1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Liu Y, Wei Z, Pei Y, Yang L, Zou X, Pei Y, Zhang T, Miao P, Gan L, Liu J, Yang Z, Peng J, Li F, Wang Z. Membrane Interactions of GET1 and GET2 Facilitate Fiber Cell Initiation through the Guided Entry of the TA Protein Pathway in Cotton. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24283-24299. [PMID: 39467771 DOI: 10.1021/acs.jafc.4c06208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The guided entry of TA proteins (GET) pathway, which is responsible for the post-translational targeting and insertion of the tail-anchored (TA) protein into the endoplasmic reticulum (ER), plays an important role in physiological processes such as protein sorting, vesicle trafficking, cell apoptosis, and enzymatic reactions in which the GET1/2 complex is indispensable. However, a comprehensive study of the GET1 and GET2 genes and the GET pathway in cotton has not yet been carried out. Here, 12 GET1 and 21 GET2 genes were identified in nine representative plant species, and the phylogenetic relationships, gene structures, protein motifs, cis-regulatory elements (CREs), and temporal and spatial expression profiles were analyzed thoroughly. Our study indicated that GhGET1s and GhGET2s might be localized on ER membranes. According to expression profiling and CREs analysis, GhGET2-A02 was identified as a promising candidate for fiber cell development, interacting with two GhGET1s in the membrane, with a binding bias toward GhGET1-A06. Silencing of GhGET1-A06 or GhGET2-A02 reduced fiber initiation and elongation. In summary, our research provides important evidence for understanding the gene families and functions of GET1 and GET2 in cotton and provides clues for molecular breeding of high-quality cotton fiber varieties.
Collapse
Affiliation(s)
- Yang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Zhenzhen Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfei Pei
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Lu Yang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Xianyan Zou
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Yayue Pei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Tianen Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Pengfei Miao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Lei Gan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Ji Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| |
Collapse
|
3
|
Gygi JS, Liu X, Levi BP, Paulo JA. Proteome-wide abundance profiling of yeast deletion strains for GET pathway members using sample multiplexing. Proteomics 2024; 24:e2300303. [PMID: 37882342 PMCID: PMC11045664 DOI: 10.1002/pmic.202300303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
The GET pathway is associated with post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER) in yeast, as well as other eukaryotes. Moreover, dysfunction of the GET pathway has been associated with various pathological conditions (i.e., neurodegenerative disorders, cardiovascular ailments, and protein misfolding diseases). In this study, we used yeast deletion strains of Get complex members (specifically, Get1, Get2, Get3, Get4, and Get5) coupled with sample multiplexing-based quantitative mass spectrometry to profile protein abundance on a proteome-wide scale across the five individual deletion strains. Our dataset consists of over 4500 proteins, which corresponds to >75% of the yeast proteome. The data reveal several dozen proteins that are differentially abundant in one or more deletion strains, some of which are membrane-associated, yet the abundance of many TA proteins remained unchanged. This study provides valuable insights into the roles of these Get genes, and the potential for alternative pathways which help maintain cellular function despite the disruption of the GET pathway.
Collapse
Affiliation(s)
- Joel S Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin P Levi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. Proc Natl Acad Sci U S A 2024; 121:e2319476121. [PMID: 38621120 PMCID: PMC11047089 DOI: 10.1073/pnas.2319476121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Cristian Rocha-Roa
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Stefano Vanni
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
5
|
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, Sinning I. The GET insertase exhibits conformational plasticity and induces membrane thinning. Nat Commun 2023; 14:7355. [PMID: 37963916 PMCID: PMC10646013 DOI: 10.1038/s41467-023-42867-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The eukaryotic guided entry of tail-anchored proteins (GET) pathway mediates the biogenesis of tail-anchored (TA) membrane proteins at the endoplasmic reticulum. In the cytosol, the Get3 chaperone captures the TA protein substrate and delivers it to the Get1/Get2 membrane protein complex (GET insertase), which then inserts the substrate via a membrane-embedded hydrophilic groove. Here, we present structures, atomistic simulations and functional data of human and Chaetomium thermophilum Get1/Get2/Get3. The core fold of the GET insertase is conserved throughout eukaryotes, whilst thinning of the lipid bilayer occurs in the vicinity of the hydrophilic groove to presumably lower the energetic barrier of membrane insertion. We show that the gating interaction between Get2 helix α3' and Get3 drives conformational changes in both Get3 and the Get1/Get2 membrane heterotetramer. Thus, we provide a framework to understand the conformational plasticity of the GET insertase and how it remodels its membrane environment to promote substrate insertion.
