1
|
Machado AS, Bragança M, Vieira-Coelho M. Epigenetic effects of cannabis: A systematic scoping review of behavioral and emotional symptoms associated with cannabis use and exocannabinoid exposure. Drug Alcohol Depend 2024; 263:111401. [PMID: 39137613 DOI: 10.1016/j.drugalcdep.2024.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Recent research suggests that epigenetic modifications may mediate the behavioral effects of cannabis, influencing exocannabinnoids' long term effects in cognitive function and its role in the emergence of psychotic symptoms. BASIC PROCEDURES In this systematic scoping review, we assessed the current evidence of epigenetic effects associated with the use of cannabis or exocannabinoid administration and their relationship with behavioral and emotional symptoms. We searched PubMed, Cochrane CENTRAL, and Web of Science, up to January 2022, using the terms "cannabis" and "epigenetics." The search yielded 178 articles, of which 43 underwent full article revision; 37 articles were included in the review. MAIN FINDINGS The gathered evidence included observational cross-sectional studies conducted on human subjects and experimental designs using animal models that conveyed disparity in administration dosage, methods of cannabis use assessment and targeted epigenetic mechanisms. Nine studies performed epigenome-wide analysis with identification of differentially methylated sites; most of these studies found a global hypomethylation, and enrichment in genes related to cellular survival and neurodevelopment. Other studies assessed methylation at specific genes and found that cannabis exposure was associated with reduced methylation at Cg05575921, DNMT1, DRD2, COMT, DLGAP2, Arg1, STAT3, MGMT, and PENK, while hypermethylation was found at DNMT3a/b, NCAM1, and AKT1. CONCLUSIONS The review found evidence of an exocannabinoid-induced epigenetic changes that modulate depressive-anxious, psychotic, and addictive behavioural phenotypes. Further studies will require dosage exposure/administration uniformization and a customized pool of genes to assess their suitability as biomarkers for psychiatric diseases.
Collapse
Affiliation(s)
- Ana Sofia Machado
- Psychiatry Service of São João Local Health Unit, Porto, Portugal; Clinical Neurosciences and Mental Health Department, Medicine Faculty of Porto University (FMUP), Porto, Portugal.
| | - Miguel Bragança
- Psychiatry Service of São João Local Health Unit, Porto, Portugal; Clinical Neurosciences and Mental Health Department, Medicine Faculty of Porto University (FMUP), Porto, Portugal
| | - Maria Vieira-Coelho
- Psychiatry Service of São João Local Health Unit, Porto, Portugal; Biomedicine Department, Medicine Faculty of Porto University (FMUP), Porto, Portugal
| |
Collapse
|
2
|
Oliveira MM, Mohamed M, Elder MK, Banegas-Morales K, Mamcarz M, Lu EH, Golhan EAN, Navrange N, Chatterjee S, Abel T, Klann E. The integrated stress response effector GADD34 is repurposed by neurons to promote stimulus-induced translation. Cell Rep 2024; 43:113670. [PMID: 38219147 PMCID: PMC10964249 DOI: 10.1016/j.celrep.2023.113670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Neuronal protein synthesis is required for long-lasting plasticity and long-term memory consolidation. Dephosphorylation of eukaryotic initiation factor 2α is one of the key translational control events that is required to increase de novo protein synthesis that underlies long-lasting plasticity and memory consolidation. Here, we interrogate the molecular pathways of translational control that are triggered by neuronal stimulation with brain-derived neurotrophic factor (BDNF), which results in eukaryotic initiation factor 2α (eIF2α) dephosphorylation and increases in de novo protein synthesis. Primary rodent neurons exposed to BDNF display elevated translation of GADD34, which facilitates eIF2α dephosphorylation and subsequent de novo protein synthesis. Furthermore, GADD34 requires G-actin generated by cofilin to dephosphorylate eIF2α and enhance protein synthesis. Finally, GADD34 is required for BDNF-induced translation of synaptic plasticity-related proteins. Overall, we provide evidence that neurons repurpose GADD34, an effector of the integrated stress response, as an orchestrator of rapid increases in eIF2-dependent translation in response to plasticity-inducing stimuli.
