1
|
Jiang Y, Zhao C, Zhang C, Li W, Liu D, Zhao B. Single-molecule techniques in studying the molecular mechanisms of DNA synapsis in non-homologous end-joining repair. BIOPHYSICS REPORTS 2025; 11:46-55. [PMID: 40070660 PMCID: PMC11891076 DOI: 10.52601/bpr.2024.240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 03/14/2025] Open
Abstract
DNA double-strand breaks (DSBs) are the most severe form of DNA damage, primarily repaired by the non-homologous end joining (NHEJ) pathway. A critical step in this process is DNA synapsis, where the two broken ends are brought together to facilitate timely repair. Deficiencies in NHEJ synapsis can lead to improper DNA end configurations, potentially resulting in chromosomal translocations. NHEJ synapsis is a highly dynamic, multi-protein mediated assembly process. Recent advances in single-molecule techniques have led to significant progress in understanding the molecular mechanisms driving NHEJ synapsis. In this review, we summarize single-molecule methods developed for studying NHEJ synapsis, with a particular focus on the single-molecule fluorescence resonance energy transfer (smFRET) technique. We discuss the various molecular mechanisms of NHEJ synapsis uncovered through these studies and explore the coupling between synapsis and other steps in NHEJ. Additionally, we highlight the strategies, limitations, and future directions for single-molecule studies of NHEJ synapsis.
Collapse
Affiliation(s)
- Yuhao Jiang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chao Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Chenyang Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Weilin Li
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Di Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bailin Zhao
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
2
|
Medina-Suárez D, Han L, O’Reilly S, Liu J, Wei C, Brenière M, Goff N, Chen C, Modesti M, Meek K, Harrington B, Yu K. Lig3-dependent rescue of mouse viability and DNA double-strand break repair by catalytically inactive Lig4. Nucleic Acids Res 2025; 53:gkae1216. [PMID: 39673806 PMCID: PMC11754673 DOI: 10.1093/nar/gkae1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Recent studies have revealed a structural role for DNA ligase 4 (Lig4) in the maintenance of a repair complex during non-homologous end joining (NHEJ) of DNA double-strand breaks. In cultured cell lines, catalytically inactive Lig4 can partially alleviate the severe DNA repair phenotypes observed in cells lacking Lig4. To study the structural role of Lig4 in vivo, a mouse strain harboring a point mutation to Lig4's catalytic site was generated. In contrast to the ablation of Lig4, catalytically inactive Lig4 mice are born alive. These mice display marked growth retardation and have clear deficits in lymphocyte development. We considered that the milder phenotype results from inactive Lig4 help to recruit another ligase to the repair complex. We next generated a mouse strain deficient for nuclear Lig3. Nuclear Lig3-deficient mice are moderately smaller and have elevated incidences of cerebral ventricle dilation but otherwise appear normal. Strikingly, in experiments crossing these two strains, mice lacking nuclear Lig3 and expressing inactive Lig4 were not obtained. Timed mating revealed that fetuses harboring both mutations underwent resorption, establishing an embryonic lethal genetic interaction. These data suggest that Lig3 is recruited to NHEJ complexes to facilitate end joining in the presence (but not activity) of Lig4.
Collapse
Affiliation(s)
- David Medina-Suárez
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Li Han
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Sandra O’Reilly
- Research Technology Support Facility, and Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Jiali Liu
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Chao Wei
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Noah J Goff
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Katheryn Meek
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Bonnie Harrington
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Kefei Yu
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Pallaseni A, Peets EM, Girling G, Crepaldi L, Kuzmin I, Moor M, Muñoz-Subirana N, Schimmel J, Serçin Ö, Mardin BR, Tijsterman M, Peterson H, Kosicki M, Parts L. The interplay of DNA repair context with target sequence predictably biases Cas9-generated mutations. Nat Commun 2024; 15:10271. [PMID: 39592573 PMCID: PMC11599590 DOI: 10.1038/s41467-024-54566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Repair of double-stranded breaks generated by CRISPR/Cas9 is highly dependent on the flanking DNA sequence. To learn about interactions between DNA repair and target sequence, we measure frequencies of over 236,000 distinct Cas9-generated mutational outcomes at over 2800 synthetic target sequences in 18 DNA repair deficient mouse embryonic stem cells lines. We classify the outcomes in an unbiased way, finding a specialised role for Prkdc (DNA-PKcs protein) and Polm in creating 1 bp insertions matching the nucleotide on the protospacer-adjacent motif side of the break, a variable involvement of Nbn and Polq in the creation of different deletion outcomes, and uni-directional deletions dependent on both end-protection and end-resection. Using our dataset, we build predictive models of the mutagenic outcomes of Cas9 scission that outperform the current standards. This work improves our understanding of DNA repair gene function, and provides avenues for more precise modulation of Cas9-generated mutations.
Collapse
Affiliation(s)
| | | | - Gareth Girling
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Luca Crepaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ivan Kuzmin
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Marilin Moor
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Núria Muñoz-Subirana
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Balca R Mardin
- BioMed X Institute (GmbH), Heidelberg, Germany
- Research Unit Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Hedi Peterson
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Michael Kosicki
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Leopold Parts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
4
|
Pallaseni A, Peets EM, Girling G, Crepaldi L, Kuzmin I, Moor M, Muñoz-Subirana N, Schimmel J, Serçin Ö, Mardin BR, Tijsterman M, Peterson H, Kosicki M, Parts L. The interplay of DNA repair context with target sequence predictably biases Cas9-generated mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546891. [PMID: 37425722 PMCID: PMC10326969 DOI: 10.1101/2023.06.28.546891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutagenic outcomes of CRISPR/Cas9-generated double-stranded breaks depend on both the sequence flanking the cut and cellular DNA damage repair. The interaction of these features has been largely unexplored, limiting our ability to understand and manipulate the outcomes. Here, we measured how the absence of 18 repair genes changed frequencies of 83,680 unique mutational outcomes generated by Cas9 double-stranded breaks at 2,838 synthetic target sequences in mouse embryonic stem cells. This large scale survey allowed us to classify the outcomes in an unbiased way, generating hypotheses about new modes of double-stranded break repair. Our data indicate a specialised role for Prkdc (DNA-PKcs protein) and Polm (Polμ) in creating 1bp insertions that match the nucleotide on the proximal side of the Cas9 cut with respect to the protospacer-adjacent motif (PAM), a variable involvement of Nbn (NBN) and Polq (Polθ) in the creation of different deletion outcomes, and a unique class of uni-directional deletion outcomes that are dependent on both end-protection gene Xrcc5 (Ku80) and the resection gene Nbn (NBN). We used the knowledge of the reproducible variation across repair milieus to build predictive models of the mutagenic outcomes of Cas9 scission that outperform the current standards. This work improves our understanding of DNA repair gene function, and provides avenues for more precise modulation of CRISPR/Cas9-generated mutations.
