1
|
Xiu Y, Xiong M, Yang H, Wang Q, Zhao X, Long J, Liang F, Liu N, Chen F, Gao M, Sun Y, Fan R, Zeng Y. Proteomic characterization of murine hematopoietic stem progenitor cells reveals dynamic fetal-to-adult changes in metabolic-related pathways. Biochem Biophys Res Commun 2024; 734:150661. [PMID: 39243675 DOI: 10.1016/j.bbrc.2024.150661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Hematopoietic stem progenitor cells (HSPCs) give rise to the hematopoietic system, maintain hematopoiesis throughout the lifespan, and undergo molecular and functional changes during their development and aging. The importance of hematopoietic stem cell (HSC) biology has led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of HSPCs throughout the murine lifetime still needs to be fully completed. Here, using mass spectrometry (MS)-based quantitative proteomics, we report on the dynamic changes in the proteome of HSPCs from four developmental stages in the fetal liver (FL) and the bone marrow (BM), including E14.5, young (2 months), middle-aged (8 months), and aging (18 months) stages. Proteomics unveils highly dynamic protein kinetics during the development and aging of HSPCs. Our data identify stage-specific developmental features of HSPCs, which can be linked to their functional maturation and senescence. Our proteomic data demonstrated that FL HSPCs depend on aerobic respiration to meet their proliferation and oxygen supply demand, while adult HSPCs prefer glycolysis to preserve the HSC pool. By functional assays, we validated the decreased mitochondrial metabolism, glucose uptake, reactive oxygen species (ROS) production, protein synthesis rate, and increased glutathione S-transferase (GST) activity during HSPC development from fetal to adult. Distinct metabolism pathways and immune-related pathways enriched in different HSPC developmental stages were revealed at the protein level. Our study will have broader implications for understanding the mechanism of stem cell maintenance and fate determination and reversing the HSC aging process.
Collapse
Affiliation(s)
- Yanyu Xiu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Mingfang Xiong
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Qianqian Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Xiao Zhao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Juan Long
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Fei Liang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Nan Liu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Fudong Chen
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Meng Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yuying Sun
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Yang Zeng
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; Medical School of the Chinese PLA General Hospital, Beijing, 100039, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
2
|
de Groot AP, de Haan G. How CBX proteins regulate normal and leukemic blood cells. FEBS Lett 2024; 598:2788-2806. [PMID: 38426219 PMCID: PMC11586599 DOI: 10.1002/1873-3468.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.
Collapse
Affiliation(s)
- Anne P. de Groot
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
- Department of Hematology, Amsterdam UMCUniversity of AmsterdamThe Netherlands
| |
Collapse
|
3
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Xiong M, Xiu Y, Long J, Zhao X, Wang Q, Yang H, Yu H, Bian L, Ju Y, Yin H, Hou Q, Liang F, Liu N, Chen F, Fan R, Sun Y, Zeng Y. Proteomics reveals dynamic metabolic changes in human hematopoietic stem progenitor cells from fetal to adulthood. Stem Cell Res Ther 2024; 15:303. [PMID: 39278906 PMCID: PMC11403967 DOI: 10.1186/s13287-024-03930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.
Collapse
Affiliation(s)
- Mingfang Xiong
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Yanyu Xiu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Juan Long
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiao Zhao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qianqian Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hang Yu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Lihong Bian
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yan Ju
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Hongyu Yin
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qingxiang Hou
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Fei Liang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Nan Liu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Fudong Chen
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuying Sun
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yang Zeng
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China.
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
5
|
Agrawal H, Mehatre SH, Khurana S. The hematopoietic stem cell expansion niche in fetal liver: Current state of the art and the way forward. Exp Hematol 2024; 136:104585. [PMID: 39068980 DOI: 10.1016/j.exphem.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hematopoietic development goes through a number of embryonic sites that host hematopoietic progenitor and stem cells with function required at specific developmental stages. Among embryonic sites, the fetal liver (FL) hosts definitive hematopoietic stem cells (HSCs) capable of engrafting adult hematopoietic system and supports their rapid expansion. Hence, this site provides an excellent model to understand the cellular and molecular components of the machinery involved in HSC-proliferative events, leading to their overall expansion. It has been unequivocally established that extrinsic regulators orchestrate events that maintain HSC function. Although most studies on extrinsic regulation of HSC function are targeted at adult bone marrow (BM) hematopoiesis, little is known about how FL HSC function is regulated by their microniche. This review provides the current state of our understanding on molecular and cellular niche factors that support FL hematopoiesis.
