of the ncRNAs and TFs was performed by using the RAID2.0 database and TRRUST v2 database. TF-mRNA regulatory relationships were analyzed in the TRRUST V2 database. Hubgene targeting relationships were screened in the TargetScan, miRTarBase and miRDB databases. The SNV data of the hub genes were analyzed by using the R maftools package. A ROC curve was drawn based on the TCGA database. The proportion of immune cells was estimated using CIBERSORT and the LM22 feature matrix. Results The results showed that the matrix score was significantly correlated with colorectal cancer stage T. A total of 789 differentially expressed genes and 121 survival-related prognostic genes were identified. The PPI network showed that 22 core genes were related to the CRC prognosis. Furthermore, four ncRNAs that regulated the core prognosis genes, 11 TFs with regulatory effects on the core prognosis genes, and two drugs, quercetin and pseudoephedrine, that have regulatory effects on colorectal cancer were also identified. Conclusions We obtained a list of tumor microenvironment-related genes for CRC patients. These genes could be useful for determining the prognosis of CRC patients. To confirm the function of these genes, additional experiments are necessary.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - HongGang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - ZhiHeng Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - BoHao Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
19
|
Torabi SF, DeGregorio SJ, Steitz JA. tRNA-like leader-trailer interaction promotes 3'-end maturation of MALAT1. RNA (NEW YORK, N.Y.) 2021; 27:1140-1147. [PMID: 34253686 PMCID: PMC8457004 DOI: 10.1261/rna.078810.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Human metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a nuclear long noncoding RNA (lncRNA) that is highly overexpressed in many cancer tissues and plays important roles in tumor progression and metastasis. The MALAT1 primary transcript contains evolutionarily conserved structural elements in its 3'-terminal region: a triple helix forming element called element for nuclear expression (ENE) and a downstream tRNA-like structure called mascRNA. Instead of being polyadenylated, mature MALAT1 is generated by recognition and processing of the mascRNA by RNase P. A genomically encoded A-rich tract at the new 3' end of MALAT1, which is generated upon RNase P cleavage, forms a triple helical structure with the upstream ENE. Triplex formation is vital for stabilization of the mature transcript and for subsequent accumulation and oncogenic activity of MALAT1. Here, we demonstrate that efficient 3'-end maturation of MALAT1 is dependent on an interaction between the A-rich tract and the mascRNA 3' trailer. Using mutational analyses of cell-based reporter accumulation, we show that an extended mascRNA acceptor stem and formation of a single bulged A 5' to the RNase P cleavage site are required for efficient maturation of the nascent MALAT1 3' end. Our results should benefit the development of therapeutic approaches to cancer through targeting MALAT1.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
20
|
LncRNA MALAT1 Facilitates Ovarian Cancer Progression through Promoting Chemoresistance and Invasiveness in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms221910201. [PMID: 34638541 PMCID: PMC8508663 DOI: 10.3390/ijms221910201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 01/06/2023] Open
Abstract
Upregulation of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1, also known as nuclear-enriched abundant transcript 2 (NEAT2) or LINC00047) was found in various solid tumors, including epithelial ovarian cancer (EOC). MALAT1 is a long noncoding (lnc)RNA that regulates many functional signaling pathways, including tumorigenesis. Herein, we observed the consistent upregulation of MALAT1 in MYST4-overexpressing cell lines, while MALAT1 was frequently found to be upregulated in various types of clinical carcinoma tissues, especially EOC. To further investigate the lncRNA MALAT1 in EOC progression, the transduced overexpression of MALAT1 in EOC cell lines and cancer-associated fibroblasts (CAFs) was employed. We found that MALAT1 overexpression in EOC cell lines significantly increased drug resistance, cell migration, and invasion. Furthermore, the concomitant overexpression of MALAT1 in EOC cells and CAFs dramatically increased EOC cell invasion. Accordingly, a mechanistic investigation of MALAT1 overexpression in EOC cells showed that expressions of the cytokines interleukin (IL)-1β and p-P38/p-NFκB/Cox2/prostaglandin E2 (PGE2) signaling were significantly increased, which stimulated inflammatory responses, whereas cell apoptosis was inhibited due to increased Bcl-2 levels and reduced Caspase3 levels. After MALAT1 was overexpressed in EOC cells, and the cyclin D1, p-PI3K, and p-Akt expressions increased, suggesting the promotion of tumor cell proliferation, while increased zinc finger E-box-binding homeobox-2 (ZEB2), yes-associated protein (YAP), and vimentin expression with E-cadherin downregulation indicated the enhancement of the epithelial-to-mesenchymal transition (EMT) in terms of metastasis, thereby triggering EOC progression. Together, our findings demonstrate how MALAT1 overexpression facilitates an oncogenic function through inhibiting tumor cell apoptosis, combined with increasing tumor cell inflammation, proliferation, and invasion in the EOC tumor microenvironment. MALAT1 is thus a potential diagnostic marker and therapeutic for this malignancy.