Collapse
Affiliation(s)
- Ananth Pallaseni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Elin Madli Peets
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gareth Girling
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Luca Crepaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ivan Kuzmin
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Marilin Moor
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Núria Muñoz-Subirana
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Özdemirhan Serçin
- BioMed X Institute (GmbH), Im Neuenheimer Feld 515, Heidelberg, Germany
| | - Balca R. Mardin
- BioMed X Institute (GmbH), Im Neuenheimer Feld 515, Heidelberg, Germany
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Hedi Peterson
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Michael Kosicki
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Leopold Parts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Computer Science, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Moreno AT, Loparo JJ. Measuring protein stoichiometry with single-molecule imaging in Xenopus egg extracts. Methods Enzymol 2024; 705:427-474. [PMID: 39389672 DOI: 10.1016/bs.mie.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In human cells, DNA double-strand breaks are rapidly bound by the highly abundant non-homologous end joining (NHEJ) factor Ku70/Ku80 (Ku). Cellular imaging and structural data revealed a single Ku molecule is bound to a free DNA end and yet the mechanism regulating Ku remains unclear. Here, we describe how to utilize the cell-free Xenopus laevis egg extract system in conjunction with single-molecule microscopy to investigate regulation of Ku stoichiometry during non-homologous end joining. Egg extract is an excellent model system to study DNA repair as it contains the soluble proteome including core and accessory NHEJ factors, and efficiently repairs double-strand breaks in an NHEJ-dependent manner. To examine the Ku stoichiometry in the extract system, we developed a single-molecule photobleaching assay, which reports on the number of stable associated Ku molecules by monitoring the intensity of fluorescently labeled Ku molecules bound to double-stranded DNA over time. Photobleaching is distinguishable as step decreases in fluorescence intensity and the number of photobleaching events indicate fluorophore stoichiometry. In this paper we describe sample preparation, experimental methodology, and data analysis to discern Ku stoichiometry and the regulatory mechanism controlling its loading. These approaches can be readily adopted to determine stoichiometry of molecular factors within other macromolecular complexes.
Collapse
Affiliation(s)
- Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
6
|
Fijen C, Drogalis Beckham L, Terino D, Li Y, Ramsden DA, Wood RD, Doublié S, Rothenberg E. Sequential requirements for distinct Polθ domains during theta-mediated end joining. Mol Cell 2024; 84:1460-1474.e6. [PMID: 38640894 PMCID: PMC11031631 DOI: 10.1016/j.molcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Lea Drogalis Beckham
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dante Terino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Leal AF, Herreno-Pachón AM, Benincore-Flórez E, Karunathilaka A, Tomatsu S. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches. Int J Mol Sci 2024; 25:2456. [PMID: 38473704 PMCID: PMC10931195 DOI: 10.3390/ijms25052456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Since its discovery in 2012, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system has supposed a promising panorama for developing novel and highly precise genome editing-based gene therapy (GT) alternatives, leading to overcoming the challenges associated with classical GT. Classical GT aims to deliver transgenes to the cells via their random integration in the genome or episomal persistence into the nucleus through lentivirus (LV) or adeno-associated virus (AAV), respectively. Although high transgene expression efficiency is achieved by using either LV or AAV, their nature can result in severe side effects in humans. For instance, an LV (NCT03852498)- and AAV9 (NCT05514249)-based GT clinical trials for treating X-linked adrenoleukodystrophy and Duchenne Muscular Dystrophy showed the development of myelodysplastic syndrome and patient's death, respectively. In contrast with classical GT, the CRISPR/Cas9-based genome editing requires the homologous direct repair (HDR) machinery of the cells for inserting the transgene in specific regions of the genome. This sophisticated and well-regulated process is limited in the cell cycle of mammalian cells, and in turn, the nonhomologous end-joining (NHEJ) predominates. Consequently, seeking approaches to increase HDR efficiency over NHEJ is crucial. This manuscript comprehensively reviews the current alternatives for improving the HDR for CRISPR/Cas9-based GTs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Angelica María Herreno-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eliana Benincore-Flórez
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
| | - Amali Karunathilaka
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
8
|
Stinson BM, Carney SM, Walter JC, Loparo JJ. Structural role for DNA Ligase IV in promoting the fidelity of non-homologous end joining. Nat Commun 2024; 15:1250. [PMID: 38341432 PMCID: PMC10858965 DOI: 10.1038/s41467-024-45553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Nonhomologous end joining (NHEJ), the primary pathway of vertebrate DNA double-strand-break (DSB) repair, directly re-ligates broken DNA ends. Damaged DSB ends that cannot be immediately re-ligated are modified by NHEJ processing enzymes, including error-prone polymerases and nucleases, to enable ligation. However, DSB ends that are initially compatible for re-ligation are typically joined without end processing. As both ligation and end processing occur in the short-range (SR) synaptic complex that closely aligns DNA ends, it remains unclear how ligation of compatible ends is prioritized over end processing. In this study, we identify structural interactions of the NHEJ-specific DNA Ligase IV (Lig4) within the SR complex that prioritize ligation and promote NHEJ fidelity. Mutational analysis demonstrates that Lig4 must bind DNA ends to form the SR complex. Furthermore, single-molecule experiments show that a single Lig4 binds both DNA ends at the instant of SR synapsis. Thus, Lig4 is poised to ligate compatible ends upon initial formation of the SR complex before error-prone processing. Our results provide a molecular basis for the fidelity of NHEJ.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sean M Carney
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
10
|
Bader AS, Bushell M. iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis. Nat Commun 2023; 14:8419. [PMID: 38110444 PMCID: PMC10728174 DOI: 10.1038/s41467-023-44167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most mutagenic form of DNA damage, and play a significant role in cancer biology, neurodegeneration and aging. However, studying DSB-induced mutagenesis is limited by our current approaches. Here, we describe iMUT-seq, a technique that profiles DSB-induced mutations at high-sensitivity and single-nucleotide resolution around endogenous DSBs. By depleting or inhibiting 20 DSB-repair factors we define their mutational signatures in detail, revealing insights into the mechanisms of DSB-induced mutagenesis. Notably, we find that homologous-recombination (HR) is more mutagenic than previously thought, inducing prevalent base substitutions and mononucleotide deletions at distance from the break due to DNA-polymerase errors. Simultaneously, HR reduces translocations, suggesting a primary role of HR is specifically the prevention of genomic rearrangements. The results presented here offer fundamental insights into DSB-induced mutagenesis and have significant implications for our understanding of cancer biology and the development of DDR-targeting chemotherapeutics.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Cancer Research UK/CI, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
- The Gurdon Institute, University of Cambridge, Biochemistry, Cambridge, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
11
|
De Bragança S, Dillingham MS, Moreno-Herrero F. Recent insights into eukaryotic double-strand DNA break repair unveiled by single-molecule methods. Trends Genet 2023; 39:924-940. [PMID: 37806853 DOI: 10.1016/j.tig.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Genome integrity and maintenance are essential for the viability of all organisms. A wide variety of DNA damage types have been described, but double-strand breaks (DSBs) stand out as one of the most toxic DNA lesions. Two major pathways account for the repair of DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Both pathways involve complex DNA transactions catalyzed by proteins that sequentially or cooperatively work to repair the damage. Single-molecule methods allow visualization of these complex transactions and characterization of the protein:DNA intermediates of DNA repair, ultimately allowing a comprehensive breakdown of the mechanisms underlying each pathway. We review current understanding of the HR and NHEJ responses to DSBs in eukaryotic cells, with a particular emphasis on recent advances through the use of single-molecule techniques.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
12
|
Loparo JJ. Holding it together: DNA end synapsis during non-homologous end joining. DNA Repair (Amst) 2023; 130:103553. [PMID: 37572577 PMCID: PMC10530278 DOI: 10.1016/j.dnarep.2023.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
DNA double strand breaks (DSBs) are common lesions whose misrepair are drivers of oncogenic transformations. The non-homologous end joining (NHEJ) pathway repairs the majority of these breaks in vertebrates by directly ligating DNA ends back together. Upon formation of a DSB, a multiprotein complex is assembled on DNA ends which tethers them together within a synaptic complex. Synapsis is a critical step of the NHEJ pathway as loss of synapsis can result in mispairing of DNA ends and chromosome translocations. As DNA ends are commonly incompatible for ligation, the NHEJ machinery must also process ends to enable rejoining. This review describes how recent progress in single-molecule approaches and cryo-EM have advanced our molecular understanding of DNA end synapsis during NHEJ and how synapsis is coordinated with end processing to determine the fidelity of repair.