Collapse
Affiliation(s)
| | - Muhaned Mohamed
- Center for Neural Science, New York University, New York, NY, USA
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Maggie Mamcarz
- Center for Neural Science, New York University, New York, NY, USA
| | - Emily H Lu
- Center for Neural Science, New York University, New York, NY, USA
| | - Ela A N Golhan
- Center for Neural Science, New York University, New York, NY, USA
| | - Nishika Navrange
- Center for Neural Science, New York University, New York, NY, USA
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Liu C, Chen L, Cong Y, Cheng L, Shuai Y, Lv F, Chen K, Song Y, Xing Y. Protein phosphatase 1 regulatory subunit 15 A promotes translation initiation and induces G2M phase arrest during cuproptosis in cancers. Cell Death Dis 2024; 15:149. [PMID: 38365764 PMCID: PMC10873343 DOI: 10.1038/s41419-024-06489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Copper ions play a crucial role as cofactors for essential enzymes in cellular processes. However, when the intracellular concentration of copper ions exceeds the homeostatic threshold, they become toxic to cells. In our study, we demonstrated that elesclomol, as a carrier of copper ions, caused an upregulation of protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), which plays a role in regulating substrate selectivity of protein phosphatase 1 during cuproptosis. Mechanistically, we investigated that PPP1R15A activated translation initiation by dephosphorylating eukaryotic translation initiation factor 2 subunit alpha at the S51 residue through protein phosphatase 1 and phosphorylating eukaryotic translation initiation factor 4E binding protein 1 at the T70 residue. In addition, PPP1R15A reduced H3K4 methylation by altering the phosphorylation of histone methyltransferases, which led to the silencing of MYC and G2M phase arrest.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yujun Shuai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
4
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
5
|
Bornscheuer L, Lundin A, Forsell Y, Lavebratt C, Melas PA. Functional Variation in the FAAH Gene Is Directly Associated with Subjective Well-Being and Indirectly Associated with Problematic Alcohol Use. Genes (Basel) 2023; 14:1826. [PMID: 37761966 PMCID: PMC10530831 DOI: 10.3390/genes14091826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme that degrades anandamide, an endocannabinoid that modulates mesolimbic dopamine release and, consequently, influences states of well-being. Despite these known interactions, the specific role of FAAH in subjective well-being remains underexplored. Since well-being is a dynamic trait that can fluctuate over time, we hypothesized that we could provide deeper insights into the link between FAAH and well-being using longitudinal data. To this end, we analyzed well-being data collected three years apart using the WHO (Ten) Well-Being Index and genotyped a functional polymorphism in the FAAH gene (rs324420, Pro129Thr) in a sample of 2822 individuals. We found that the A-allele of rs324420, which results in reduced FAAH activity and elevated anandamide levels, was associated with lower well-being scores at both time points (Wave I, B: -0.52, p = 0.007; Wave II, B: -0.41, p = 0.03, adjusted for age and sex). A subsequent phenome-wide association study (PheWAS) affirmed our well-being findings in the UK Biobank (N = 126,132, alternative C-allele associated with elevated happiness, p = 0.008) and revealed an additional association with alcohol dependence. In our cohort, using lagged longitudinal mediation analyses, we uncovered evidence of an indirect association between rs324420 and problematic alcohol use (AUDIT-P) through the pathway of lower well-being (indirect effect Boot: 0.015, 95% CI [0.003, 0.030], adjusted for AUDIT in Wave I). We propose that chronically elevated anandamide levels might influence disruptions in the endocannabinoid system-a biological contributor to well-being-which could, in turn, contribute to increased alcohol intake, though multiple factors may be at play. Further genetic studies and mediation analyses are needed to validate and extend these findings.
