1
|
Zhang J, Gong J, Chen J, Chen H. Protocol for forming G-quadruplexes from double-stranded DNA during transcription. STAR Protoc 2025; 6:103677. [PMID: 40085648 PMCID: PMC11952794 DOI: 10.1016/j.xpro.2025.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
G-quadruplexes are four-stranded nucleic acid structures that play vital roles in regulating gene expression, maintaining genomic stability, and supporting various biological processes. This protocol details their formation from double-stranded DNA via in vitro transcription. It includes steps for selecting suitable DNA templates, assembling necessary components (such as RNA polymerase, nucleotides, and buffers), setting optimal incubation conditions, and performing dimethyl sulfate (DMS) footprinting to analyze the structures. For complete details on the use and execution of this protocol, please refer to Zhang et al.1 and Gong et al.2.
Collapse
Affiliation(s)
- Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayuan Gong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Hanqing Chen
- Department of Nutrition & Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; Department of Gastroenterology and Hepatology, Center for Medical Research on Innovation and Translation, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510320, China.
| |
Collapse
|
2
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Oriol F, Alberto M, Joachim AP, Patrick G, M BP, Ruben MF, Jaume B, Altair CH, Ferran P, Oriol G, Narcis FF, Baldo O. Structure-based learning to predict and model protein-DNA interactions and transcription-factor co-operativity in cis-regulatory elements. NAR Genom Bioinform 2024; 6:lqae068. [PMID: 38867914 PMCID: PMC11167492 DOI: 10.1093/nargab/lqae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Transcription factor (TF) binding is a key component of genomic regulation. There are numerous high-throughput experimental methods to characterize TF-DNA binding specificities. Their application, however, is both laborious and expensive, which makes profiling all TFs challenging. For instance, the binding preferences of ∼25% human TFs remain unknown; they neither have been determined experimentally nor inferred computationally. We introduce a structure-based learning approach to predict the binding preferences of TFs and the automated modelling of TF regulatory complexes. We show the advantage of using our approach over the classical nearest-neighbor prediction in the limits of remote homology. Starting from a TF sequence or structure, we predict binding preferences in the form of motifs that are then used to scan a DNA sequence for occurrences. The best matches are either profiled with a binding score or collected for their subsequent modeling into a higher-order regulatory complex with DNA. Co-operativity is modelled by: (i) the co-localization of TFs and (ii) the structural modeling of protein-protein interactions between TFs and with co-factors. We have applied our approach to automatically model the interferon-β enhanceosome and the pioneering complexes of OCT4, SOX2 (or SOX11) and KLF4 with a nucleosome, which are compared with the experimentally known structures.
Collapse
Affiliation(s)
- Fornes Oriol
- Centre for Molecular Medicine and Therapeutics. BC Children's Hospital Research Institute. Department of Medical Genetics. University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Meseguer Alberto
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | | | - Gohl Patrick
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Bota Patricia M
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Molina-Fernández Ruben
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Bonet Jaume
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
- Laboratory of Protein Design & Immunoengineering. School of Engineering. Ecole Polytechnique Federale de Lausanne. Lausanne 1015, Vaud, Switzerland
| | - Chinchilla-Hernandez Altair
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Pegenaute Ferran
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Gallego Oriol
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Fernandez-Fuentes Narcis
- Institute of Biological, Environmental and Rural Science. Aberystwyth University, SY23 3DA Aberystwyth, UK
| | - Oliva Baldo
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| |
Collapse
|
4
|
Zhou Y, Routh AL. Bipartite viral RNA genome heterodimerization influences genome packaging and virion thermostability. J Virol 2024; 98:e0182023. [PMID: 38329331 PMCID: PMC10949487 DOI: 10.1128/jvi.01820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Marinov GK, Shipony Z, Kundaje A, Greenleaf WJ. Genome-Wide Mapping of Active Regulatory Elements Using ATAC-seq. Methods Mol Biol 2023; 2611:3-19. [PMID: 36807060 DOI: 10.1007/978-1-0716-2899-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Active cis-regulatory elements (cREs) in eukaryotes are characterized by nucleosomal depletion and, accordingly, higher accessibility. This property has turned out to be immensely useful for identifying cREs genome-wide and tracking their dynamics across different cellular states and is the basis of numerous methods taking advantage of the preferential enzymatic cleavage/labeling of accessible DNA. ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) has emerged as the most versatile and widely adaptable method and has been widely adopted as the standard tool for mapping open chromatin regions. Here, we discuss the current optimal practices and important considerations for carrying out ATAC-seq experiments, primarily in the context of mammalian systems.