Collapse
Affiliation(s)
- Joseph J Loparo
- Dept. of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Yang JH, Brandão HB, Hansen AS. DNA double-strand break end synapsis by DNA loop extrusion. Nat Commun 2023; 14:1913. [PMID: 37024496 PMCID: PMC10079674 DOI: 10.1038/s41467-023-37583-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) occur every cell cycle and must be efficiently repaired. Non-homologous end joining (NHEJ) is the dominant pathway for DSB repair in G1-phase. The first step of NHEJ is to bring the two DSB ends back into proximity (synapsis). Although synapsis is generally assumed to occur through passive diffusion, we show that passive diffusion is unlikely to produce the synapsis speed observed in cells. Instead, we hypothesize that DNA loop extrusion facilitates synapsis. By combining experimentally constrained simulations and theory, we show that a simple loop extrusion model constrained by previous live-cell imaging data only modestly accelerates synapsis. Instead, an expanded loop extrusion model with targeted loading of loop extruding factors (LEFs), a small portion of long-lived LEFs, and LEF stabilization by boundary elements and DSB ends achieves fast synapsis with near 100% efficiency. We propose that loop extrusion contributes to DSB repair by mediating fast synapsis.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA
| | - Hugo B Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
- Illumina Inc., San Diego, CA, 92122, USA.
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
| |
Collapse
|
14
|
Malashetty V, Au A, Chavez J, Hanna M, Chu J, Penna J, Cortes P. The DNA binding domain and the C-terminal region of DNA Ligase IV specify its role in V(D)J recombination. PLoS One 2023; 18:e0282236. [PMID: 36827388 PMCID: PMC9956705 DOI: 10.1371/journal.pone.0282236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
DNA Ligase IV is responsible for the repair of DNA double-strand breaks (DSB), including DSBs that are generated during V(D)J recombination. Like other DNA ligases, Ligase IV contains a catalytic core with three subdomains-the DNA binding (DBD), the nucleotidyltransferase (NTD), and the oligonucleotide/oligosaccharide-fold subdomain (OBD). Ligase IV also has a unique C-terminal region that includes two BRCT domains, a nuclear localization signal sequence and a stretch of amino acid that participate in its interaction with XRCC4. Out of the three mammalian ligases, Ligase IV is the only ligase that participates in and is required for V(D)J recombination. Identification of the minimal domains within DNA Ligase IV that contribute to V(D)J recombination has remained unresolved. The interaction of the Ligase IV DNA binding domain with Artemis, and the interaction of its C-terminal region with XRCC4, suggest that both of these regions that also interact with the Ku70/80 heterodimer are important and might be sufficient for mediating participation of DNA Ligase IV in V(D)J recombination. This hypothesis was investigated by generating chimeric ligase proteins by swapping domains, and testing their ability to rescue V(D)J recombination in Ligase IV-deficient cells. We demonstrate that a fusion protein containing Ligase I NTD and OBDs flanked by DNA Ligase IV DBD and C-terminal region is sufficient to support V(D)J recombination. This chimeric protein, which we named Ligase 37, complemented formation of coding and signal joints. Coding joints generated with Ligase 37 were shorter than those observed with wild type DNA Ligase IV. The shorter length was due to increased nucleotide deletions and decreased nucleotide insertions. Additionally, overexpression of Ligase 37 in a mouse pro-B cell line supported a shift towards shorter coding joints. Our findings demonstrate that the ability of DNA Ligase IV to participate in V(D)J recombination is in large part mediated by its DBD and C-terminal region.
Collapse
Affiliation(s)
- Vidyasagar Malashetty
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Audrey Au
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, NY, United States of America
| | - Jose Chavez
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mary Hanna
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jennifer Chu
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jesse Penna
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, NY, United States of America
| |
Collapse
|
15
|
De Bragança S, Aicart-Ramos C, Arribas-Bosacoma R, Rivera-Calzada A, Unfried JP, Prats-Mari L, Marin-Baquero M, Fortes P, Llorca O, Moreno-Herrero F. APLF and long non-coding RNA NIHCOLE promote stable DNA synapsis in non-homologous end joining. Cell Rep 2023; 42:111917. [PMID: 36640344 DOI: 10.1016/j.celrep.2022.111917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023] Open
Abstract
The synapsis of DNA ends is a critical step for the repair of double-strand breaks by non-homologous end joining (NHEJ). This is performed by a multicomponent protein complex assembled around Ku70-Ku80 heterodimers and regulated by accessory factors, including long non-coding RNAs, through poorly understood mechanisms. Here, we use magnetic tweezers to investigate the contributions of core NHEJ proteins and APLF and lncRNA NIHCOLE to DNA synapsis. APLF stabilizes DNA end bridging and, together with Ku70-Ku80, establishes a minimal complex that supports DNA synapsis for several minutes under piconewton forces. We find the C-terminal acidic region of APLF to be critical for bridging. NIHCOLE increases the dwell time of the synapses by Ku70-Ku80 and APLF. This effect is further enhanced by a small and structured RNA domain within NIHCOLE. We propose a model where Ku70-Ku80 can simultaneously bind DNA, APLF, and structured RNAs to promote the stable joining of DNA ends.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Juan Pablo Unfried
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel; Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Laura Prats-Mari
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Mikel Marin-Baquero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
16
|
Goff NJ, Brenière M, Buehl CJ, de Melo AJ, Huskova H, Ochi T, Blundell TL, Mao W, Yu K, Modesti M, Meek K. Catalytically inactive DNA ligase IV promotes DNA repair in living cells. Nucleic Acids Res 2022; 50:11058-11071. [PMID: 36263813 PMCID: PMC9638927 DOI: 10.1093/nar/gkac913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA double strand breaks (DSBs) are induced by external genotoxic agents (ionizing radiation or genotoxins) or by internal processes (recombination intermediates in lymphocytes or by replication errors). The DNA ends induced by these genotoxic processes are often not ligatable, requiring potentially mutagenic end-processing to render ends compatible for ligation by non-homologous end-joining (NHEJ). Using single molecule approaches, Loparo et al. propose that NHEJ fidelity can be maintained by restricting end-processing to a ligation competent short-range NHEJ complex that 'maximizes the fidelity of DNA repair'. These in vitro studies show that although this short-range NHEJ complex requires DNA ligase IV (Lig4), its catalytic activity is dispensable. Here using cellular models, we show that inactive Lig4 robustly promotes DNA repair in living cells. Compared to repair products from wild-type cells, those isolated from cells with inactive Lig4 show a somewhat increased fraction that utilize micro-homology (MH) at the joining site consistent with alternative end-joining (a-EJ). But unlike a-EJ in the absence of NHEJ, a large percentage of joints isolated from cells with inactive Lig4 occur with no MH - thus, clearly distinct from a-EJ. Finally, biochemical assays demonstrate that the inactive Lig4 complex promotes the activity of DNA ligase III (Lig3).