Collapse
|
21
|
Thepsuwan T, Rungrassamee W, Sangket U, Whankaew S, Sathapondecha P. Long non-coding RNA profile in banana shrimp, Fenneropenaeus merguiensis and the potential role of lncPV13 in vitellogenesis. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111045. [PMID: 34358684 DOI: 10.1016/j.cbpa.2021.111045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023]
Abstract
The long non-coding RNAs (lncRNAs) have been known to play important roles in several biological processes as well as in reproduction. This study aimed to identify lncRNA in ovary female banana shrimp, Fenneropenaeus merguiensis, and investigate the potential role of lncPV13 in the vitellogenesis. After the in silico identification of the ovarian transcriptome, a total of 24,733 putative lncRNAs were obtained, and only 147 putative lncRNAs were significantly differentially expressed among the ovarian development stages. To validate the in silico identification of lncRNAs, the 16 lncRNAs with the highest differential expression in the transcriptome analysis were evaluated by RT-qPCR. The 6 lncRNAs showed higher expression levels in the mature stage than in the previtellogenic stage and were found in several tissues such as in eyestalks, brains, thoracic ganglia, gills, and muscle. Furthermore, most candidate lncRNAs were amplifiable in Litopenaeus vannamei's and Penaeus monodon's DNA but not in Macrobrachium rosenbergii's DNA, suggesting some lncRNAs are expressed in a species-specific manner among penaeid shrimp. In this study, the lncPV13 was investigated for its vitellogenin regulating function by RNA interference. The result indicates that the lncPV13 expression was suppressed in the ovary on day 7 after the injection of double-stranded RNA specific to lncPV13 (dslncPV13), while vitellogenin (Vg) expression was significantly decreased. In contrast, the gonad inhibiting hormone (GIH) expression was significantly increased in the lncPV13 knockdown shrimp. However, the oocyte proliferation was not significantly different between control and lncPV13 knockdown shrimp. This suggests that lncPV13 regulate Vg synthesis through GIH inhibition. Finally, our findings provide lncRNA information and potential lncRNAs involved in the vitellogenesis of female banana shrimp.
Collapse
Affiliation(s)
- Timpika Thepsuwan
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathum Thani 12120, Thailand
| | - Unitsa Sangket
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sukhuman Whankaew
- Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
22
|
Pasquesi GIM, Perry BW, Vandewege MW, Ruggiero RP, Schield DR, Castoe TA. Vertebrate Lineages Exhibit Diverse Patterns of Transposable Element Regulation and Expression across Tissues. Genome Biol Evol 2021; 12:506-521. [PMID: 32271917 PMCID: PMC7211425 DOI: 10.1093/gbe/evaa068] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) comprise a major fraction of vertebrate genomes, yet little is known about their expression and regulation across tissues, and how this varies across major vertebrate lineages. We present the first comparative analysis integrating TE expression and TE regulatory pathway activity in somatic and gametic tissues for a diverse set of 12 vertebrates. We conduct simultaneous gene and TE expression analyses to characterize patterns of TE expression and TE regulation across vertebrates and examine relationships between these features. We find remarkable variation in the expression of genes involved in TE negative regulation across tissues and species, yet consistently high expression in germline tissues, particularly in testes. Most vertebrates show comparably high levels of TE regulatory pathway activity across gonadal tissues except for mammals, where reduced activity of TE regulatory pathways in ovarian tissues may be the result of lower relative germ cell densities. We also find that all vertebrate lineages examined exhibit remarkably high levels of TE-derived transcripts in somatic and gametic tissues, with recently active TE families showing higher expression in gametic tissues. Although most TE-derived transcripts originate from inactive ancient TE families (and are likely incapable of transposition), such high levels of TE-derived RNA in the cytoplasm may have secondary, unappreciated biological relevance.
Collapse
Affiliation(s)
- Giulia I M Pasquesi
- Department of Biology, University of Texas at Arlington.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington
| | | | | | - Drew R Schield
- Department of Biology, University of Texas at Arlington.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington
| |
Collapse
|
23
|
Wu S, Li X, Wang G. tRNA-like structures and their functions. FEBS J 2021; 289:5089-5099. [PMID: 34117728 DOI: 10.1111/febs.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
24
|
Xie SJ, Diao LT, Cai N, Zhang LT, Xiang S, Jia CC, Qiu DB, Liu C, Sun YJ, Lei H, Hou YR, Tao S, Hu YX, Xiao ZD, Zhang Q. mascRNA and its parent lncRNA MALAT1 promote proliferation and metastasis of hepatocellular carcinoma cells by activating ERK/MAPK signaling pathway. Cell Death Discov 2021; 7:110. [PMID: 34001866 PMCID: PMC8128908 DOI: 10.1038/s41420-021-00497-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
MALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples. Using HCC cells as model, we found that mascRNA and its parent lncRNA MALAT1 can both promote cell proliferation, migration, and invasion in vitro. Correspondingly, both of them can enhance the tumor growth in mice subcutaneous tumor model and can promote metastasis by tail intravenous injection of HCC cells. Furthermore, we revealed that mascRNA and MALAT1 can both activate ERK/MAPK signaling pathway, which regulates metastasis-related genes and may contribute to the aggressive phenotype of HCC cells. Our results indicate a coordination in function and mechanism of mascRNA and MALAT1 during development and progress of HCC, and provide a paradigm for deciphering tRNA-like structures and their parent transcripts in mammalian cells.