Collapse
Affiliation(s)
- Harsh Agrawal
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India..
| |
Collapse
|
6
|
Camiolo G, Mullen CG, Ottersbach K. Mechanistic insights into the developmental origin of pediatric hematologic disorders. Exp Hematol 2024; 136:104583. [PMID: 39059457 DOI: 10.1016/j.exphem.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Embryonic and fetal hematopoietic stem and progenitor cells differ in some key properties from cells that are part of the adult hematopoietic system. These include higher proliferation and self-renewal capacity, different globin gene usage, and differing lineage biases. Although these evolved to cover specific requirements of embryonic development, they can have serious consequences for the pathogenesis of hematologic malignancies that initiate prebirth in fetal blood cells and may result in a particularly aggressive disease that does not respond well to treatments that have been designed for adult leukemias. This indicates that these infant/pediatric leukemias should be considered developmental diseases, where a thorough understanding of their unique biology is essential for designing more effective therapies. In this review, we will highlight some of these unique fetal properties and detail the underlying molecular drivers of these phenotypes. We specifically focus on those that are pertinent to disease pathogenesis and that may therefore reveal disease vulnerabilities. We have also included an extensive description of the origins, phenotypes, and key molecular drivers of the main infant and pediatric leukemias that have a known prenatal origin. Importantly, successes in recent years in generating faithful models of these malignancies in which cellular origins, key drivers, and potential vulnerabilities can be investigated have resulted in uncovering potential, new therapeutic avenues.
Collapse
Affiliation(s)
- Giuseppina Camiolo
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher G Mullen
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
7
|
Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, Sorimachi Y, Morikawa T, Fujita S, Shide K, Haraguchi M, Tamaki S, Mikawa T, Kondoh H, Nakano H, Sumiyama K, Nagamatsu G, Goda N, Okamoto S, Nakamura-Ishizu A, Shimoda K, Suematsu M, Suda T, Takubo K. SDHAF1 confers metabolic resilience to aging hematopoietic stem cells by promoting mitochondrial ATP production. Cell Stem Cell 2024; 31:1145-1161.e15. [PMID: 38772377 DOI: 10.1016/j.stem.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.
Collapse
Affiliation(s)
- Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Takumi Mikawa
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; RIKEN Center for Biosystems Dynamics Research, Laboratory for Mouse Genetic Engineering, Osaka 565-0871, Japan
| | - Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu 400-8501, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
8
|
Jassinskaja M, Ghosh S, Watral J, Davoudi M, Claesson Stern M, Daher U, Eldeeb M, Zhang Q, Bryder D, Hansson J. A complex interplay of intra- and extracellular factors regulates the outcome of fetal- and adult-derived MLL-rearranged leukemia. Leukemia 2024; 38:1115-1130. [PMID: 38555405 PMCID: PMC11073998 DOI: 10.1038/s41375-024-02235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, YO10 5DD, York, UK
| | - Sudip Ghosh
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Joanna Watral
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Melina Claesson Stern
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Ugarit Daher
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Mohamed Eldeeb
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Qinyu Zhang
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - David Bryder
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.