Collapse
Affiliation(s)
- Melanie A McDowell
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438, Frankfurt am Main, Germany.
| | - Michael Heimes
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland
| | - Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Daniel Saar
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555937. [PMID: 37693532 PMCID: PMC10491306 DOI: 10.1101/2023.09.01.555937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases". These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit-card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place, and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
| |
Collapse
|
7
|
Guna A, Hazu M, Pinton Tomaleri G, Voorhees RM. A TAle of Two Pathways: Tail-Anchored Protein Insertion at the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041252. [PMID: 36041783 PMCID: PMC9979854 DOI: 10.1101/cshperspect.a041252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tail-anchored (TA) proteins are an essential class of integral membrane proteins required for many aspects of cellular physiology. TA proteins contain a single carboxy-terminal transmembrane domain that must be post-translationally recognized, guided to, and ultimately inserted into the correct cellular compartment. The majority of TA proteins begin their biogenesis in the endoplasmic reticulum (ER) and utilize two parallel strategies for targeting and insertion: the guided-entry of tail-anchored proteins (GET) and ER-membrane protein complex (EMC) pathways. Here we focus on how these two sets of machinery target, transfer, and insert TAs into the lipid bilayer in close collaboration with quality control machinery. Additionally, we highlight the unifying features of the insertion process as revealed by recent structures of the GET and EMC membrane protein complexes.
Collapse
Affiliation(s)
- Alina Guna
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Heo P, Culver JA, Miao J, Pincet F, Mariappan M. The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER. Cell Rep 2023; 42:111921. [PMID: 36640319 PMCID: PMC9932932 DOI: 10.1016/j.celrep.2022.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Tail-anchored (TA) proteins contain a single C-terminal transmembrane domain (TMD) that is captured by the cytosolic Get3 in yeast (TRC40 in humans). Get3 delivers TA proteins to the Get1/2 complex for insertion into the endoplasmic reticulum (ER) membrane. How Get1/2 mediates insertion of TMDs of TA proteins into the membrane is poorly understood. Using bulk fluorescence and microfluidics assays, we show that Get1/2 forms an aqueous channel in reconstituted bilayers. We estimate the channel diameter to be ∼2.5 nm wide, corresponding to the circumference of two Get1/2 complexes. We find that the Get3 binding can seal the Get1/2 channel, which dynamically opens and closes. Our mutation analysis further shows that the Get1/2 channel activity is required to release TA proteins from Get3 for insertion into the membrane. Hence, we propose that the Get1/2 channel functions as an insertase for insertion of TMDs and as a translocase for translocation of C-terminal hydrophilic segments.
Collapse
Affiliation(s)
- Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| | - Jacob A. Culver
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Jennifer Miao
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France.
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
9
|
Sinning I, McDowell MA. Cryo-EM insights into tail-anchored membrane protein biogenesis in eukaryotes. Curr Opin Struct Biol 2022; 75:102428. [PMID: 35850079 DOI: 10.1016/j.sbi.2022.102428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Tail-anchored (TA) proteins are a biologically significant class of membrane proteins, which require specialised cellular pathways to insert their single C-terminal transmembrane domain into the correct membrane. Cryo-electron microscopy has recently provided new insights into the organelle-specific machineries for TA protein biogenesis. Structures of targeting and insertase complexes within the canonical guided entry of TA proteins (GET) pathway indicate how substrates are faithfully chaperoned into the endoplasmic reticulum (ER) membrane in metazoans. The core of the GET insertase is conserved within structures of the ER membrane protein complex (EMC), which acts in parallel to insert a different subset of TA proteins. Furthermore, structures of the dislocases Spf1 and Msp1 show how they remove mislocalised TA proteins from the ER and outer mitochondrial membranes respectively.