Collapse
Affiliation(s)
- Lisa Bornscheuer
- Department of Public Health Sciences, Stockholm University, 10691 Stockholm, Sweden;
| | - Andreas Lundin
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden;
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Philippe A. Melas
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| |
Collapse
|
6
|
Synaptoproteomic Analysis of the Prefrontal Cortex Reveals Spatio-Temporal Changes in SYNGAP1 Following Cannabinoid Exposure in Rat Adolescence. Int J Mol Sci 2022; 24:ijms24010698. [PMID: 36614142 PMCID: PMC9820805 DOI: 10.3390/ijms24010698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The regular use of cannabis during adolescence has been associated with a number of negative life outcomes, including psychopathology and cognitive impairments. However, the exact molecular mechanisms that underlie these outcomes are just beginning to be understood. Moreover, very little is known about the spatio-temporal molecular changes that occur following cannabinoid exposure in adolescence. To understand these changes, we exposed mid-adolescent male rats to a synthetic cannabinoid (WIN 55,212-2 mesylate; WIN) and, following drug abstinence through late adolescence, we subjected the synaptosomal fractions of the prefrontal cortex (PFC) to proteomic analyses. A total of N = 487 differentially expressed proteins were found in WIN-exposed animals compared to controls. Gene ontology analyses revealed enrichment of terms related to the gamma-aminobutyric acid (GABA)-ergic neurotransmitter system. Among the top differentially expressed proteins was the synaptic Ras GTPase-activating protein 1 (SYNGAP1). Using Western blotting experiments, we found that the WIN-induced upregulation of SYNGAP1 was spatio-temporal in nature, arising only in the synaptosomal fractions (not in the cytosol) and only following prolonged drug abstinence (not on abstinence day 1). Moreover, the SYNGAP1 changes were found to be specific to WIN-exposure in adolescence and not adulthood. Adolescent animals exposed to a natural cannabinoid (Δ9-tetrahydrocannabinol; THC) were also found to have increased levels of SYNGAP1 in the PFC. THC exposure also led to a pronounced upregulation of SYNGAP1 in the amygdala, but without any changes in the dorsal striatum, hippocampus, or nucleus accumbens. To our knowledge, this is the first study to uncover a link between cannabinoid exposure and changes in SYNGAP1 that are spatio-temporal and developmental in nature. Future studies are needed to investigate the putative role of SYNGAP1 in the negative behavioral consequences of cannabis use in adolescence.
Collapse
|
7
|
de Almeida V, Seabra G, Reis-de-Oliveira G, Zuccoli GS, Rumin P, Fioramonte M, Smith BJ, Zuardi AW, Hallak JEC, Campos AC, Crippa JA, Martins-de-Souza D. Cannabinoids modulate proliferation, differentiation, and migration signaling pathways in oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2022; 272:1311-1323. [PMID: 35622101 DOI: 10.1007/s00406-022-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Cannabinoid signaling, mainly via CB1 and CB2 receptors, plays an essential role in oligodendrocyte health and functions. However, the specific molecular signals associated with the activation or blockade of CB1 and CB2 receptors in this glial cell have yet to be elucidated. Mass spectrometry-based shotgun proteomics and in silico biology tools were used to determine which signaling pathways and molecular mechanisms are triggered in a human oligodendrocytic cell line (MO3.13) by several pharmacological stimuli: the phytocannabinoid cannabidiol (CBD); CB1 and CB2 agonists ACEA, HU308, and WIN55, 212-2; CB1 and CB2 antagonists AM251 and AM630; and endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The modulation of cannabinoid signaling in MO3.13 was found to affect pathways linked to cell proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Additionally, we found that carbohydrate and lipid metabolism, as well as mitochondrial function, were modulated by these compounds. Comparing the proteome changes and upstream regulators among treatments, the highest overlap was between the CB1 and CB2 antagonists, followed by overlaps between AEA and 2-AG. Our study opens new windows of opportunities, suggesting that cannabinoid signaling in oligodendrocytes might be relevant in the context of demyelinating and neurodegenerative diseases. Proteomics data are available at ProteomeXchange (PXD031923).
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil.