| |
Collapse
|
9
|
Kyun ML, Park T, Jung H, Kim I, Kwon JI, Jeong SY, Choi M, Park D, Lee YB, Moon KS. Development of an In Vitro Model for Inflammation Mediated Renal Toxicity Using 3D Renal Tubules and Co-Cultured Human Immune Cells. Tissue Eng Regen Med 2023; 20:1173-1190. [PMID: 37843784 PMCID: PMC10645777 DOI: 10.1007/s13770-023-00602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND The emergence of various infectious diseases and the toxic effects of hyperinflammation by biotherapeutics have highlighted the need for in vitro preclinical models mimicking the human immune system. In vitro models studying the relationship between hyperinflammation and acute renal injury mainly rely on 2D culture systems, which have shown limitations in recapitulating kidney function. Herein, we developed an in vitro kidney toxicity model by co-culturing 3D engineered kidney proximal tubules cells (RPTEC/TERT1) with human peripheral blood mononuclear cells (PBMC). METHODS RPTEC/TERT1 were sandwich cultured to form 3D renal tubules for 16 days. The tubules were then co-cultured with PBMC using transwell (0.4 μm pores) for 24 h. Hyperinflammation of PBMC was induced during co-culture using polyinosinic-polycytidylic acid (polyI:C) and lipopolysaccharide (LPS) to investigate the effects of the induced hyperinflammation on the renal tubules. RESULTS Encapsulated RPTEC/TERT1 cells in Matrigel exhibited elevated renal function markers compared to 2D culture. The coexistence of PBMC and polyI:C induced a strong inflammatory response in the kidney cells. This hyperinflammation significantly reduced primary cilia formation and upregulated kidney injury markers along the 3D tubules. Similarly, treating co-cultured PBMC with LPS to induce hyperinflammation resulted in comparable inflammatory responses and potential kidney injury. CONCLUSION The model demonstrated similar changes in kidney injury markers following polyI:C and LPS treatment, indicating its suitability for detecting immune-associated kidney damage resulting from infections and biopharmaceutical applications.
Collapse
Affiliation(s)
- Mi-Lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyewon Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Inhye Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-In Kwon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seo Yule Jeong
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
10
|
Yusoff NA, Abd Hamid Z, Budin SB, Taib IS. Linking Benzene, in Utero Carcinogenicity and Fetal Hematopoietic Stem Cell Niches: A Mechanistic Review. Int J Mol Sci 2023; 24:ijms24076335. [PMID: 37047305 PMCID: PMC10094243 DOI: 10.3390/ijms24076335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Previous research reported that prolonged benzene exposure during in utero fetal development causes greater fetal abnormalities than in adult-stage exposure. This phenomenon increases the risk for disease development at the fetal stage, particularly carcinogenesis, which is mainly associated with hematological malignancies. Benzene has been reported to potentially act via multiple modes of action that target the hematopoietic stem cell (HSCs) niche, a complex microenvironment in which HSCs and multilineage hematopoietic stem and progenitor cells (HSPCs) reside. Oxidative stress, chromosomal aberration and epigenetic modification are among the known mechanisms mediating benzene-induced genetic and epigenetic modification in fetal stem cells leading to in utero carcinogenesis. Hence, it is crucial to monitor exposure to carcinogenic benzene via environmental, occupational or lifestyle factors among pregnant women. Benzene is a well-known cause of adult leukemia. However, proof of benzene involvement with childhood leukemia remains scarce despite previously reported research linking incidences of hematological disorders and maternal benzene exposure. Furthermore, accumulating evidence has shown that maternal benzene exposure is able to alter the developmental and functional properties of HSPCs, leading to hematological disorders in fetus and children. Since HSPCs are parental blood cells that regulate hematopoiesis during the fetal and adult stages, benzene exposure that targets HSPCs may induce damage to the population and trigger the development of hematological diseases. Therefore, the mechanism of in utero carcinogenicity by benzene in targeting fetal HSPCs is the primary focus of this review.