Collapse
Affiliation(s)
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Zhang J, Fei Y, Sun L, Zhang QC. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat Methods 2022; 19:1193-1207. [PMID: 36203019 DOI: 10.1038/s41592-022-01623-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Beyond transferring genetic information, RNAs are molecules with diverse functions that include catalyzing biochemical reactions and regulating gene expression. Most of these activities depend on RNAs' specific structures. Therefore, accurately determining RNA structure is integral to advancing our understanding of RNA functions. Here, we summarize the state-of-the-art experimental and computational technologies developed to evaluate RNA secondary and tertiary structures. We also highlight how the rapid increase of experimental data facilitates the integrative modeling approaches for better resolving RNA structures. Finally, we provide our thoughts on the latest advances and challenges in RNA structure determination methods, as well as on future directions for both experimental approaches and artificial intelligence-based computational tools to model RNA structure. Ultimately, we hope the technological advances will deepen our understanding of RNA biology and facilitate RNA structure-based biomedical research such as designing specific RNA structures for therapeutics and deploying RNA-targeting small-molecule drugs.
Collapse
Affiliation(s)
- Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuhan Fei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lei Sun
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
7
|
Marinov GK, Shipony Z, Kundaje A, Greenleaf WJ. Single-Molecule Multikilobase-Scale Profiling of Chromatin Accessibility Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq. Methods Mol Biol 2022; 2458:269-298. [PMID: 35103973 PMCID: PMC9531602 DOI: 10.1007/978-1-0716-2140-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A hallmark feature of active cis-regulatory elements (CREs) in eukaryotes is their nucleosomal depletion and, accordingly, higher accessibility to enzymatic treatment. This property has been the basis of a number of sequencing-based assays for genome-wide identification and tracking the activity of CREs across different biological conditions, such as DNAse-seq, ATAC-seq , NOMeseq, and others. However, the fragmentation of DNA inherent to many of these assays and the limited read length of short-read sequencing platforms have so far not allowed the simultaneous measurement of the chromatin accessibility state of CREs located distally from each other. The combination of labeling accessible DNA with DNA modifications and nanopore sequencing has made it possible to develop such assays. Here, we provide a detailed protocol for carrying out the SMAC-seq assay (Single-Molecule long-read Accessible Chromatin mapping sequencing), in its m6A-SMAC-seq and m6A-CpG-GpC-SMAC-seq variants, together with methods for data processing and analysis, and discuss key experimental and analytical considerations for working with SMAC-seq datasets.
Collapse
Affiliation(s)
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
8
|
Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, Greenleaf WJ, Furlong EEM, Zhao K, Schmitz RJ, Bock C, Aerts S. Chromatin accessibility profiling methods. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10. [PMID: 38410680 PMCID: PMC10895463 DOI: 10.1038/s43586-020-00008-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Abstract
The ATAC-seq assay has emerged as the most useful, versatile, and widely adaptable method for profiling accessible chromatin regions and tracking the activity of cis-regulatory elements (cREs) in eukaryotes. Thanks to its great utility, it is now being applied to map active chromatin in the context of a very wide diversity of biological systems and questions. In the course of these studies, considerable experience working with ATAC-seq data has accumulated and a standard set of computational tasks that need to be carried for most ATAC-seq analyses has emerged. Here, we review and provide examples of common such analytical procedures (including data processing, quality control, peak calling, identifying differentially accessible open chromatin regions, and variable transcription factor (TF) motif accessibility) and discuss recommended optimal practices.
Collapse
|
10
|
Understanding metabolic adaptation by using bacterial laboratory evolution and trans-omics analysis. Biophys Rev 2020; 12:677-682. [PMID: 32394353 DOI: 10.1007/s12551-020-00695-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Many diseases such as metabolic syndrome, cancer, inflammatory diseases, and pathological phenomena can be understood as an adaptive reconstitution of the metabolic state (metabolic adaptation). One of the effective approaches to reveal the property of metabolic networks is using model organisms such as microorganisms that are easier to experiment with than higher organisms. Using the laboratory evolution approach, we can elucidate the evolutionary dynamics in various stress environments, which provide us an understanding of the metabolic adaptation. In addition, the integration of omics data and phenotypic data enables us to clarify the genetic and phenotypic alterations during adaptation. In this review, we describe our recent studies on bacterial laboratory evolution and the omics approach to clarify the stress adaptation process. We have also obtained high-dimensional phenotypic data using our automated culture system. By combining these genomic and transcriptomic data within high-throughput phenotypic data, we can discuss the complex trans-omics network of metabolic adaptation.