Collapse
Affiliation(s)
- Noah J Goff
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Manon Brenière
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Christopher J Buehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Abinadabe J de Melo
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Hana Huskova
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Takashi Ochi
- The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9TJ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Weifeng Mao
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Kefei Yu
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Mauro Modesti
- Correspondence may also be addressed to Mauro Modesti.
| | | |
Collapse
|
17
|
Liao J, Yi Y, Yue X, Wu X, Zhu M, Chen Y, Peng S, Kuang M, Lin S, Peng Z. Methyltransferase 1 is required for nonhomologous end-joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology 2022; 77:1896-1910. [PMID: 35698894 DOI: 10.1002/hep.32615] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Radiotherapy is an increasingly essential therapeutic strategy in the management of hepatocellular carcinoma (HCC). Nevertheless, resistance to radiotherapy is one of the primary obstacles to successful treatment outcomes. Hence, we aim to elucidate the mechanisms underlying radioresistance and identify reliable biotargets that would be inhibited to enhance the efficacy of radiotherapy in HCC. APPROACH AND RESULTS From a label-free quantitative proteome screening, we identified transfer RNA (tRNA; guanine-N [7]-) methyltransferase 1 (METTL1), a key enzyme for N7-methylguanosine (m7 G) tRNA modification, as an essential driver for HCC cells radioresistance. We reveal that METTL1 promotes DNA double-strand break (DSB) repair and renders HCC cells resistant to ionizing radiation (IR) using loss-of-function and gain-of-function assays in vitro and in vivo. Mechanistically, METTL1-mediated m7 G tRNA modification selectively regulates the translation of DNA-dependent protein kinase catalytic subunit or DNA ligase IV with higher frequencies of m7 G-related codons after IR treatment, thereby resulting in the enhancement of nonhomologous end-joining (NHEJ)-mediated DNA DSB repair efficiency. Clinically, high METTL1 expression in tumor tissue is significantly correlated with poor prognosis in radiotherapy-treated patients with HCC. CONCLUSIONS Our findings show that METTL1 is a critical enhancer for HCC cell NHEJ-based DNA repair following IR therapy. These findings give insight into the role of tRNA modification in messenger RNA translation control in HCC radioresistance.
Collapse
Affiliation(s)
- Junbin Liao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yi
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Yue
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiyan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Christie SM, Fijen C, Rothenberg E. V(D)J Recombination: Recent Insights in Formation of the Recombinase Complex and Recruitment of DNA Repair Machinery. Front Cell Dev Biol 2022; 10:886718. [PMID: 35573672 PMCID: PMC9099191 DOI: 10.3389/fcell.2022.886718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.
Collapse
Affiliation(s)
- Shaun M. Christie
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Carel Fijen
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Eli Rothenberg
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| |
Collapse
|
19
|
Sun W, Liu H, Yin W, Qiao J, Zhao X, Liu Y. Strategies for Enhancing the Homology-directed Repair Efficiency of CRISPR-Cas Systems. CRISPR J 2022; 5:7-18. [PMID: 35076280 DOI: 10.1089/crispr.2021.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The CRISPR-Cas nuclease has emerged as a powerful genome-editing tool in recent years. The CRISPR-Cas system induces double-strand breaks that can be repaired via the non-homologous end joining or homology-directed repair (HDR) pathway. Compared to non-homologous end joining, HDR can be used for the treatment of incurable monogenetic diseases. Therefore, remarkable efforts have been dedicated to enhancing the efficacy of HDR. In this review, we summarize the currently used strategies for enhancing the HDR efficiency of CRISPR-Cas systems based on three factors: (1) regulation of the key factors in the DNA repair pathways, (2) modulation of the components in the CRISPR machinery, and (3) alteration of the intracellular environment around double-strand breaks. Representative cases and potential solutions for further improving HDR efficiency are also discussed, facilitating the development of new CRISPR technologies to achieve highly precise genetic manipulation in the future.
Collapse
Affiliation(s)
- Wenli Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Wenhao Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, People's Republic of China; and Ltd., Hubei, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,BravoVax Co., Ltd., Hubei, People's Republic of China
| |
Collapse
|
20
|
Chinnam NB, Syed A, Burnett KH, Hura GL, Tainer JA, Tsutakawa SE. Universally Accessible Structural Data on Macromolecular Conformation, Assembly, and Dynamics by Small Angle X-Ray Scattering for DNA Repair Insights. Methods Mol Biol 2022; 2444:43-68. [PMID: 35290631 PMCID: PMC9020468 DOI: 10.1007/978-1-0716-2063-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structures provide a critical breakthrough step for biological analyses, and small angle X-ray scattering (SAXS) is a powerful structural technique to study dynamic DNA repair proteins. As toxic and mutagenic repair intermediates need to be prevented from inadvertently harming the cell, DNA repair proteins often chaperone these intermediates through dynamic conformations, coordinated assemblies, and allosteric regulation. By measuring structural conformations in solution for both proteins, DNA, RNA, and their complexes, SAXS provides insight into initial DNA damage recognition, mechanisms for validation of their substrate, and pathway regulation. Here, we describe exemplary SAXS analyses of a DNA damage response protein spanning from what can be derived directly from the data to obtaining super resolution through the use of SAXS selection of atomic models. We outline strategies and tactics for practical SAXS data collection and analysis. Making these structural experiments in reach of any basic and clinical researchers who have protein, SAXS data can readily be collected at government-funded synchrotrons, typically at no cost for academic researchers. In addition to discussing how SAXS complements and enhances cryo-electron microscopy, X-ray crystallography, NMR, and computational modeling, we furthermore discuss taking advantage of recent advances in protein structure prediction in combination with SAXS analysis.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kathryn H Burnett
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
21
|
Liu D, Lieber MR. The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol 2021; 57:227-243. [PMID: 34875186 DOI: 10.1080/10409238.2021.2004576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The most common human lymphoid chromosomal translocations involve concurrent failures of the recombination activating gene (RAG) complex and Activation-Induced Deaminase (AID). These are two enzymes that are normally expressed for purposes of the two site-specific DNA recombination processes: V(D)J recombination and class switch recombination (CSR). First, though it is rare, a low level of expression of AID can introduce long-lived T:G mismatch lesions at 20-600 bp fragile zones. Second, the V(D)J recombination process can occasionally fail to rejoin coding ends, and this failure may permit an opportunity for Artemis:DNA-dependent kinase catalytic subunit (DNA-PKcs) to convert the T:G mismatch sites at the fragile zones into double-strand breaks. The 20-600 bp fragile zones must be, at least transiently, in a single-stranded DNA (ssDNA) state for the first step to occur, because AID only acts on ssDNA. Here we discuss the key DNA sequence features that lead to AID action at a fragile zone, which are (a) the proximity and density of strings of cytosine nucleotides (C-strings) that cause a B/A-intermediate DNA conformation; (b) overlapping AID hotspots that contain a methyl CpG (WRCG), which AID converts to a long-lived T:G mismatch; and (c) transcription, which, though not essential, favors increased ssDNA in the fragile zone. We also summarize chromosomal features of the focal fragile zones in lymphoid malignancies and discuss the clinical relevance of understanding the translocation mechanisms. Many of the key principles covered here are also relevant to chromosomal translocations in non-lymphoid somatic cells as well.
Collapse
Affiliation(s)
- Di Liu
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael R Lieber
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
23
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
24
|
Jensen RB, Rothenberg E. Preserving genome integrity in human cells via DNA double-strand break repair. Mol Biol Cell 2021; 31:859-865. [PMID: 32286930 PMCID: PMC7185975 DOI: 10.1091/mbc.e18-10-0668] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The efficient maintenance of genome integrity in the face of cellular stress is vital to protect against human diseases such as cancer. DNA replication, chromatin dynamics, cellular signaling, nuclear architecture, cell cycle checkpoints, and other cellular activities contribute to the delicate spatiotemporal control that cells utilize to regulate and maintain genome stability. This perspective will highlight DNA double-strand break (DSB) repair pathways in human cells, how DNA repair failures can lead to human disease, and how PARP inhibitors have emerged as a novel clinical therapy to treat homologous recombination-deficient tumors. We briefly discuss how failures in DNA repair produce a permissive genetic environment in which preneoplastic cells evolve to reach their full tumorigenic potential. Finally, we conclude that an in-depth understanding of DNA DSB repair pathways in human cells will lead to novel therapeutic strategies to treat cancer and potentially other human diseases.