Collapse
|
11
|
Grey W, Atkinson S, Rix B, Casado P, Ariza-McNaughton L, Hawley C, Sopoena ML, Bridge KS, Kent D, Cutillas PR, Bonnet D. The CKS1/CKS2 Proteostasis Axis Is Crucial to Maintain Hematopoietic Stem Cell Function. Hemasphere 2023; 7:e853. [PMID: 36874381 PMCID: PMC9977483 DOI: 10.1097/hs9.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Long-term hematopoietic stem cells are rare, highly quiescent stem cells of the hematopoietic system with life-long self-renewal potential and the ability to transplant and reconstitute the entire hematopoietic system of conditioned recipients. Most of our understanding of these rare cells has relied on cell surface identification, epigenetic, and transcriptomic analyses. Our knowledge of protein synthesis, folding, modification, and degradation-broadly termed protein homeostasis or "proteostasis"-in these cells is still in its infancy, with very little known about how the functional state of the proteome is maintained in hematopoietic stem cells. We investigated the requirement of the small phospho-binding adaptor proteins, the cyclin-dependent kinase subunits (CKS1 and CKS2), for maintaining ordered hematopoiesis and long-term hematopoietic stem cell reconstitution. CKS1 and CKS2 are best known for their roles in p27 degradation and cell cycle regulation, and by studying the transcriptome and proteome of Cks1 -/- and Cks2 -/- mice, we demonstrate regulation of key signaling pathways that govern hematopoietic stem cell biology including AKT, FOXO1, and NFκB, together balancing protein homeostasis and restraining reactive oxygen species to ensure healthy hematopoietic stem cell function.
Collapse
Affiliation(s)
- William Grey
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Samantha Atkinson
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beatrice Rix
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | | | - Cathy Hawley
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Miriam L. Sopoena
- Bioinformatics Core, The Francis Crick Institute, London, United Kingdom
| | - Katherine S. Bridge
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - David Kent
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro R. Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | - Dominique Bonnet
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
12
|
Bain FM, Che JLC, Jassinskaja M, Kent DG. Lessons from early life: understanding development to expand stem cells and treat cancers. Development 2022; 149:277217. [PMID: 36217963 PMCID: PMC9724165 DOI: 10.1242/dev.201070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Haematopoietic stem cell (HSC) self-renewal is a process that is essential for the development and homeostasis of the blood system. Self-renewal expansion divisions, which create two daughter HSCs from a single parent HSC, can be harnessed to create large numbers of HSCs for a wide range of cell and gene therapies, but the same process is also a driver of the abnormal expansion of HSCs in diseases such as cancer. Although HSCs are first produced during early embryonic development, the key stage and location where they undergo maximal expansion is in the foetal liver, making this tissue a rich source of data for deciphering the molecules driving HSC self-renewal. Another equally interesting stage occurs post-birth, several weeks after HSCs have migrated to the bone marrow, when HSCs undergo a developmental switch and adopt a more dormant state. Characterising these transition points during development is key, both for understanding the evolution of haematological malignancies and for developing methods to promote HSC expansion. In this Spotlight article, we provide an overview of some of the key insights that studying HSC development have brought to the fields of HSC expansion and translational medicine, many of which set the stage for the next big breakthroughs in the field.
Collapse
Affiliation(s)
- Fiona M. Bain
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - James L. C. Che
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - David G. Kent
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
- Author for correspondence ()
| |
Collapse
|
13
|
Pimkova K, Jassinskaja M, Munita R, Ciesla M, Guzzi N, Cao Thi Ngoc P, Vajrychova M, Johansson E, Bellodi C, Hansson J. Quantitative analysis of redox proteome reveals oxidation-sensitive protein thiols acting in fundamental processes of developmental hematopoiesis. Redox Biol 2022; 53:102343. [PMID: 35640380 PMCID: PMC9157258 DOI: 10.1016/j.redox.2022.102343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Fetal and adult hematopoietic stem and progenitor cells (HSPCs) are characterized by distinct redox homeostasis that may influence their differential cellular behavior in normal and malignant hematopoiesis. In this work, we have applied a quantitative mass spectrometry-based redox proteomic approach to comprehensively describe reversible cysteine modifications in primary mouse fetal and adult HSPCs. We defined the redox state of 4,438 cysteines in fetal and adult HSPCs and demonstrated a higher susceptibility to oxidation of protein thiols in fetal HSPCs. Our data identified ontogenic changes to oxidation state of thiols in proteins with a pronounced role in metabolism and protein homeostasis. Additional redox proteomic analysis identified oxidation changes to thiols acting in mitochondrial respiration as well as protein homeostasis to be triggered during onset of MLL-ENL leukemogenesis in fetal HSPCs. Our data has demonstrated that redox signaling contributes to the regulation of fundamental processes of developmental hematopoiesis and has pinpointed potential targetable redox-sensitive proteins in in utero-initiated MLL-rearranged leukemia.