Collapse
Affiliation(s)
- Shu-Juan Xie
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Nan Cai
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ting Zhang
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Sha Xiang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chang-Chang Jia
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Dong-Bo Qiu
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu-Jia Sun
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hang Lei
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China. .,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
25
|
Comparative genomics in the search for conserved long noncoding RNAs. Essays Biochem 2021; 65:741-749. [PMID: 33885137 PMCID: PMC8564735 DOI: 10.1042/ebc20200069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as prominent regulators of gene expression in eukaryotes. The identification of lncRNA orthologs is essential in efforts to decipher their roles across model organisms, as homologous genes tend to have similar molecular and biological functions. The relatively high sequence plasticity of lncRNA genes compared with protein-coding genes, makes the identification of their orthologs a challenging task. This is why comparative genomics of lncRNAs requires the development of specific and, sometimes, complex approaches. Here, we briefly review current advancements and challenges associated with four levels of lncRNA conservation: genomic sequences, splicing signals, secondary structures and syntenic transcription.
Collapse
|
26
|
Ranjan G, Sehgal P, Sharma D, Scaria V, Sivasubbu S. Functional long non-coding and circular RNAs in zebrafish. Brief Funct Genomics 2021:elab014. [PMID: 33755040 DOI: 10.1093/bfgp/elab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
The utility of model organisms to understand the function of a novel transcript/genes has allowed us to delineate their molecular mechanisms in maintaining cellular homeostasis. Organisms such as zebrafish have contributed a lot in the field of developmental and disease biology. Attributable to advancement and deep transcriptomics, many new transcript isoforms and non-coding RNAs such as long noncoding RNA (lncRNA) and circular RNAs (circRNAs) have been identified and cataloged in multiple databases and many more are yet to be identified. Various methods and tools have been utilized to identify lncRNAs/circRNAs in zebrafish using deep sequencing of transcriptomes as templates. Functional analysis of a few candidates such as tie1-AS, ECAL1 and CDR1as in zebrafish provides a prospective outline to approach other known or novel lncRNA/circRNA. New genetic alteration tools like TALENS and CRISPRs have helped in probing for the molecular function of lncRNA/circRNA in zebrafish. Further latest improvements in experimental and computational techniques offer the identification of lncRNA/circRNA counterparts in humans and zebrafish thereby allowing easy modeling and analysis of function at cellular level.
Collapse
|
27
|
Abstract
DMS-MaPseq is a chemical probing method combined with high throughput sequencing used to study RNA structure. Here we present a flexible protocol for adherent and suspension mammalian cells to analyze RNA structure in vitro or in vivo. The protocol provides instruction on either a targeted sequencing of a lncRNA of interest or a transcriptome-wide approach that provides structural data on all expressed RNAs, including lncRNAs. This technique is particularly useful for comparing in vitro and in vivo structure of RNAs, determining how mutations and polymorphisms with phenotypic effects influence RNA structure and analyzing RNA structure across the entire transcriptome.
Collapse
|
28
|
Bogard B, Francastel C, Hubé F. Multiple information carried by RNAs: total eclipse or a light at the end of the tunnel? RNA Biol 2020; 17:1707-1720. [PMID: 32559119 PMCID: PMC7714488 DOI: 10.1080/15476286.2020.1783868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | | | - Florent Hubé
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| |
Collapse
|
29
|
Lu X, Huang J, Wu S, Zheng Q, Liu P, Feng H, Su X, Fu H, Xi Q, Wang G. The tRNA-like small noncoding RNA mascRNA promotes global protein translation. EMBO Rep 2020; 21:e49684. [PMID: 33073493 DOI: 10.15252/embr.201949684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023] Open
Abstract
mascRNA is a small cytoplasmic RNA derived from the lncRNA MALAT1. After being processed by the tRNA processing enzymes RNase P and RNase Z, mascRNA undergoes CCA addition like tRNAs and folds into a tRNA-like cloverleaf structure. While MALAT1 functions in multiple cellular processes, the role of mascRNA was largely unknown. Here, we show that mascRNA binds directly to the multi-tRNA synthetase complex (MSC) component glutaminyl-tRNA synthetase (QARS). mascRNA promotes global protein translation and cell proliferation by positively regulating QARS protein levels. Our results uncover a role of mascRNA that is independent of MALAT1, but could be part of the molecular mechanism of MALAT1's function in cancer, and provide a paradigm for understanding tRNA-like structures in mammalian cells.