Collapse
Affiliation(s)
- Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
25
|
Chen S, Lee L, Naila T, Fishbain S, Wang A, Tomkinson AE, Lees-Miller SP, He Y. Structural basis of long-range to short-range synaptic transition in NHEJ. Nature 2021; 593:294-298. [PMID: 33854234 PMCID: PMC8122075 DOI: 10.1038/s41586-021-03458-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
DNA double-strand breaks (DSBs) are a highly cytotoxic form of DNA damage and the incorrect repair of DSBs is linked to carcinogenesis1,2. The conserved error-prone non-homologous end joining (NHEJ) pathway has a key role in determining the effects of DSB-inducing agents that are used to treat cancer as well as the generation of the diversity in antibodies and T cell receptors2,3. Here we applied single-particle cryo-electron microscopy to visualize two key DNA-protein complexes that are formed by human NHEJ factors. The Ku70/80 heterodimer (Ku), the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), DNA ligase IV (LigIV), XRCC4 and XLF form a long-range synaptic complex, in which the DNA ends are held approximately 115 Å apart. Two DNA end-bound subcomplexes comprising Ku and DNA-PKcs are linked by interactions between the DNA-PKcs subunits and a scaffold comprising LigIV, XRCC4, XLF, XRCC4 and LigIV. The relative orientation of the DNA-PKcs molecules suggests a mechanism for autophosphorylation in trans, which leads to the dissociation of DNA-PKcs and the transition into the short-range synaptic complex. Within this complex, the Ku-bound DNA ends are aligned for processing and ligation by the XLF-anchored scaffold, and a single catalytic domain of LigIV is stably associated with a nick between the two Ku molecules, which suggests that the joining of both strands of a DSB involves both LigIV molecules.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tasmin Naila
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
- Department of Molecular Genetics & Microbiology, University of New Mexico, Albuquerque, NM, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Annie Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Alan E Tomkinson
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
- Department of Molecular Genetics & Microbiology, University of New Mexico, Albuquerque, NM, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
26
|
DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. J Biol Chem 2021; 296:100427. [PMID: 33600799 PMCID: PMC8024709 DOI: 10.1016/j.jbc.2021.100427] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
DNA ligase I (LIG1) completes the base excision repair (BER) pathway at the last nick-sealing step after DNA polymerase (pol) β gap-filling DNA synthesis. However, the mechanism by which LIG1 fidelity mediates the faithful substrate-product channeling and ligation of repair intermediates at the final steps of the BER pathway remains unclear. We previously reported that pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion confounds LIG1, leading to the formation of ligation failure products with a 5'-adenylate block. Here, using reconstituted BER assays in vitro, we report the mutagenic ligation of pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion products and an inefficient ligation of pol β Watson-Crick-like dG:T mismatch insertion by the LIG1 mutant with a perturbed fidelity (E346A/E592A). Moreover, our results reveal that the substrate discrimination of LIG1 for the nicked repair intermediates with preinserted 3'-8-oxodG or mismatches is governed by mutations at both E346 and E592 residues. Finally, we found that aprataxin and flap endonuclease 1, as compensatory DNA-end processing enzymes, can remove the 5'-adenylate block from the abortive ligation products harboring 3'-8-oxodG or the 12 possible noncanonical base pairs. These findings contribute to the understanding of the role of LIG1 as an important determinant in faithful BER and how a multiprotein complex (LIG1, pol β, aprataxin, and flap endonuclease 1) can coordinate to prevent the formation of mutagenic repair intermediates with damaged or mismatched ends at the downstream steps of the BER pathway.
Collapse
|
27
|
Suraweera A, Duijf PHG, Jekimovs C, Schrobback K, Liu C, Adams MN, O’Byrne KJ, Richard DJ. COMMD1, from the Repair of DNA Double Strand Breaks, to a Novel Anti-Cancer Therapeutic Target. Cancers (Basel) 2021; 13:830. [PMID: 33669398 PMCID: PMC7920454 DOI: 10.3390/cancers13040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has the highest incidence and mortality among all cancers, with non-small cell lung cancer (NSCLC) accounting for 85-90% of all lung cancers. Here we investigated the function of COMMD1 in the repair of DNA double strand breaks (DSBs) and as a prognostic and therapeutic target in NSCLC. COMMD1 function in DSB repair was investigated using reporter assays in COMMD1-siRNA-depleted cells. The role of COMMD1 in NSCLC was investigated using bioinformatic analysis, qRT-PCR and immunoblotting of control and NSCLC cells, tissue microarrays, cell viability and cell cycle experiments. DNA repair assays demonstrated that COMMD1 is required for the efficient repair of DSBs and reporter assays showed that COMMD1 functions in both non-homologous-end-joining and homologous recombination. Bioinformatic analysis showed that COMMD1 is upregulated in NSCLC, with high levels of COMMD1 associated with poor patient prognosis. COMMD1 mRNA and protein were upregulated across a panel of NSCLC cell lines and siRNA-mediated depletion of COMMD1 decreased cell proliferation and reduced cell viability of NSCLC, with enhanced death after exposure to DNA damaging-agents. Bioinformatic analyses demonstrated that COMMD1 levels positively correlate with the gene ontology DNA repair gene set enrichment signature in NSCLC. Taken together, COMMD1 functions in DSB repair, is a prognostic maker in NSCLC and is potentially a novel anti-cancer therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Pascal H. G. Duijf
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Christian Jekimovs
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Karsten Schrobback
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
- Envoi Specialist Pathologists, 5/38 Bishop Street, Kelvin Grove, QLD 4059, Australia
| | - Mark N. Adams
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Derek J. Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
28
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
29
|
Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic Res 2021; 55:581-594. [PMID: 33455476 DOI: 10.1080/10715762.2021.1876853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular responses to DNA damage are fundamental to preserve genomic integrity during various endogenous and exogenous stresses. Following radiation therapy and chemotherapy, this DNA damage response (DDR) also determines development of carcinogenesis and therapeutic outcome. In humans, DNA damage activates a robust network of signal transduction cascades, driven primarily through phosphorylation events. These responses primarily involve two key non-redundant signal transducing proteins of phosphatidylinositol 3-kinase-like (PIKK) family - ATR and ATM, and their downstream kinases (hChk1 and hChk2). They further phosphorylate effectors proteins such as p53, Cdc25A and Cdc25C which function either to activate the DNA damage checkpoints and cell death mechanisms, or DNA repair pathways. Identification of molecular pathways that determine signaling after DNA damage and trigger DNA repair in response to differing types of DNA lesions allows for a far better understanding of the consequences of radiation and chemotherapy on normal and tumor cells. Here we highlight the network of DNA damage response pathways that are activated after treatment with different types of radiation. Further, we discuss regulation of cell cycle checkpoint and DNA repair processes in the context of DDR in response to radiation.