Collapse
Affiliation(s)
- Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Melanie A McDowell
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
10
|
Pool MR. Targeting of Proteins for Translocation at the Endoplasmic Reticulum. Int J Mol Sci 2022; 23:ijms23073773. [PMID: 35409131 PMCID: PMC8998515 DOI: 10.3390/ijms23073773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum represents the gateway to the secretory pathway. Here, proteins destined for secretion, as well as soluble and membrane proteins that reside in the endomembrane system and plasma membrane, are triaged from proteins that will remain in the cytosol or be targeted to other cellular organelles. This process requires the faithful recognition of specific targeting signals and subsequent delivery mechanisms to then target them to the translocases present at the ER membrane, which can either translocate them into the ER lumen or insert them into the lipid bilayer. This review focuses on the current understanding of the first step in this process representing the targeting phase. Targeting is typically mediated by cleavable N-terminal hydrophobic signal sequences or internal membrane anchor sequences; these can either be captured co-translationally at the ribosome or recognised post-translationally and then delivered to the ER translocases. Location and features of the targeting sequence dictate which of several overlapping targeting pathway substrates will be used. Mutations in the targeting machinery or targeting signals can be linked to diseases.
Collapse
Affiliation(s)
- Martin R Pool
- School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
11
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
13
|
Mehlhorn DG, Asseck LY, Grefen C. Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways. PLANT PHYSIOLOGY 2021; 187:1916-1928. [PMID: 35235667 PMCID: PMC8644595 DOI: 10.1093/plphys/kiab298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/05/2021] [Indexed: 06/14/2023]
Abstract
Insertion of membrane proteins into the lipid bilayer is a crucial step during their biosynthesis. Eukaryotic cells face many challenges in directing these proteins to their predestined target membrane. The hydrophobic signal peptide or transmembrane domain (TMD) of the nascent protein must be shielded from the aqueous cytosol and its target membrane identified followed by transport and insertion. Components that evolved to deal with each of these challenging steps range from chaperones to receptors, insertases, and sophisticated translocation complexes. One prominent translocation pathway for most proteins is the signal recognition particle (SRP)-dependent pathway which mediates co-translational translocation of proteins across or into the endoplasmic reticulum (ER) membrane. This textbook example of protein insertion is stretched to its limits when faced with secretory or membrane proteins that lack an amino-terminal signal sequence or TMD. Particularly, a large group of so-called tail-anchored (TA) proteins that harbor a single carboxy-terminal TMD require an alternative, post-translational insertion route into the ER membrane. In this review, we summarize the current research in TA protein insertion with a special focus on plants, address challenges, and highlight future research avenues.
Collapse
Affiliation(s)
- Dietmar G Mehlhorn
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Lisa Y Asseck
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christopher Grefen
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
14
|
Chio US, Liu Y, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion. J Cell Biol 2021; 220:212681. [PMID: 34614151 PMCID: PMC8530227 DOI: 10.1083/jcb.202103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
The guided entry of tail-anchored protein (GET) pathway, in which the Get3 ATPase delivers an essential class of tail-anchored membrane proteins (TAs) to the Get1/2 receptor at the endoplasmic reticulum, provides a conserved mechanism for TA biogenesis in eukaryotic cells. The membrane-associated events of this pathway remain poorly understood. Here we show that complex assembly between the cytosolic domains (CDs) of Get1 and Get2 strongly enhances the affinity of the individual subunits for Get3•TA, thus enabling efficient capture of the targeting complex. In addition to the known role of Get1CD in remodeling Get3 conformation, two molecular recognition features (MoRFs) in Get2CD induce Get3 opening, and both subunits are required for optimal TA release from Get3. Mutation of the MoRFs attenuates TA insertion into the ER in vivo. Our results demonstrate extensive cooperation between the Get1/2 receptor subunits in the capture and remodeling of the targeting complex, and emphasize the role of MoRFs in receptor function during membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Woo Jun Shim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA.,Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
15
|
Farkas Á, Bohnsack KE. Capture and delivery of tail-anchored proteins to the endoplasmic reticulum. J Cell Biol 2021; 220:212470. [PMID: 34264263 PMCID: PMC8287540 DOI: 10.1083/jcb.202105004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Tail-anchored (TA) proteins fulfill diverse cellular functions within different organellar membranes. Their characteristic C-terminal transmembrane segment renders TA proteins inherently prone to aggregation and necessitates their posttranslational targeting. The guided entry of TA proteins (GET in yeast)/transmembrane recognition complex (TRC in humans) pathway represents a major route for TA proteins to the endoplasmic reticulum (ER). Here, we review important new insights into the capture of nascent TA proteins at the ribosome by the GET pathway pretargeting complex and the mechanism of their delivery into the ER membrane by the GET receptor insertase. Interestingly, several alternative routes by which TA proteins can be targeted to the ER have emerged, raising intriguing questions about how selectivity is achieved during TA protein capture. Furthermore, mistargeting of TA proteins is a fundamental cellular problem, and we discuss the recently discovered quality control machineries in the ER and outer mitochondrial membrane for displacing mislocalized TA proteins.