Collapse
Affiliation(s)
- Xinping Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang Huang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sipeng Wu
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Qian Zheng
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peipei Liu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Feng
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoqing Su
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Haipeng Fu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoran Xi
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Geng Wang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China.,State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
30
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
31
|
Conservation of gene architecture and domains amidst sequence divergence in the hsrω lncRNA gene across the Drosophila genus: an in silico analysis. J Genet 2020. [DOI: 10.1007/s12041-020-01218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Zhao Y, Teng H, Yao F, Yap S, Sun Y, Ma L. Challenges and Strategies in Ascribing Functions to Long Noncoding RNAs. Cancers (Basel) 2020; 12:cancers12061458. [PMID: 32503290 PMCID: PMC7352683 DOI: 10.3390/cancers12061458] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in many physiological and pathological processes, such as development, aging, immunity, and cancer. Mechanistically, lncRNAs exert their functions through interaction with proteins, genomic DNA, and other RNA, leading to transcriptional and post-transcriptional regulation of gene expression, either in cis or in trans; it is often difficult to distinguish between these two regulatory mechanisms. A variety of approaches, including RNA interference, antisense oligonucleotides, CRISPR-based methods, and genetically engineered mouse models, have yielded abundant information about lncRNA functions and underlying mechanisms, albeit with many discrepancies. In this review, we elaborate on the challenges in ascribing functions to lncRNAs based on the features of lncRNAs, including the genomic location, copy number, domain structure, subcellular localization, stability, evolution, and expression pattern. We also describe a framework for the investigation of lncRNA functions and mechanisms of action. Rigorous characterization of cancer-implicated lncRNAs is critical for the identification of bona fide anticancer targets.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-6590
| |
Collapse
|
33
|
Arun G, Aggarwal D, Spector DL. MALAT1 Long Non-Coding RNA: Functional Implications. Noncoding RNA 2020; 6:E22. [PMID: 32503170 PMCID: PMC7344863 DOI: 10.3390/ncrna6020022] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The mammalian genome is pervasively transcribed and the functional significance of many long non-coding RNA (lncRNA) transcripts are gradually being elucidated. Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is one of the most well-studied lncRNAs. MALAT1 is a highly conserved nuclear retained lncRNA that is abundantly expressed in cells and tissues and has been shown to play a role in regulating genes at both the transcriptional and post-transcriptional levels in a context-dependent manner. However, Malat1 has been shown to be dispensable for normal development and viability in mice. Interestingly, accumulating evidence suggests that MALAT1 plays an important role in numerous diseases including cancer. Here, we discuss the current state-of-knowledge in regard to MALAT1 with respect to its function, role in diseases, and the potential therapeutic opportunities for targeting MALAT1 using antisense oligonucleotides and small molecules.
Collapse
Affiliation(s)
- Gayatri Arun
- Envisagenics, 101 Avenue of the Americas, New York, NY 10013, USA;
| | - Disha Aggarwal
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - David L. Spector
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| |
Collapse
|
34
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
35
|
Sun YH, Zhu J, Xie LH, Li Z, Meduri R, Zhu X, Song C, Chen C, Ricci EP, Weng Z, Li XZ. Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nat Cell Biol 2020; 22:200-212. [PMID: 32015435 PMCID: PMC8041231 DOI: 10.1038/s41556-019-0457-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs essential for fertility. In adult mouse testes, most piRNAs are derived from long single-stranded RNAs lacking annotated open reading frames (ORFs). The mechanisms underlying how piRNA sequences are defined during the cleavages of piRNA precursors remain elusive. Here, we show that 80S ribosomes translate the 5'-proximal short ORFs (uORFs) of piRNA precursors. The MOV10L1/Armitage RNA helicase then facilitates the translocation of ribosomes into the uORF downstream regions (UDRs). The ribosome-bound UDRs are targeted by piRNA processing machinery, with the processed ribosome-protected regions becoming piRNAs. The dual modes of interaction between ribosomes and piRNA precursors underlie the distinct piRNA biogenesis requirements at uORFs and UDRs. Ribosomes also mediate piRNA processing in roosters and green lizards, implying that this mechanism is evolutionarily conserved in amniotes. Our results uncover a function for ribosomes on non-coding regions of RNAs and reveal the mechanisms underlying how piRNAs are defined.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jiang Zhu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Li Huitong Xie
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ziwei Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Rajyalakshmi Meduri
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaopeng Zhu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Emiliano P Ricci
- Université de Lyon, ENSL, UCBL, INSERM, CNRS, LBMC, Lyon, France
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
36
|
Kim DN, Thiel BC, Mrozowich T, Hennelly SP, Hofacker IL, Patel TR, Sanbonmatsu KY. Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat Commun 2020; 11:148. [PMID: 31919376 PMCID: PMC6952434 DOI: 10.1038/s41467-019-13942-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptome, playing important roles in development and disease. However, our understanding of structure-function relationships for this emerging class of RNAs has been limited to secondary structures. Here, we report the 3-D atomistic structural study of epigenetic lncRNA, Braveheart (Bvht), and its complex with CNBP (Cellular Nucleic acid Binding Protein). Using small angle X-ray scattering (SAXS), we elucidate the ensemble of Bvht RNA conformations in solution, revealing that Bvht lncRNA has a well-defined, albeit flexible 3-D structure that is remodeled upon CNBP binding. Our study suggests that CNBP binding requires multiple domains of Bvht and the RHT/AGIL RNA motif. We show that RHT/AGIL, previously shown to interact with CNBP, contains a highly flexible loop surrounded by more ordered helices. As one of the largest RNA-only 3-D studies, the work lays the foundation for future structural studies of lncRNA-protein complexes.