Collapse
|
30
|
Hepburn M, Saltzberg DJ, Lee L, Fang S, Atkinson C, Strynadka NCJ, Sali A, Lees-Miller SP, Schriemer DC. The active DNA-PK holoenzyme occupies a tensed state in a staggered synaptic complex. Structure 2021; 29:467-478.e6. [PMID: 33412091 DOI: 10.1016/j.str.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 01/06/2023]
Abstract
In the non-homologous end-joining (NHEJ) of a DNA double-strand break, DNA ends are bound and protected by DNA-PK, which synapses across the break to tether the broken ends and initiate repair. There is little clarity surrounding the nature of the synaptic complex and the mechanism governing the transition to repair. We report an integrative structure of the synaptic complex at a precision of 13.5 Å, revealing a symmetric head-to-head arrangement with a large offset in the DNA ends and an extensive end-protection mechanism involving a previously uncharacterized plug domain. Hydrogen/deuterium exchange mass spectrometry identifies an allosteric pathway connecting DNA end-binding with the kinase domain that places DNA-PK under tension in the kinase-active state. We present a model for the transition from end-protection to repair, where the synaptic complex supports hierarchical processing of the ends and scaffold assembly, requiring displacement of the catalytic subunit and tension release through kinase activity.
Collapse
Affiliation(s)
- Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Daniel J Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Claire Atkinson
- Department of Biochemistry and Molecular Biology and High-Resolution Macromolecular Electron Microscopy Facility, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and High-Resolution Macromolecular Electron Microscopy Facility, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Department of Chemistry, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
31
|
Super-Resolution Imaging of Homologous Recombination Repair at Collapsed Replication Forks. Methods Mol Biol 2021; 2153:355-363. [PMID: 32840791 DOI: 10.1007/978-1-0716-0644-5_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-molecule super-resolution microscopy (SRM) combines single-molecule detection with spatial resolutions tenfold improved over conventional confocal microscopy. These two key advantages make it possible to visualize individual DNA replication and damage events within the cellular context of fixed cells. This in turn engenders the ability to decipher variations between individual replicative and damage species within a single nucleus, elucidating different subpopulations of stress and repair events. Here, we describe the protocol for combining SRM with novel labeling and damage assays to characterize DNA double-strand break (DSB) induction at stressed replication forks (RFs) and subsequent repair by homologous recombination (HR). These assays enable spatiotemporal mapping of DNA damage response and repair proteins to establish their in vivo function and interactions, as well as detailed characterization of specific dysfunctions in HR caused by drugs or mutations of interest.
Collapse
|
32
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
33
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Int J Mol Sci 2020; 21:E6461. [PMID: 32899704 PMCID: PMC7555059 DOI: 10.3390/ijms21186461] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Precise gene editing is-or will soon be-in clinical use for several diseases, and more applications are under development. The programmable nuclease Cas9, directed by a single-guide RNA (sgRNA), can introduce double-strand breaks (DSBs) in target sites of genomic DNA, which constitutes the initial step of gene editing using this novel technology. In mammals, two pathways dominate the repair of the DSBs-nonhomologous end joining (NHEJ) and homology-directed repair (HDR)-and the outcome of gene editing mainly depends on the choice between these two repair pathways. Although HDR is attractive for its high fidelity, the choice of repair pathway is biased in a biological context. Mammalian cells preferentially employ NHEJ over HDR through several mechanisms: NHEJ is active throughout the cell cycle, whereas HDR is restricted to S/G2 phases; NHEJ is faster than HDR; and NHEJ suppresses the HDR process. This suggests that definitive control of outcome of the programmed DNA lesioning could be achieved through manipulating the choice of cellular repair pathway. In this review, we summarize the DSB repair pathways, the mechanisms involved in choice selection based on DNA resection, and make progress in the research investigating strategies that favor Cas9-mediated HDR based on the manipulation of repair pathway choice to increase the frequency of HDR in mammalian cells. The remaining problems in improving HDR efficiency are also discussed. This review should facilitate the development of CRISPR/Cas9 technology to achieve more precise gene editing.
Collapse
Affiliation(s)
| | | | | | | | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Collaborative Innovation Centers of Biological Products, School of Public Health, Xiamen University, Xiamen 361102, China; (H.Y.); (S.R.); (S.Y.); (H.P.); (J.Z.); (N.X.)
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Collaborative Innovation Centers of Biological Products, School of Public Health, Xiamen University, Xiamen 361102, China; (H.Y.); (S.R.); (S.Y.); (H.P.); (J.Z.); (N.X.)
| | | | | |
Collapse
|
35
|
Zhao B, Watanabe G, Lieber MR. Polymerase μ in non-homologous DNA end joining: importance of the order of arrival at a double-strand break in a purified system. Nucleic Acids Res 2020; 48:3605-3618. [PMID: 32052035 PMCID: PMC7144918 DOI: 10.1093/nar/gkaa094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
During non-homologous DNA end joining (NHEJ), bringing two broken dsDNA ends into proximity is an essential prerequisite for ligation by XRCC4:Ligase IV (X4L4). This physical juxtaposition of DNA ends is called NHEJ synapsis. In addition to the key NHEJ synapsis proteins, Ku, X4L4, and XLF, it has been suggested that DNA polymerase mu (pol μ) may also align two dsDNA ends into close proximity for synthesis. Here, we directly observe the NHEJ synapsis by pol μ using a single molecule FRET (smFRET) assay where we can measure the duration of the synapsis. The results show that pol μ alone can mediate efficient NHEJ synapsis of 3′ overhangs that have at least 1 nt microhomology. The abundant Ku protein in cells limits the accessibility of pol μ to DNA ends with overhangs. But X4L4 can largely reverse the Ku inhibition, perhaps by pushing the Ku inward to expose the overhang for NHEJ synapsis. Based on these studies, the mechanistic flexibility known to exist at other steps of NHEJ is now also apparent for the NHEJ synapsis step.