Collapse
Affiliation(s)
- Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Dederer V, Lemberg MK. Transmembrane dislocases: a second chance for protein targeting. Trends Cell Biol 2021; 31:898-911. [PMID: 34147299 DOI: 10.1016/j.tcb.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022]
Abstract
Precise distribution of proteins is essential to sustain the viability of cells. A complex network of protein synthesis and targeting factors cooperate with protein quality control systems to ensure protein homeostasis. Defective proteins are inevitably degraded by the ubiquitin-proteasome system and lysosomes. However, due to overlapping targeting information and limited targeting fidelity, certain proteins become mislocalized. In this review, we present the idea that transmembrane dislocases recognize and remove mislocalized membrane proteins from cellular organelles. This enables other targeting attempts and prevents degradation of mislocalized but otherwise functional proteins. These transmembrane dislocases can be found in the outer mitochondrial membrane (OMM) and endoplasmic reticulum (ER). We highlight common principles regarding client recognition and outline open questions in our understanding of transmembrane dislocases.
Collapse
Affiliation(s)
- Verena Dederer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Current address: Institute for Pharmaceutical Biology and Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
17
|
Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. Nat Struct Mol Biol 2021; 28:234-239. [PMID: 33664512 DOI: 10.1038/s41594-021-00567-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Members of the Oxa1 superfamily perform membrane protein insertion in bacteria, the eukaryotic endoplasmic reticulum (ER), and endosymbiotic organelles. Here, we review recent structures of the three ER-resident insertases and discuss the extent to which structure and function are conserved with their bacterial counterpart YidC.
Collapse
|
18
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
19
|
Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Mol Cell 2020; 80:72-86.e7. [DOI: 10.1016/j.molcel.2020.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
|
20
|
Ito K, Shimokawa-Chiba N, Chiba S. Sec translocon has an insertase-like function in addition to polypeptide conduction through the channel. F1000Res 2020; 8. [PMID: 32025287 PMCID: PMC6971846 DOI: 10.12688/f1000research.21065.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The Sec translocon provides a polypeptide-conducting channel, which is insulated from the hydrophobic lipidic environment of the membrane, for translocation of hydrophilic passenger polypeptides. Its lateral gate allows a downstream hydrophobic segment (stop-transfer sequence) to exit the channel laterally for integration into the lipid phase. We note that this channel model only partly accounts for the translocon function. The other essential role of translocon is to facilitate de novo insertion of the N-terminal topogenic segment of a substrate polypeptide into the membrane. Recent structural studies suggest that de novo insertion does not use the polypeptide-conducting channel; instead, it takes place directly at the lateral gate, which is prone to opening. We propose that the de novo insertion process, in concept, is similar to that of insertases (such as YidC in bacteria and EMC3 in eukaryotes), in which an intramembrane surface of the machinery provides the halfway point of insertion.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
21
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
22
|
Abstract
One-fourth of eukaryotic genes code for integral membrane proteins, nearly all of which are inserted and assembled at the endoplasmic reticulum (ER). The defining feature of membrane proteins is one or more transmembrane domains (TMDs). During membrane protein biogenesis, TMDs are selectively recognized, shielded, and chaperoned into the lipid bilayer, where they often assemble with other TMDs. If maturation fails, exposed TMDs serve as a cue for engagement of degradation pathways. Thus, TMD-recognition factors in the cytosol and ER are essential for membrane protein biogenesis and quality control. Here, we discuss the growing assortment of cytosolic and membrane-embedded TMD-recognition factors, the pathways within which they operate, and mechanistic principles of recognition.