Collapse
Affiliation(s)
- Doo Nam Kim
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Bernhard C Thiel
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Tyler Mrozowich
- Alberta RNA Research & Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Scott P Hennelly
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Trushar R Patel
- Alberta RNA Research & Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
- New Mexico Consortium, Los Alamos, New Mexico, USA.
| |
Collapse
|
37
|
Miladi M, Sokhoyan E, Houwaart T, Heyne S, Costa F, Grüning B, Backofen R. GraphClust2: Annotation and discovery of structured RNAs with scalable and accessible integrative clustering. Gigascience 2019; 8:giz150. [PMID: 31808801 PMCID: PMC6897289 DOI: 10.1093/gigascience/giz150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND RNA plays essential roles in all known forms of life. Clustering RNA sequences with common sequence and structure is an essential step towards studying RNA function. With the advent of high-throughput sequencing techniques, experimental and genomic data are expanding to complement the predictive methods. However, the existing methods do not effectively utilize and cope with the immense amount of data becoming available. RESULTS Hundreds of thousands of non-coding RNAs have been detected; however, their annotation is lagging behind. Here we present GraphClust2, a comprehensive approach for scalable clustering of RNAs based on sequence and structural similarities. GraphClust2 bridges the gap between high-throughput sequencing and structural RNA analysis and provides an integrative solution by incorporating diverse experimental and genomic data in an accessible manner via the Galaxy framework. GraphClust2 can efficiently cluster and annotate large datasets of RNAs and supports structure-probing data. We demonstrate that the annotation performance of clustering functional RNAs can be considerably improved. Furthermore, an off-the-shelf procedure is introduced for identifying locally conserved structure candidates in long RNAs. We suggest the presence and the sparseness of phylogenetically conserved local structures for a collection of long non-coding RNAs. CONCLUSIONS By clustering data from 2 cross-linking immunoprecipitation experiments, we demonstrate the benefits of GraphClust2 for motif discovery under the presence of biological and methodological biases. Finally, we uncover prominent targets of double-stranded RNA binding protein Roquin-1, such as BCOR's 3' untranslated region that contains multiple binding stem-loops that are evolutionary conserved.
Collapse
Affiliation(s)
- Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Eteri Sokhoyan
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Torsten Houwaart
- Institute of Medical Microbiology and Hospital Hygiene, University of Dusseldorf, Universitaetsstr. 1, 40225 Dusseldorf, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Stuebeweg 51, 79108 Freiburg, Germany
| | - Fabrizio Costa
- Department of Computer Science, University of Exeter, North Park Road, EX4 4QF Exeter, UK
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- ZBSA Centre for Biological Systems Analysis, University of Freiburg, Hauptstr. 1, 79104 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- ZBSA Centre for Biological Systems Analysis, University of Freiburg, Hauptstr. 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
38
|
Secondary Structural Model of Human MALAT1 Reveals Multiple Structure-Function Relationships. Int J Mol Sci 2019; 20:ijms20225610. [PMID: 31717552 PMCID: PMC6888369 DOI: 10.3390/ijms20225610] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
Human metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an abundant nuclear-localized long noncoding RNA (lncRNA) that has significant roles in cancer. While the interacting partners and evolutionary sequence conservation of MALAT1 have been examined, much of the structure of MALAT1 is unknown. Here, we propose a hypothetical secondary structural model for 8425 nucleotides of human MALAT1 using three experimental datasets that probed RNA structures in vitro and in various human cell lines. Our model indicates that approximately half of human MALAT1 is structured, forming 194 helices, 13 pseudoknots, five structured tetraloops, nine structured internal loops, and 13 intramolecular long-range interactions that give rise to several multiway junctions. Evolutionary conservation and covariation analyses support 153 of 194 helices in 51 mammalian MALAT1 homologs and 42 of 194 helices in 53 vertebrate MALAT1 homologs, thereby identifying an evolutionarily conserved core that likely has important functional roles in mammals and vertebrates. Data mining revealed that RNA modifications, somatic cancer-associated mutations, and single-nucleotide polymorphisms may induce structural rearrangements that sequester or expose binding sites for several cancer-associated microRNAs. Our findings reveal new mechanistic leads into the roles of MALAT1 by identifying several intriguing structure–function relationships in which the dynamic structure of MALAT1 underlies its biological functions.