Collapse
Affiliation(s)
- Bailin Zhao
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Go Watanabe
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| |
Collapse
|
36
|
Çağlayan M. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Nucleic Acids Res 2020; 48:3708-3721. [PMID: 32140717 PMCID: PMC7144901 DOI: 10.1093/nar/gkaa151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
DNA ligase I and DNA ligase III/XRCC1 complex catalyze the ultimate ligation step following DNA polymerase (pol) β nucleotide insertion during base excision repair (BER). Pol β Asn279 and Arg283 are the critical active site residues for the differentiation of an incoming nucleotide and a template base and the N-terminal domain of DNA ligase I mediates its interaction with pol β. Here, we show inefficient ligation of pol β insertion products with mismatched or damaged nucleotides, with the exception of a Watson–Crick-like dGTP insertion opposite T, using BER DNA ligases in vitro. Moreover, pol β N279A and R283A mutants deter the ligation of the promutagenic repair intermediates and the presence of N-terminal domain of DNA ligase I in a coupled reaction governs the channeling of the pol β insertion products. Our results demonstrate that the BER DNA ligases are compromised by subtle changes in all 12 possible noncanonical base pairs at the 3′-end of the nicked repair intermediate. These findings contribute to understanding of how the identity of the mismatch affects the substrate channeling of the repair pathway and the mechanism underlying the coordination between pol β and DNA ligase at the final ligation step to maintain the BER efficiency.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
Liu R, Shen L, Lin C, He J, Wang Q, Qi Z, Zhang Q, Zhou M, Wang Z. MiR-1587 Regulates DNA Damage Repair and the Radiosensitivity of CRC Cells via Targeting LIG4. Dose Response 2020; 18:1559325820936906. [PMID: 32636722 PMCID: PMC7315685 DOI: 10.1177/1559325820936906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
DNA is subject to a range of endogenous and exogenous insults that can impair DNA replication and lead to DNA double-strand breaks (DSBs). The repair capacity of cancer cells mediates their radiosensitivity, but the roles of miR-1587 during radiation resistance are poorly characterized. In this study, we explored whether miR-1587 regulates the growth and radiosensitivity of colorectal cancer (CRC) cells through its ability to regulate DNA Ligase4 (LIG4). We found that CRC cells in which miR-1587 was overexpressed inhibited cell growth and promoted apoptosis through increasing DSBs and promoting cell cycle arrest. We found that overexpression of miR-1587 significantly inhibited LIG4 messenger RNA and protein expression and further revealed the ability of miR-1587 to directly bind to the LIG4-3′-untranslated region through dual-luciferase reporter assays. More notably, miR-1587 mimics increased the radiosensitivity of CRC cells. Taken together, we show that miR-1587 overexpression enhances the formation of DSBs, arrests CRC cell growth, and enhances the radiosensivity of CRC cells through the direct repression of LIG4 expression. These results reveal novel roles for miR-1587 during DNA damage repair and the radiosensivity of CRC cells. This highlights miR-1587 as a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.,Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Chuxian Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Junyan He
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qingtong Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, People's Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
38
|
Liu R, Zhang Q, Shen L, Chen S, He J, Wang D, Wang Q, Qi Z, Zhou M, Wang Z. Long noncoding RNA lnc-RI regulates DNA damage repair and radiation sensitivity of CRC cells through NHEJ pathway. Cell Biol Toxicol 2020; 36:493-507. [PMID: 32279126 DOI: 10.1007/s10565-020-09524-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022]
Abstract
A percentage of colorectal cancer (CRC) patients display low sensitivity to radiotherapy, which affects its therapeutic effect. Cancer cells DNA double-strand breaks (DSBs) repair capacity is crucial for radiosensitivity, but the roles of long noncoding RNAs (lncRNAs) in this process are largely uncharacterized. This study aims to explore whether lnc-RI regulates CRC cell growth and radiosensitivity by regulating the nonhomologous end-joining (NHEJ) repair pathway. CRC cells in which lnc-RI has been silenced showed lower cell growth and higher apoptosis rates due to increased DSBs and cell cycle arrest. We found that miR-4727-5p targets both lnc-RI and LIG4 mRNA and inhibit their expression. CRC cells showed increased radiosensitivity when lnc-RI was silenced. These results reveal novel roles for lnc-RI in both DNA damage repair and radiosensitivity regulation in CRC cells. Our study revealed that lnc-RI regulates LIG4 expression through lnc-RI/miR-4727-5p/LIG4 axis and regulates NHEJ repair efficiency to participate in DNA damage repair. The level of lnc-RI was negatively correlated with the radiosensitivity of CRC cells, indicates that lnc-RI may be a potential target for CRC therapy. We also present the first report of the function of miR-4727-5p.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Qingtong Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Shuangjing Chen
- PLA Rocket Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Junyan He
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| |
Collapse
|
39
|
Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Sci Rep 2020; 10:940. [PMID: 31969622 PMCID: PMC6976671 DOI: 10.1038/s41598-020-57886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023] Open
Abstract
DNA polymerase (pol) μ primarily inserts ribonucleotides into a single-nucleotide gapped DNA intermediate, and the ligation step plays a critical role in the joining of noncomplementary DNA ends during nonhomologous end joining (NHEJ) for the repair of double-strand breaks (DSBs) caused by reactive oxygen species. Here, we report that the pol μ insertion products of ribonucleotides (rATP or rCTP), instead of deoxyribonucleotides, opposite 8-oxo-2′-deoxyguanosine (8-oxodG) are efficiently ligated and the presence of Mn2+ stimulates this coupled reaction in vitro. Moreover, our results point to a role of pol μ in mediating ligation during the mutagenic bypass of 8-oxodG, while 3′-preinserted noncanonical base pairs (3′-rA or 3′-rC) on NHEJ repair intermediates compromise the end joining by DNA ligase I or the DNA ligase IV/XRCC4 complex.
Collapse
|
40
|
Serrano-Benítez A, Cortés-Ledesma F, Ruiz JF. "An End to a Means": How DNA-End Structure Shapes the Double-Strand Break Repair Process. Front Mol Biosci 2020; 6:153. [PMID: 31998749 PMCID: PMC6965357 DOI: 10.3389/fmolb.2019.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Endogenously-arising DNA double-strand breaks (DSBs) rarely harbor canonical 5′-phosphate, 3′-hydroxyl moieties at the ends, which are, regardless of the pathway used, ultimately required for their repair. Cells are therefore endowed with a wide variety of enzymes that can deal with these chemical and structural variations and guarantee the formation of ligatable termini. An important distinction is whether the ends are directly “unblocked” by specific enzymatic activities without affecting the integrity of the DNA molecule and its sequence, or whether they are “processed” by unspecific nucleases that remove nucleotides from the termini. DNA end structure and configuration, therefore, shape the repair process, its requirements, and, importantly, its final outcome. Thus, the molecular mechanisms that coordinate and integrate the cellular response to blocked DSBs, although still largely unexplored, can be particularly relevant for maintaining genome integrity and avoiding malignant transformation and cancer.
Collapse
Affiliation(s)
- Almudena Serrano-Benítez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain
| | - Felipe Cortés-Ledesma
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Topology and DNA breaks Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Jose F Ruiz
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Department of Plant Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| |
Collapse
|
41
|
Stinson BM, Moreno AT, Walter JC, Loparo JJ. A Mechanism to Minimize Errors during Non-homologous End Joining. Mol Cell 2019; 77:1080-1091.e8. [PMID: 31862156 DOI: 10.1016/j.molcel.2019.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Kaminski AM, Chiruvella KK, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC. Unexpected behavior of DNA polymerase Mu opposite template 8-oxo-7,8-dihydro-2'-guanosine. Nucleic Acids Res 2019; 47:9410-9422. [PMID: 31435651 DOI: 10.1093/nar/gkz680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) resulting from reactive oxygen species generated by exposure to UV and ionizing radiation are characterized by clusters of lesions near break sites. Such complex DSBs are repaired slowly, and their persistence can have severe consequences for human health. We have therefore probed DNA break repair containing a template 8-oxo-7,8-dihydro-2'-guanosine (8OG) by Family X Polymerase μ (Pol μ) in steady-state kinetics and cell-based assays. Pol μ tolerates 8OG-containing template DNA substrates, and the filled products can be subsequently ligated by DNA Ligase IV during Nonhomologous end-joining. Furthermore, Pol μ exhibits a strong preference for mutagenic bypass of 8OG by insertion of adenine. Crystal structures reveal that the template 8OG is accommodated in the Pol μ active site with none of the DNA substrate distortions observed for Family X siblings Pols β or λ. Kinetic characterization of template 8OG bypass indicates that Pol μ inserts adenosine nucleotides with weak sugar selectivity and, given the high cellular concentration of ATP, likely performs its role in repair of complex 8OG-containing DSBs using ribonucleotides.