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Priscila Rumin
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Alline C Campos
- National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil. .,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
8
|
Oliveira MM, Klann E. eIF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer's disease. Semin Cell Dev Biol 2022; 125:101-109. [PMID: 34304995 PMCID: PMC8782933 DOI: 10.1016/j.semcdb.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Memory storage is a conserved survivability feature, present in virtually any complex species. During the last few decades, much effort has been devoted to understanding how memories are formed and which molecular switches define whether a memory should be stored for a short or a long period of time. Among these, de novo protein synthesis is known to be required for the conversion of short- to long-term memory. There are a number translational control pathways involved in synaptic plasticity and memory consolidation, including the phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), which has emerged as a critical molecular switch for long-term memory consolidation. In this review, we discuss findings pertaining to the requirement of de novo protein synthesis to memory formation, how local dendritic and axonal translation is regulated in neurons, and how these can influence memory consolidation. We also highlight the importance of eIF2α-dependent translation initiation to synaptic plasticity and memory formation. Finally, we contextualize how aberrant phosphorylation of eIF2α contributes to Alzheimer's disease (AD) pathology and how preventing disruption of eIF2-dependent translation may be a therapeutic avenue for preventing and/or restoring memory loss in AD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Bornscheuer L, Lundin A, Forsell Y, Lavebratt C, Melas PA. The cannabinoid receptor-1 gene interacts with stressful life events to increase the risk for problematic alcohol use. Sci Rep 2022; 12:4963. [PMID: 35322131 PMCID: PMC8941304 DOI: 10.1038/s41598-022-08980-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Problematic alcohol use is a major contributor to the global burden of death and disabilities, and it represents a public health concern that has grown substantially following the COVID-19 pandemic. The available treatment options remain limited and to develop better pharmacotherapies for alcohol misuse we need to identify suitable biological targets. Previous research has implicated the brain’s endocannabinoid system (ECS) in psychiatric and stress-related outcomes, including substance use and habituation to repeated stress. Moreover, genetic variants in the cannabinoid-1 receptor gene (CNR1; CB1R) have been associated with personality traits, which are in turn predictors of substance use disorders. To date, however, no human genome-wide association study has provided evidence for an involvement of the ECS in substance use outcomes. One reason for this ECS-related “missing heritability” may be unexamined gene-environment interactions. To explore this possibility, we conducted cross-sectional analyses using DNA samples and stress-exposure data from a longitudinal Swedish population-based study (N = 2,915). Specifically, we genotyped rs2023239, a functional C/T single nucleotide polymorphism in CNR1, previously reported to be associated with CNR1 binding in the brain, subjective reward following alcohol intake, and alcohol cue-elicited brain activation. Our two outcomes of interest were (i) problematic alcohol use based on the Alcohol Use Disorders Identification Test (AUDIT), and (ii) personality trait scores based on the Five Factor Model. We found no baseline association between rs2023239 and problematic alcohol use or personality traits. However, there was a clear trend for interaction between rs2023239’s risk allele (C) and stressful life events (SLEs) in both childhood and adulthood, which predicted problematic alcohol use. Although not significant, there was also some indication that the risk allele interacted with child SLEs to increase scores on neuroticism. Our study supports the notion that the ECS can affect alcohol intake behaviors by interacting with life adversities and is—to the best of our knowledge—the first to focus on the interaction between CNR1 and stressors in both childhood and adulthood in humans. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Lisa Bornscheuer
- Department of Public Health Sciences, Stockholm University, 10691, Stockholm, Sweden.,Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Andreas Lundin
- Department of Global Public Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Catharina Lavebratt
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Philippe A Melas
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden. .,Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, 11364, Stockholm, Sweden.