Collapse
Affiliation(s)
- K Pimkova
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic.
| | - M Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - R Munita
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Ciesla
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - N Guzzi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - P Cao Thi Ngoc
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - E Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - C Bellodi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - J Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Developmental cues license megakaryocyte priming in murine hematopoietic stem cells. Blood Adv 2022; 6:6228-6241. [PMID: 35584393 PMCID: PMC9792704 DOI: 10.1182/bloodadvances.2021006861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
The fetal-to-adult switch in hematopoietic stem cell (HSC) behavior is characterized by alterations in lineage output and entry into deep quiescence. Here we identify the emergence of megakaryocyte (Mk)-biased HSCs as an event coinciding with this developmental switch. Single-cell chromatin accessibility analysis reveals a ubiquitous acquisition of Mk lineage priming signatures in HSCs during the fetal-to-adult transition. These molecular changes functionally coincide with increased amplitude of early Mk differentiation events after acute inflammatory insult. Importantly, we identify LIN28B, known for its role in promoting fetal-like self-renewal, as an insulator against the establishment of an Mk-biased HSC pool. LIN28B protein is developmentally silenced in the third week of life, and its prolonged expression delays emergency platelet output in young adult mice. We propose that developmental regulation of Mk priming may represent a switch for HSCs to toggle between prioritizing self-renewal in the fetus and increased host protection in postnatal life.
Collapse
|
15
|
Jassinskaja M, Hansson J. The Opportunity of Proteomics to Advance the Understanding of Intra- and Extracellular Regulation of Malignant Hematopoiesis. Front Cell Dev Biol 2022; 10:824098. [PMID: 35350382 PMCID: PMC8957922 DOI: 10.3389/fcell.2022.824098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal and adult hematopoiesis are regulated by largely distinct sets of cell-intrinsic gene regulatory networks as well as extracellular cues in their respective microenvironment. These ontogeny-specific programs drive hematopoietic stem and progenitor cells (HSPCs) in fetus and adult to divergent susceptibility to initiation and progression of hematological malignancies, such as leukemia. Elucidating how leukemogenic hits disturb the intra- and extracellular programs in HSPCs along ontogeny will provide a better understanding of the causes for age-associated differences in malignant hematopoiesis and facilitate the improvement of strategies for prevention and treatment of pediatric and adult acute leukemia. Here, we review current knowledge of the intrinsic and extrinsic programs regulating normal and malignant hematopoiesis, with a particular focus on the differences between infant and adult acute leukemia. We discuss the recent advances in mass spectrometry-based proteomics and its opportunity for resolving the interplay of cell-intrinsic and niche-associated factors in regulating malignant hematopoiesis.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.,York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Li Y, Magee JA. Transcriptional reprogramming in neonatal hematopoietic stem and progenitor cells. Exp Hematol 2021; 101-102:25-33. [PMID: 34303776 PMCID: PMC8557639 DOI: 10.1016/j.exphem.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cells (HSCs) and lineage-committed hematopoietic progenitor cells (HPCs) undergo profound shifts in gene expression during the neonatal and juvenile stages of life. Temporal changes in HSC/HPC gene expression underlie concomitant changes in self-renewal capacity, lineage biases, and hematopoietic output. Moreover, they can modify disease phenotypes. For example, childhood leukemias have distinct driver mutation profiles relative to adult leukemias, and they may arise from distinct cells of origin. The putative relationship between neonatal HSC/HPC ontogeny and childhood blood disorders highlights the importance of understanding how, at a mechanistic level, HSCs transition from fetal to adult transcriptional states. In this perspective piece, we summarize recent work indicating that the transition is uncoordinated and imprecisely timed. We discuss implications of these findings, including mechanisms that might enable neonatal HSCs and HPCs to acquire adultlike properties over a drawn-out period, in lieu of precise gene regulatory networks. The transition from fetal to adult transcriptional programs coincides with a pulse of type I interferon signaling that activates many genes associated with the adultlike state. This pulse may sensitize HSCs/HPCs to mutations that drive leukemogenesis shortly after birth. If we can understand how developmental switches modulate HSC and HPC fate after birth-both under normal circumstances and in the setting of disease-causing mutations-we can potentially reprogram these switches to treat or prevent childhood leukemias.