Collapse
|
39
|
Owens MC, Clark SC, Yankey A, Somarowthu S. Identifying Structural Domains and Conserved Regions in the Long Non-Coding RNA lncTCF7. Int J Mol Sci 2019; 20:ijms20194770. [PMID: 31561429 PMCID: PMC6801803 DOI: 10.3390/ijms20194770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) biology is a rapidly growing area of study. Thousands of lncRNAs are implicated as key players in cellular pathways and cancer biology. However, the structure–function relationships of these novel biomolecules are not well understood. Recent structural studies suggest that lncRNAs contain modular structural domains, which play a crucial role in their function. Here, we hypothesized that such structural domains exist in lncTCF7, a conserved lncRNA implicated in the development and progression of several cancers. To understand the structure–function relationship of lncTCF7, we characterized its secondary structure using chemical probing methods. Our model revealed structural domains and conserved regions in lncTCF7. One of the modular domains identified here coincides with a known protein-interacting domain. The model reported herein is, to our knowledge, the first structural model of lncTCF7 and thus will serve to direct future studies that will provide fundamental insights into the function of this lncRNA.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Sean C Clark
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Allison Yankey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| |
Collapse
|
40
|
Chen D, Lu T, Tan J, Li H, Wang Q, Wei L. Long Non-coding RNAs as Communicators and Mediators Between the Tumor Microenvironment and Cancer Cells. Front Oncol 2019; 9:739. [PMID: 31448238 PMCID: PMC6691164 DOI: 10.3389/fonc.2019.00739] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of more than 200 nucleotides RNA transcripts which have limited protein coding capacity. They regulate numerous biological processes in cancers through diverse molecular mechanisms. Aberrant expression of lncRNAs has been frequently associated with human cancer. Furthermore, the tumor microenvironment (TME) is composed of different cells such as cancer-associated fibroblasts (CAFs), endothelial cells and infiltrated immune cells, and all of which participate in communication with tumor cells affecting the progression of tumor. LncRNAs are directly and indirectly involved in the crosstalk between stromal cells and tumor cells and dysregulated lncRNAs expression in these cells could drive tumorigenesis. In this review, we explore the influence of aberrantly expressed lncRNAs in tumor progression, clarify the critical roles of lncRNAs in the TME, summarize findings on crosstalk between infiltrated immune cells, CAFs, endothelial cells, and tumor cells via lncRNAs, and discuss the promise of lncRNAs as tumor diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junying Tan
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Li
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuyue Wang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liangzhou Wei
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Unveiling the druggable RNA targets and small molecule therapeutics. Bioorg Med Chem 2019; 27:2149-2165. [PMID: 30981606 PMCID: PMC7126819 DOI: 10.1016/j.bmc.2019.03.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
The increasing appreciation for the crucial roles of RNAs in infectious and non-infectious human diseases makes them attractive therapeutic targets. Coding and non-coding RNAs frequently fold into complex conformations which, if effectively targeted, offer opportunities to therapeutically modulate numerous cellular processes, including those linked to undruggable protein targets. Despite the considerable skepticism as to whether RNAs can be targeted with small molecule therapeutics, overwhelming evidence suggests the challenges we are currently facing are not outside the realm of possibility. In this review, we highlight the most recent advances in molecular techniques that have sparked a revolution in understanding the RNA structure-to-function relationship. We bring attention to the application of these modern techniques to identify druggable RNA targets and to assess small molecule binding specificity. Finally, we discuss novel screening methodologies that support RNA drug discovery and present examples of therapeutically valuable RNA targets.