| |
Collapse
|
10
|
Hill KP, Gold MS, Nemeroff CB, McDonald W, Grzenda A, Widge AS, Rodriguez C, Kraguljac NV, Krystal JH, Carpenter LL. Risks and Benefits of Cannabis and Cannabinoids in Psychiatry. Am J Psychiatry 2022; 179:98-109. [PMID: 34875873 DOI: 10.1176/appi.ajp.2021.21030320] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The United States is in the midst of rapidly changing laws regarding cannabis. The increasing availability of cannabis for recreational and medical use requires that mental health clinicians be knowledgeable about evidence to be considered when counseling both patients and colleagues. In this review, the authors outline the evidence from randomized double-blind placebo-controlled trials for therapeutic use of cannabinoids for specific medical conditions and the potential side effects associated with acute and chronic cannabis use. METHODS Searches of PubMed and PsycInfo were conducted for articles published through July 2021 reporting on "cannabis" or "cannabinoids" or "medicinal cannabis." Additional articles were identified from the reference lists of published reviews. Articles that did not contain the terms "clinical trial" or "therapy" in the title or abstract were not reviewed. A total of 4,431 articles were screened, and 841 articles that met criteria for inclusion were reviewed by two or more authors. RESULTS There are currently no psychiatric indications approved by the U.S. Food and Drug Administration (FDA) for cannabinoids, and there is limited evidence supporting the therapeutic use of cannabinoids for treatment of psychiatric disorders. To date, evidence supporting cannabinoid prescription beyond the FDA indications is strongest for the management of pain and spasticity. CONCLUSIONS As cannabinoids become more available, the need for an evidence base adequately evaluating their safety and efficacy is increasingly important. There is considerable evidence that cannabinoids have a potential for harm in vulnerable populations such as adolescents and those with psychotic disorders. The current evidence base is insufficient to support the prescription of cannabinoids for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Kevin P Hill
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - Mark S Gold
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - Charles B Nemeroff
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - William McDonald
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - Adrienne Grzenda
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - Alik S Widge
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - Carolyn Rodriguez
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - Nina V Kraguljac
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - John H Krystal
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| | - Linda L Carpenter
- Department of Psychiatry, Harvard Medical School, Boston, andBeth Israel Deaconess Medical Center, Boston (Hill);Department of Psychiatry, School of Medicine, Washington University in St. Louis (Gold);Department of Psychiatry, Dell Medical School, University of Texas at Austin (Nemeroff);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald);Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda);Department of Psychiatry, University of Minnesota, Minneapolis (Widge);Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., andVeterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez);Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac);Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal);Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, andButler Hospital, Providence, R.I. (Carpenter)
| |
Collapse
|
11
|
Korneeva NL. Integrated Stress Response in Neuronal Pathology and in Health. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S111-S127. [PMID: 35501991 DOI: 10.1134/s0006297922140103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Neurodegeneration involves progressive pathological loss of a specific population of neurons, glial activation, and dysfunction of myelinating oligodendrocytes leading to cognitive impairment and altered movement, breathing, and senses. Neuronal degeneration is a hallmark of aging, stroke, drug abuse, toxic chemical exposure, viral infection, chronic inflammation, and a variety of neurological diseases. Accumulation of intra- and extracellular protein aggregates is a common characteristic of cell pathologies. Excessive production of reactive oxygen species and nitric oxide, induction of endoplasmic reticulum stress, and accumulation of misfolded protein aggregates have been shown to trigger a defensive mechanism called integrated stress response (ISR). Activation of ISR is important for synaptic plasticity in learning and memory formation. However, sustaining of ISR may lead to the development of neuronal pathologies and altered patterns in behavior and perception.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- Louisiana State University Health Science Center, Shreveport, LA 71103, USA.
| |
Collapse
|
12
|
Gobira PH, Roncalho AL, Silva NR, Silote GP, Sales AJ, Joca SR. Adolescent cannabinoid exposure modulates the vulnerability to cocaine-induced conditioned place preference and DNMT3a expression in the prefrontal cortex in Swiss mice. Psychopharmacology (Berl) 2021; 238:3107-3118. [PMID: 34328516 DOI: 10.1007/s00213-021-05926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/06/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Cannabis sativa is the most widely used drug by adolescents globally. The recreational use of synthetic cannabinoids by teenagers has also grown in recent years. Despite the wrong perception that exposure to these drugs does not cause harm, repeated exposure to cannabinoids at early stages of life compromises important maturation processes and brain development. Chronic early cannabinoid use has been related to a higher risk of psychiatric outcomes, including cocaine addiction. Evidence suggests that exposure to natural and synthetic cannabinoids during adolescence modifies molecular and behavioral effects of cocaine in adulthood. Responses to cocaine are regulated by epigenetic mechanisms, such as DNA methylation, in the brain's reward regions. However, the involvement of these processes in modulation of the vulnerability to the effects of cocaine induced by prior exposure to cannabinoids remains poorly understood. OBJECTIVES Investigate whether exposure to the synthetic cannabinoid WIN55,212-2 during adolescence modulates anxiety- and depression-like behavior, memory, and cocaine reward in adult mice. We also evaluated whether exposure to cannabinoids during adolescence modulates the expression of enzymes that are involved in DNA methylation. RESULTS Exposure to WIN55,212-2 during adolescence did not alter anxiety- or depressive-like behavior. However, prior exposure to cannabinoids inhibited cocaine-induced conditioned place preference without modulating cocaine-induced hyperlocomotion, accompanied by an increase in expression of the enzyme DNA methyltransferase 3a (DNMT3a) in the prefrontal cortex. CONCLUSIONS Our findings suggest that exposure to WIN55,212-2 during adolescence leads to changes in DNMT3a expression, and this pathway appears to be relevant to modulating the rewarding effects of cocaine.