Collapse
|
23
|
Chitwood PJ, Hegde RS. The Role of EMC during Membrane Protein Biogenesis. Trends Cell Biol 2019; 29:371-384. [PMID: 30826214 DOI: 10.1016/j.tcb.2019.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Ten years ago, high-throughput genetic interaction analyses revealed an abundant and widely conserved protein complex residing in the endoplasmic reticulum (ER) membrane. Dubbed the ER membrane protein complex (EMC), its disruption has since been found to affect wide-ranging processes, including protein trafficking, organelle communication, ER stress, viral maturation, lipid homeostasis, and others. However, its molecular function has remained enigmatic. Recent studies suggest a role for EMC during membrane protein biogenesis. Biochemical reconstitution experiments show that EMC can directly mediate the insertion of transmembrane domains (TMDs) into the lipid bilayer. Given the large proportion of genes encoding membrane proteins, a central role for EMC as a TMD insertion factor can explain its high abundance, wide conservation, and pleiotropic phenotypes.
Collapse
Affiliation(s)
- Patrick J Chitwood
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK.
| |
Collapse
|
24
|
Onishi M, Nagumo S, Iwashita S, Okamoto K. The ER membrane insertase Get1/2 is required for efficient mitophagy in yeast. Biochem Biophys Res Commun 2018; 503:14-20. [PMID: 29673596 DOI: 10.1016/j.bbrc.2018.04.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 10/16/2022]
Abstract
Mitophagy is an evolutionarily conserved autophagy pathway that selectively eliminates mitochondria to control mitochondrial quality and quantity. Although mitophagy is thought to be crucial for cellular homeostasis, how this catabolic process is regulated remains largely unknown. Here we demonstrate that mitophagy during prolonged respiratory growth is strongly impaired in yeast cells lacking Get1/2, a transmembrane complex mediating insertion of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane. Under the same conditions, loss of Get1/2 caused only slight defects in other types of selective and bulk autophagy. In addition, mitophagy and other autophagy-related processes are mostly normal in cells lacking Get3, a cytosolic ATP-driven chaperone that promotes delivery of TA proteins to the Get1/2 complex. We also found that Get1/2-deficient cells exhibited wildtype-like induction and mitochondrial localization of Atg32, a protein essential for mitophagy. Notably, Get1/2 is important for Atg32-independent, ectopically promoted mitophagy. Together, we propose that Get1/2-dependent TA protein(s) and/or the Get1/2 complex itself may act specifically in mitophagy.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sachiyo Nagumo
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shohei Iwashita
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
25
|
Mateja A, Keenan RJ. A structural perspective on tail-anchored protein biogenesis by the GET pathway. Curr Opin Struct Biol 2018; 51:195-202. [PMID: 30173121 DOI: 10.1016/j.sbi.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
Many tail-anchored (TA) membrane proteins are targeted to and inserted into the endoplasmic reticulum (ER) by the `guided entry of tail-anchored proteins' (GET) pathway. This post-translational pathway uses transmembrane-domain selective cytosolic chaperones for targeting, and a dedicated membrane protein complex for insertion. The past decade has seen rapid progress towards defining the molecular basis of TA protein biogenesis by the GET pathway. Here we review the mechanisms underlying each step of the pathway, emphasizing recent structural work and highlighting key questions that await future studies.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Kiefer D, Kuhn A. YidC-mediated membrane insertion. FEMS Microbiol Lett 2018; 365:4980910. [DOI: 10.1093/femsle/fny106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- Dorothee Kiefer
- Department of Microbiology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Department of Microbiology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| |
Collapse
|
27
|
Chen Y, Dalbey RE. Oxa1 Superfamily: New Members Found in the ER. Trends Biochem Sci 2018; 43:151-153. [PMID: 29310909 DOI: 10.1016/j.tibs.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 11/17/2022]
Abstract
Oxa1/Alb3/YidC family members promote the insertion of proteins into the mitochondrial inner membrane, the chloroplast thylakoid membrane, and the bacterial plasma membrane. Remarkably, two recent studies identify new Oxa1 homologs that reside in the endoplasmic reticulum (ER) and function in ER membrane protein biogenesis.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|