Collapse
|
42
|
Hirose T, Yamazaki T, Nakagawa S. Molecular anatomy of the architectural NEAT1 noncoding RNA: The domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1545. [PMID: 31044562 DOI: 10.1002/wrna.1545] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are extremely diverse and have various significant physiological functions. lncRNAs generally associate with specific sets of RNA-binding proteins (RBPs) to form functional ribonucleoprotein (RNP) complexes. NEAT1 is a highly abundant lncRNA in the mammalian cell nucleus that associates with specific RBPs to form NEAT1 RNPs. Intriguingly, cellular NEAT1 RNPs are extraordinarily large and can be detected using an optical microscope. These gigantic RNPs, so-called paraspeckles, are a type of membraneless nuclear body. Paraspeckles contain approximately 50 NEAT1 RNA molecules together with characteristic RBPs possessing aggregation-prone prion-like domains. Paraspeckle formation proceeds on the nascent NEAT1 transcript in conjunction with NEAT1 biogenesis, which exhibits various features that differ from those exhibited by mRNA biogenesis, including a lack of introns, noncanonical 3' end formation, and nuclear retention. These unique features may be required for the mechanism of paraspeckle formation. NEAT1 possesses three distinct RNA domains (A, B, and C), which function in stabilization (A), isoform switching (B), and paraspeckle assembly (C). In particular, the central C domain contains smaller subdomains that are high-affinity binding sites for the essential paraspeckle proteins (NONO and SFPQ) that subsequently polymerize along NEAT1. Subsequent recruitment of additional essential PSPs (FUS and RBM14) induces liquid-liquid phase separation to build a massive paraspeckle structure. Thus, the molecular anatomy of the NEAT1 arcRNA provides an ideal model to understand how lncRNAs form the functional RNP machinery. This article is characterized under: RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Yamazaki
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
43
|
Cao M, Song F, Yang X, Peng L, Cheng Y, Zheng Q, Liang Y, Wang C. Identification of Potential Long Noncoding RNA Biomarker of Mercury Compounds in Zebrafish Embryos. Chem Res Toxicol 2019; 32:878-886. [PMID: 30912647 DOI: 10.1021/acs.chemrestox.9b00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heavy metal pollution elicits severe environmental concern and health problem worldwide. Mercury is considered as a ubiquitous pollutant due to its versatile application in medicine, industry, and cosmetics. Long noncoding RNAs (lncRNAs) are transcripts greater than 200 nt without protein-encoding function. However, little is known about the mechanism of heavy metals-induced noncoding RNA changes in aquatic organisms. To reveal the epigenetic mechanism of mercury toxicity in zebrafish embryos and explore novel specific mercury-toxicological biomarkers, several well-studied lncRNAs were screened by real-time PCR, and the spatial-temporal expression of lncRNAs biomarker was evaluated by in situ hybridization. The nerve systems of zebrafish embryos were evaluated by detecting locomotor behavior and the expression of neuro-genes. We identified a mercury responsive lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (malat1), among five candidate lncRNAs. HgCl2, MeHg, PbCl2, CdCl2, and K2CrO4 exposure assay showed that malat-1 was a mercury specific induced lncRNAs. Malat1 was highly expressed in the brain region, eyes, and notochord of developing zebrafish embryos after exposure to mercury compounds. HgCl2 showed neurobehavior disturbance and changed neuro-genes expression pattern in zebrafish larvae. This study provides a biological method to detect inorganic or organic mercury using malat1 as a novel biomarker of mercury contamination and also clues for the exploration of neurotoxicity mechanism of mercury compounds.
Collapse
Affiliation(s)
- Mengxi Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Fei Song
- School of Environmental Ecology and Biological Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| | - Xue Yang
- School of Environmental Ecology and Biological Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| | - Lei Peng
- School of Environmental Ecology and Biological Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| | - Yang Cheng
- School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | | | | | | |
Collapse
|
44
|
Tavares RCA, Pyle AM, Somarowthu S. Phylogenetic Analysis with Improved Parameters Reveals Conservation in lncRNA Structures. J Mol Biol 2019; 431:1592-1603. [PMID: 30890332 DOI: 10.1016/j.jmb.2019.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
The existence of evolutionary conservation in base pairing is strong evidence for functional elements of RNA structure, although available tools for rigorous identification of structural conservation are limited. R-scape is a recently developed program for statistical prediction of pairwise covariation from sequence alignments, but it initially showed limited utility on long RNAs, especially those of eukaryotic origin. Here we show that R-scape can be adapted for a more powerful analysis of structure conservation in long RNA molecules, including mammalian lncRNAs.
Collapse
Affiliation(s)
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
45
|
Zhao K, Jin S, Wei B, Cao S, Xiong Z. Association study of genetic variation of lncRNA MALAT1 with carcinogenesis of colorectal cancer. Cancer Manag Res 2018; 10:6257-6261. [PMID: 30538572 PMCID: PMC6260139 DOI: 10.2147/cmar.s177244] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction Colorectal cancer (CRC) remains a major public health concern worldwide. However, the detailed molecular mechanisms of CRC remain poorly understood. Methods In the current study, we evaluated associations of four genetic variants located in the promoter and gene region of long noncoding RNAs metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1) with CRC susceptibility among a Chinese population with 966 CRC cases and 988 healthy controls, using a two-stage, case–control study design (400 CRC cases and 400 controls in stage 1, and 566 CRC cases and 588 controls in stage 2). Results We found that the minor alleles of rs619586 (OR=0.73; 95% CI=0.60–0.88; P=0.001) and rs1194338 (OR=0.80; 95% CI=0.70–0.92; P=0.001) were significantly associated with decreased CRC susceptibility. Compared with those with rs619586 −AA genotype, the risk of CRC was significantly lower in individuals with AG genotype (OR=0.76; 95% CI=0.61–0.95) and GG genotype (OR=0.46; 95% CI=0.23–0.90). Compared with those with rs1194338 −CC genotype, the risk of CRC was significantly lower in individuals with AC genotype (OR=0.79; 95% CI=0.65–0.95) and AA genotype (OR=0.68; 95% CI=0.51–0.89). Conclusion Taken together, our findings provided strong evidence for the hypothesis that genetic variants in lncRNA MALAT1 might contribute to the carcinogenesis of CRC.