Collapse
|
17
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
18
|
Grzywa TM, Nowis D, Golab J. The role of CD71 + erythroid cells in the regulation of the immune response. Pharmacol Ther 2021; 228:107927. [PMID: 34171326 DOI: 10.1016/j.pharmthera.2021.107927] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Complex regulation of the immune response is necessary to support effective defense of an organism against hostile invaders and to maintain tolerance to harmless microorganisms and autoantigens. Recent studies revealed previously unappreciated roles of CD71+ erythroid cells (CECs) in regulation of the immune response. CECs physiologically reside in the bone marrow where erythropoiesis takes place. Under stress conditions, CECs are enriched in some organs outside of the bone marrow as a result of extramedullary erythropoiesis. However, the role of CECs goes well beyond the production of erythrocytes. In neonates, increased numbers of CECs contribute to their vulnerability to infectious diseases. On the other side, neonatal CECs suppress activation of immune cells in response to abrupt colonization with commensal microorganisms after delivery. CECs are also enriched in the peripheral blood of pregnant women as well as in the placenta and are responsible for the regulation of feto-maternal tolerance. In patients with cancer, anemia leads to increased frequency of CECs in the peripheral blood contributing to diminished antiviral and antibacterial immunity, as well as to accelerated cancer progression. Moreover, recent studies revealed the role of CECs in HIV and SARS-CoV-2 infections. CECs use a full arsenal of mechanisms to regulate immune response. These cells suppress proinflammatory responses of myeloid cells and T-cell proliferation by the depletion of ʟ-arginine by arginase. Moreover, CECs produce reactive oxygen species to decrease T-cell proliferation. CECs also secrete cytokines, including transforming growth factor β (TGF-β), which promotes T-cell differentiation into regulatory T-cells. Here, we comprehensively describe the role of CECs in orchestrating immune response and indicate some therapeutic approaches that might be used to regulate their effector functions in the treatment of human conditions.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Doctoral School, Medical University of Warsaw, Zwirki and Wigury 61 Street, 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Centre of Preclinical Research, Medical University of Warsaw, Banacha 1b Street, 02-097 Warsaw, Poland.
| |
Collapse
|
19
|
Jassinskaja M, Pimková K, Arh N, Johansson E, Davoudi M, Pereira CF, Sitnicka E, Hansson J. Ontogenic shifts in cellular fate are linked to proteotype changes in lineage-biased hematopoietic progenitor cells. Cell Rep 2021; 34:108894. [PMID: 33761361 DOI: 10.1016/j.celrep.2021.108894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Kristýna Pimková
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Nejc Arh
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Emil Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden; Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Carlos-Filipe Pereira
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Ewa Sitnicka
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
20
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
21
|
Zaro BW, Noh JJ, Mascetti VL, Demeter J, George B, Zukowska M, Gulati GS, Sinha R, Flynn RA, Banuelos A, Zhang A, Wilkinson AC, Jackson P, Weissman IL. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. eLife 2020; 9:e62210. [PMID: 33236985 PMCID: PMC7688314 DOI: 10.7554/elife.62210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.