Collapse
|
11
|
Onel B, Wu G, Sun D, Lin C, Yang D. Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes. Methods Mol Biol 2019; 2035:201-222. [PMID: 31444751 DOI: 10.1007/978-1-4939-9666-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA G-quadruplexes are globular nucleic acid secondary structures which occur throughout the human genome under physiological conditions. There is accumulating evidence supporting G-quadruplex involvement in a number of important aspects of genome functions, including transcription, replication, and genomic stability, and that protein and enzyme recognition of G-quadruplexes may represent a key event to regulate physiological or pathological pathways. Two important techniques to study G-quadruplexes and their protein interactions are the electrophoretic mobility shift assay (EMSA) and dimethyl sulfate (DMS) footprinting assay. EMSA, one of the most sensitive and robust methods for studying the DNA-protein interactions, can be used to determine the binding parameters and relative affinities of a protein for the G-quadruplex. DMS footprinting is a powerful assay for the initial characterization of G-quadruplexes, which can be used to deduce the guanine bases involved in the formation of G-tetrads under physiological salt conditions. DMS footprinting can also reveal important information in G-quadruplex-protein complexes on protein contacts and regional changes in DNA G-quadruplex upon protein binding. In this paper, we will provide a detailed protocol for the EMSA and DMS footprinting assays for characterization of G-quadruplexes and G-quadruplex-protein complexes. Expected outcomes and references to extensions of the method will be further discussed.
Collapse
Affiliation(s)
- Buket Onel
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Guanhui Wu
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Daekyu Sun
- University of Arizona, College of Pharmacy, Tucson, AZ, USA.,BIO5 Institute, Tucson, AZ, USA.,Arizona Cancer Center, Tucson, AZ, USA
| | - Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Cancer Research, West Lafayette, IN, USA. .,Purdue Institute for Drug Discovery, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Bevilacqua PC, Assmann SM. Technique Development for Probing RNA Structure In Vivo and Genome-Wide. Cold Spring Harb Perspect Biol 2018; 10:a032250. [PMID: 30275275 PMCID: PMC6169808 DOI: 10.1101/cshperspect.a032250] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
How organisms perceive and respond to their surroundings is one of the great questions in biology. It is clear that RNA plays key roles in sensing. Cellular and environmental cues that RNA responds to include temperature, ions, metabolites, and biopolymers. Recent advances in next-generation sequencing and in vivo chemical probing have provided unprecedented insights into RNA folding in vivo and genome-wide. Patterns of chemical reactivity have implicated control of gene expression by RNA and aided prediction of RNA structure. Central to these advances has been development of molecular biological and chemical techniques. Key advances are improvements in the quality, cost, and throughput of library preparation; availability of a wider array of chemicals for probing RNA structure in vivo; and robustness and user friendliness of data analysis. Insights from probing transcriptomes and future directions are provided.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Departments of Chemistry and Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
13
|
Umeyama T, Ito T. DMS-seq for In Vivo Genome-Wide Mapping of Protein-DNA Interactions and Nucleosome Centers. ACTA ACUST UNITED AC 2018; 123:e60. [PMID: 29927065 DOI: 10.1002/cpmb.60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The genome exerts its functions through interactions with proteins. Hence, comprehensive identification of protein-occupied sites by genomic footprinting is critical to an in-depth understanding of genome functions. This unit describes the protocol of dimethyl sulfate-sequencing (DMS-seq). DMS is an alkylating reagent that methylates guanine and adenine in double-stranded DNA. DMS added to the culture medium readily enters the cell and methylates its DNA throughout the genome except for the regions bound by proteins, thereby obviating the need for nuclear isolation in genomic footprinting. Polyamine/AP-endonuclease treatment of DNA isolated from DMS-treated cells induces cleavages at the methylated sites. Deep sequencing of these fragments identifies protein-bound sites as peaks of protected fragments or troughs of cleavage sites. Furthermore, DMS displays an unexpected preference to nucleosome centers, enabling their direct detection without genetic manipulation. Therefore, DMS-seq provides a unique method for non-targeted profiling of in vivo protein-DNA interactions. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|