Collapse
Affiliation(s)
- Kexin Zhao
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, People's Republic of China,
| | - Si Jin
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science, Wuhan 430077, People's Republic of China
| | - Bo Wei
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science, Wuhan 430077, People's Republic of China
| | - Shiqiong Cao
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, People's Republic of China,
| | - Zhifan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, People's Republic of China,
| |
Collapse
|
46
|
Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA Structures and Interactions by Sequencing-Based Approaches. Trends Biochem Sci 2018; 44:33-52. [PMID: 30459069 DOI: 10.1016/j.tibs.2018.09.012] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 11/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as significant players in almost every level of gene function and regulation. Thus, characterizing the structures and interactions of lncRNAs is essential for understanding their mechanistic roles in cells. Through a combination of (bio)chemical approaches and automated capillary and high-throughput sequencing (HTS), the complexity and diversity of RNA structures and interactions has been revealed in the transcriptomes of multiple species. These methods have uncovered important biological insights into the mechanistic and functional roles of lncRNA in gene expression and RNA metabolism, as well as in development and disease. In this review, we summarize the latest sequencing strategies to reveal RNA structure, RNA-RNA, RNA-DNA, and RNA-protein interactions, and highlight the recent applications of these approaches to map functional lncRNAs. We discuss the advantages and limitations of these strategies, and provide recommendations to further advance methodologies capable of mapping RNA structure and interactions in order to discover new biology of lncRNAs and decipher their molecular mechanisms and implication in diseases.
Collapse
Affiliation(s)
- Xingyang Qian
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; These authors contributed equally to this work
| | - Jieyu Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Pui Yan Yeung
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
47
|
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2018; 2:1761-1771. [PMID: 30297745 DOI: 10.1038/s41559-018-0673-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Collapse
|
48
|
Plewka P, Thompson A, Szymanski M, Nuc P, Knop K, Rasinska A, Bialkowska A, Szweykowska-Kulinska Z, Karlowski WM, Jarmolowski A. A stable tRNA-like molecule is generated from the long noncoding RNA GUT15 in Arabidopsis. RNA Biol 2018; 15:726-738. [PMID: 29561243 PMCID: PMC6152437 DOI: 10.1080/15476286.2018.1445404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Arabidopsis GUT15 RNA belongs to a class of noncoding RNAs that are expressed from the intergenic regions of protein-coding genes. We show that the RNA polymerase II transcribed GUT15 transcript serves as a precursor for two stable RNA species, a tRNA-like molecule and GUT15-tRF-F5, which are both encoded by the final intron in the GUT15 gene. The GUT15-encoded tRNA-like molecule cannot be autonomously transcribed by RNA polymerase III. However, this molecule contains a CCA motif, suggesting that it may enter the tRNA maturation pathway. The GUT15-encoded tRNA-like sequence has an inhibiting effect on the splicing of its host intron. Moreover, we demonstrate that the canonical tRNA genes nested within introns do not affect the splicing patterns of their host protein-coding transcripts.
Collapse
Affiliation(s)
- Patrycja Plewka
- a Department of Gene Expression , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Agnieszka Thompson
- b Department of Computational Biology , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Maciej Szymanski
- b Department of Computational Biology , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Przemyslaw Nuc
- a Department of Gene Expression , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Katarzyna Knop
- a Department of Gene Expression , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Agnieszka Rasinska
- b Department of Computational Biology , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Aleksandra Bialkowska
- a Department of Gene Expression , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Zofia Szweykowska-Kulinska
- a Department of Gene Expression , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Wojciech M Karlowski
- b Department of Computational Biology , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| | - Artur Jarmolowski
- a Department of Gene Expression , Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan , Poznan , Poland
| |
Collapse
|
49
|
Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med 2018; 24:257-277. [PMID: 29449148 PMCID: PMC5840027 DOI: 10.1016/j.molmed.2018.01.001] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a significant population of the human transcriptome. Many lncRNAs exhibit cell- and/or tissue/tumor-specific expression, making them excellent candidates for therapeutic applications. In this review we discuss examples of lncRNAs that demonstrate the diversity of their function in various cancer types. We also discuss recent advances in nucleic acid drug development with a focus on oligonucleotide-based therapies as a novel approach to inhibit tumor progression. The increased success rates of nucleic acid therapeutics provide an outstanding opportunity to explore lncRNAs as viable therapeutic targets to combat various aspects of cancer progression.
Collapse
Affiliation(s)
- Gayatri Arun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
50
|
Paraspeckles: Where Long Noncoding RNA Meets Phase Separation. Trends Biochem Sci 2018; 43:124-135. [DOI: 10.1016/j.tibs.2017.12.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
|