Collapse
Affiliation(s)
- Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Kishore K Chiruvella
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27709, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katarzyna Bebenek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
43
|
Chen W, McKenna A, Schreiber J, Haeussler M, Yin Y, Agarwal V, Noble WS, Shendure J. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic Acids Res 2019; 47:7989-8003. [PMID: 31165867 PMCID: PMC6735782 DOI: 10.1093/nar/gkz487] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Non-homologous end-joining (NHEJ) plays an important role in double-strand break (DSB) repair of DNA. Recent studies have shown that the error patterns of NHEJ are strongly biased by sequence context, but these studies were based on relatively few templates. To investigate this more thoroughly, we systematically profiled ∼1.16 million independent mutational events resulting from CRISPR/Cas9-mediated cleavage and NHEJ-mediated DSB repair of 6872 synthetic target sequences, introduced into a human cell line via lentiviral infection. We find that: (i) insertions are dominated by 1 bp events templated by sequence immediately upstream of the cleavage site, (ii) deletions are predominantly associated with microhomology and (iii) targets exhibit variable but reproducible diversity with respect to the number and relative frequency of the mutational outcomes to which they give rise. From these data, we trained a model that uses local sequence context to predict the distribution of mutational outcomes. Exploiting the bias of NHEJ outcomes towards microhomology mediated events, we demonstrate the programming of deletion patterns by introducing microhomology to specific locations in the vicinity of the DSB site. We anticipate that our results will inform investigations of DSB repair mechanisms as well as the design of CRISPR/Cas9 experiments for diverse applications including genome-wide screens, gene therapy, lineage tracing and molecular recording.
Collapse
Affiliation(s)
- Wei Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Aaron McKenna
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jacob Schreiber
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Maximilian Haeussler
- Santa Cruz Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | - Yi Yin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, Seattle, WA 98195, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Tumbale PP, Jurkiw TJ, Schellenberg MJ, Riccio AA, O'Brien PJ, Williams RS. Two-tiered enforcement of high-fidelity DNA ligation. Nat Commun 2019; 10:5431. [PMID: 31780661 PMCID: PMC6882888 DOI: 10.1038/s41467-019-13478-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
DNA ligases catalyze the joining of DNA strands to complete DNA replication, recombination and repair transactions. To protect the integrity of the genome, DNA ligase 1 (LIG1) discriminates against DNA junctions harboring mutagenic 3'-DNA mismatches or oxidative DNA damage, but how such high-fidelity ligation is enforced is unknown. Here, X-ray structures and kinetic analyses of LIG1 complexes with undamaged and oxidatively damaged DNA unveil that LIG1 employs Mg2+-reinforced DNA binding to validate DNA base pairing during the adenylyl transfer and nick-sealing ligation reaction steps. Our results support a model whereby LIG1 fidelity is governed by a high-fidelity (HiFi) interface between LIG1, Mg2+, and the DNA substrate that tunes the enzyme to release pro-mutagenic DNA nicks. In a second tier of protection, LIG1 activity is surveilled by Aprataxin (APTX), which suppresses mutagenic and abortive ligation at sites of oxidative DNA damage.
Collapse
Affiliation(s)
- Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Thomas J Jurkiw
- Biological Chemistry, University of Michigan, 1150 W Medical Center Drive Ann Arbor, Ann Arbor, MI, 48109, USA
| | - Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Amanda A Riccio
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Patrick J O'Brien
- Biological Chemistry, University of Michigan, 1150 W Medical Center Drive Ann Arbor, Ann Arbor, MI, 48109, USA.
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
45
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
46
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
47
|
Klein HL, Ang KKH, Arkin MR, Beckwitt EC, Chang YH, Fan J, Kwon Y, Morten MJ, Mukherjee S, Pambos OJ, El Sayyed H, Thrall ES, Vieira-da-Rocha JP, Wang Q, Wang S, Yeh HY, Biteen JS, Chi P, Heyer WD, Kapanidis AN, Loparo JJ, Strick TR, Sung P, Van Houten B, Niu H, Rothenberg E. Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes. MICROBIAL CELL 2019; 6:65-101. [PMID: 30652106 PMCID: PMC6334232 DOI: 10.15698/mic2019.01.665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L Klein
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016, USA
| | - Kenny K H Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Yi-Hsuan Chang
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jun Fan
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Michael J Morten
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016, USA
| | - Sucheta Mukherjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Oliver J Pambos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Hafez El Sayyed
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Elizabeth S Thrall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - João P Vieira-da-Rocha
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Quan Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Shuang Wang
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005 Paris, France.,Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Julie S Biteen
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.,Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Terence R Strick
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005 Paris, France.,Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France.,Programme Equipe Labellisées, Ligue Contre le Cancer, 75013 Paris, France
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eli Rothenberg
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016, USA
| |
Collapse
|
48
|
Çağlayan M, Wilson SH. Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate. Nat Commun 2018; 9:4213. [PMID: 30310068 PMCID: PMC6181931 DOI: 10.1038/s41467-018-06700-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/08/2018] [Indexed: 01/01/2023] Open
Abstract
Incorporation of mismatched nucleotides during DNA replication or repair leads to transition or transversion mutations and is considered as a predominant source of base substitution mutagenesis in cancer cells. Watson-Crick like dG:dT base pairing is considered to be an important source of genome instability. Here we show that DNA polymerase (pol) μ insertion of 7,8-dihydro-8′-oxo-dGTP (8-oxodGTP) or deoxyguanosine triphosphate (dGTP) into a model double-strand break DNA repair substrate with template base T results in efficient ligation by DNA ligase. These results indicate that pol μ-mediated dGTP mismatch insertion opposite template base T coupled with ligation could be a feature of mutation prone nonhomologous end joining during double-strand break repair. Incorporation of mismatched nucleotides during DNA replication or repair can lead to mutagenesis. Here the authors reveal that DNA ligase can ligate NHEJ intermediates following incorporation of 8-oxodGTP or dGTP opposite T by DNA Polymerase mu (Pol mu) in vitro, which suggests that Pol mu could cause promutagenic mismatches during DSB repair.
Collapse
Affiliation(s)
- Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA. .,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
49
|
Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis. Nat Commun 2018; 9:2642. [PMID: 29980672 PMCID: PMC6035275 DOI: 10.1038/s41467-018-05024-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/16/2018] [Indexed: 11/26/2022] Open
Abstract
DNA ligase IV (LigIV) performs the final DNA nick-sealing step of classical nonhomologous end-joining, which is critical for immunoglobulin gene maturation and efficient repair of genotoxic DNA double-strand breaks. Hypomorphic LigIV mutations cause extreme radiation sensitivity and immunodeficiency in humans. To better understand the unique features of LigIV function, here we report the crystal structure of the catalytic core of human LigIV in complex with a nicked nucleic acid substrate in two distinct states—an open lysyl-AMP intermediate, and a closed DNA–adenylate form. Results from structural and mutagenesis experiments unveil a dynamic LigIV DNA encirclement mechanism characterized by extensive interdomain interactions and active site phosphoanhydride coordination, all of which are required for efficient DNA nick sealing. These studies provide a scaffold for defining impacts of LigIV catalytic core mutations and deficiencies in human LIG4 syndrome. DNA Ligase IV (LigIV) catalyzes nick sealing of DNA double-strand break substrates during non-homologous end-joining. Here the authors present the crystal structures of two human LigIV DNA-bound catalytic states, which provide insights into its catalytic mechanism and the molecular basis of LIG4 syndrome causing disease mutations.
Collapse
|
50
|
Baranes-Bachar K, Levy-Barda A, Oehler J, Reid DA, Soria-Bretones I, Voss TC, Chung D, Park Y, Liu C, Yoon JB, Li W, Dellaire G, Misteli T, Huertas P, Rothenberg E, Ramadan K, Ziv Y, Shiloh Y. The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair. Mol Cell 2018; 69:866-878.e7. [PMID: 29499138 PMCID: PMC6265044 DOI: 10.1016/j.molcel.2018.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.
Collapse
Affiliation(s)
- Keren Baranes-Bachar
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Levy-Barda
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Dylan A Reid
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Isabel Soria-Bretones
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Ty C Voss
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dudley Chung
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Yoon Park
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jong-Bok Yoon
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Graham Dellaire
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Eli Rothenberg
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|