Collapse
Affiliation(s)
- Balyn W Zaro
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Victoria L Mascetti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Benson George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Monika Zukowska
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Ryan A Flynn
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peter Jackson
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology and the Stanford UC-Berkeley Stem Cell InstituteStanfordUnited States
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
22
|
Antunes ETB, Ottersbach K. The MLL/SET family and haematopoiesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194579. [PMID: 32389825 PMCID: PMC7294230 DOI: 10.1016/j.bbagrm.2020.194579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
As demonstrated through early work in Drosophila, members of the MLL/SET family play essential roles during embryonic development through their participation in large protein complexes that are central to epigenetic regulation of gene expression. One of its members, MLL1, has additionally received a lot of attention as it is a potent oncogenic driver in different types of leukaemia when aberrantly fused to a large variety of partners as a result of chromosomal translocations. Its exclusive association with cancers of the haematopoietic system has prompted a large number of investigations into the role of MLL/SET proteins in haematopoiesis, a summary of which was attempted in this review. Interestingly, MLL-rearranged leukaemias are particularly prominent in infant and paediatric leukaemia, which commonly initiate in utero. This, together with the known function of MLL/SET proteins in embryonic development, has focussed research efforts in recent years on understanding the role of this protein family in developmental haematopoiesis and how this may be subverted by MLL oncofusions in infant leukaemia. A detailed understanding of these prenatal events is essential for the development of new treatments that improve the survival specifically of this very young patient group.
Collapse
Affiliation(s)
- Eric T B Antunes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
23
|
Gu H, Chen C, Hao X, Su N, Huang D, Zou Y, Lin SH, Chen X, Zheng D, Liu L, Yu Z, Xie L, Zhang Y, He X, Lai X, Zhang X, Chen GQ, Zhao Y, Yang Y, Loscalzo J, Zheng J. MDH1-mediated malate-aspartate NADH shuttle maintains the activity levels of fetal liver hematopoietic stem cells. Blood 2020; 136:553-571. [PMID: 32396938 PMCID: PMC7393259 DOI: 10.1182/blood.2019003940] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/26/2020] [Indexed: 12/31/2022] Open
Abstract
The connections between energy metabolism and stemness of hematopoietic stem cells (HSCs) at different developmental stages remain largely unknown. We generated a transgenic mouse line for the genetically encoded NADH/NAD+ sensor (SoNar) and demonstrate that there are 3 distinct fetal liver hematopoietic cell populations according to the ratios of SoNar fluorescence. SoNar-low cells had an enhanced level of mitochondrial respiration but a glycolytic level similar to that of SoNar-high cells. Interestingly, 10% of SoNar-low cells were enriched for 65% of total immunophenotypic fetal liver HSCs (FL-HSCs) and contained approximately fivefold more functional HSCs than their SoNar-high counterparts. SoNar was able to monitor sensitively the dynamic changes of energy metabolism in HSCs both in vitro and in vivo. Mechanistically, STAT3 transactivated MDH1 to sustain the malate-aspartate NADH shuttle activity and HSC self-renewal and differentiation. We reveal an unexpected metabolic program of FL-HSCs and provide a powerful genetic tool for metabolic studies of HSCs or other types of stem cells.
Collapse
Affiliation(s)
- Hao Gu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxin Hao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Su
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yejun Zou
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shu-Hai Lin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Chen
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Denghao Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Lai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaocui Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
25
|
Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR, Downes DJ, Sivaraman K, Espinoza HM, Hughes JR, Price ND, Perkins TJ, Ranish JA, Brand M. Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis. Mol Cell 2020; 78:960-974.e11. [PMID: 32330456 PMCID: PMC7344268 DOI: 10.1016/j.molcel.2020.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.
Collapse
Affiliation(s)
| | - Carmen G Palii
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada
| | - Daniel Sanchez-Taltavull
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada; Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Paul Shannon
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Karthi Sivaraman
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | | | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| | - Jeffrey A Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| |
Collapse
|
26
|
Majumder MM, Leppä AM, Hellesøy M, Dowling P, Malyutina A, Kopperud R, Bazou D, Andersson E, Parsons A, Tang J, Kallioniemi O, Mustjoki S, O'Gorman P, Wennerberg K, Porkka K, Gjertsen BT, Heckman CA. Multi-parametric single cell evaluation defines distinct drug responses in healthy hematologic cells that are retained in corresponding malignant cell types. Haematologica 2020; 105:1527-1538. [PMID: 31439679 PMCID: PMC7271564 DOI: 10.3324/haematol.2019.217414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023] Open
Abstract
Innate drug sensitivity in healthy cells aids identification of lineage specific anti-cancer therapies and reveals off-target effects. To characterize the diversity in drug responses in the major hematopoietic cell types, we simultaneously assessed their sensitivity to 71 small molecules utilizing a multi-parametric flow cytometry assay and mapped their proteomic and basal signaling profiles. Unsupervised hierarchical clustering identified distinct drug responses in healthy cell subsets based on their cellular lineage. Compared to other cell types, CD19+/B and CD56+/NK cells were more sensitive to dexamethasone, venetoclax and midostaurin, while monocytes were more sensitive to trametinib. Venetoclax exhibited dose-dependent cell selectivity that inversely correlated to STAT3 phosphorylation. Lineage specific effect of midostaurin was similarly detected in CD19+/B cells from healthy, acute myeloid leukemia and chronic lymphocytic leukemia samples. Comparison of drug responses in healthy and neoplastic cells showed that healthy cell responses are predictive of the corresponding malignant cell response. Taken together, understanding drug sensitivity in the healthy cell-of-origin provides opportunities to obtain a new level of therapy precision and avoid off-target toxicity.
Collapse
Affiliation(s)
- Muntasir M Majumder
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aino-Maija Leppä
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Monica Hellesøy
- Hematology Section, Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Alina Malyutina
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Reidun Kopperud
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Despina Bazou
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Emma Andersson
- Department of Clinical Chemistry and Hematology, University of Helsinki, Finland
| | - Alun Parsons
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, Solna, Sweden
| | - Satu Mustjoki
- Department of Clinical Chemistry and Hematology, University of Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland
| | - Peter O'Gorman
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Bjørn T Gjertsen
- Hematology Section, Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol 2019; 40:648-664. [PMID: 31155315 DOI: 10.1016/j.it.2019.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Neutrophils, the most abundant white blood cells in human circulation, entertain intense interactions with other leukocyte subsets, platelets, and stromal cells. Molecularly, such interactions are typically communicated through proteins generated during granulopoiesis, stored in granules, or produced on demand. Here, we provide an overview of the mammalian regulation of granule protein production in the bone marrow and the de novo synthesis of cytokines by neutrophils recruited to tissues. In addition, we discuss some of the known biological roles of these protein messengers, and how neutrophil-borne granule proteins and cytokines can synergize to modulate inflammation and tumor development. Decoding the neutrophil interactome is important for therapeutically neutralizing individual proteins to putatively dampen inflammation, or for delivering modified neutrophil-borne proteins to boost host defense.
Collapse
Affiliation(s)
| | - Nataliya K Östberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Oliver Soehnlein
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention (IPEK), Klinikum der LMU, München, Germany; German Centre for Cardiovascular Research (DZHK), Partner site, Munich, Germany.
| |
Collapse
|
28
|
Gao S, Liu F. Fetal liver: an ideal niche for hematopoietic stem cell expansion. SCIENCE CHINA-LIFE SCIENCES 2018; 61:885-892. [PMID: 29934917 DOI: 10.1007/s11427-018-9313-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
Abstract
Fetal liver (FL) is an intricate and highly vascularized hematopoietic organ, which can support the extensive expansion of hematopoietic stem cells (HSCs) without loss of stemness, as well as of the downstream lineages of HSCs. This powerful function of FL largely benefits from the niche (or microenvironment), which provides a residence for HSC expansion. Numerous studies have demonstrated that the FL niche consists of heterogeneous cell populations that associate with HSCs spatially and regulate HSCs functionally. At the molecular level, a complex of cell extrinsic and intrinsic signaling network within the FL niche cells maintains HSC expansion. Here, we summarize recent studies on the analysis of the FL HSCs and their niche, and specifically on the molecular regulatory network for HSC expansion. Based on these studies, we hypothesize a strategy to obtain a large number of functional HSCs via 3D reconstruction of FL organoid ex vivo for clinical treatment in the future.
Collapse
Affiliation(s)
- Suwei Gao
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|