Collapse
Affiliation(s)
- P H Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| | - A L Roncalho
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - N R Silva
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - G P Silote
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - A J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Abyadeh M, Gupta V, Paulo JA, Gupta V, Chitranshi N, Godinez A, Saks D, Hasan M, Amirkhani A, McKay M, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. A Proteomic View of Cellular and Molecular Effects of Cannabis. Biomolecules 2021; 11:1411. [PMID: 34680044 PMCID: PMC8533448 DOI: 10.3390/biom11101411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis (Cannabis sativa), popularly known as marijuana, is the most commonly used psychoactive substance and is considered illicit in most countries worldwide. However, a growing body of research has provided evidence of the therapeutic properties of chemical components of cannabis known as cannabinoids against several diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease, schizophrenia and glaucoma; these have prompted changes in medicinal cannabis legislation. The relaxation of legal restrictions and increased socio-cultural acceptance has led to its increase in both medicinal and recreational usage. Several biochemically active components of cannabis have a range of effects on the biological system. There is an urgent need for more research to better understand the molecular and biochemical effects of cannabis at a cellular level, to understand fully its implications as a pharmaceutical drug. Proteomics technology is an efficient tool to rigorously elucidate the mechanistic effects of cannabis on the human body in a cell and tissue-specific manner, drawing conclusions associated with its toxicity as well as therapeutic benefits, safety and efficacy profiles. This review provides a comprehensive overview of both in vitro and in vivo proteomic studies involving the cellular and molecular effects of cannabis and cannabis-derived compounds.
Collapse
Affiliation(s)
- Morteza Abyadeh
- ProGene Technologies Pty Ltd., Macquarie Park, Sydney, NSW 2113, Australia;
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 2600, Australia;
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Angela Godinez
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Danit Saks
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia;
| | - Matthew McKay
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Northern Clinical School, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ghasem H. Salekdeh
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Paul A. Haynes
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| |
Collapse
|
14
|
Mitra S, Gobira PH, Werner CT, Martin JA, Iida M, Thomas SA, Erias K, Miracle S, Lafargue C, An C, Dietz DM. A role for the endocannabinoid enzymes monoacylglycerol and diacylglycerol lipases in cue-induced cocaine craving following prolonged abstinence. Addict Biol 2021; 26:e13007. [PMID: 33496035 PMCID: PMC11000690 DOI: 10.1111/adb.13007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Following exposure to drugs of abuse, long-term neuroadaptations underlie persistent risk to relapse. Endocannabinoid signaling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate endocannabinoid biosynthesis and metabolism in regulating relapse behaviors following prolonged periods of drug abstinence has not been examined. Here, we investigated how pharmacological manipulation of lipases involved in regulating the expression of the endocannabinoid 2-AG in the nucleus accumbens (NAc) influence cocaine relapse via discrete neuroadaptations. At prolonged abstinence (30 days) from cocaine self-administration, there is an increase in the NAc levels of diacylglycerol lipase (DAGL), the enzyme responsible for the synthesis of the endocannabinoid 2-AG, along with decreased levels of monoacylglycerol lipase (MAGL), which hydrolyzes 2-AG. Since endocannabinoid-mediated behavioral plasticity involves phosphatase dysregulation, we examined the phosphatase calcineurin after 30 days of abstinence and found decreased expression in the NAc, which we demonstrate is regulated through the transcription factor EGR1. Intra-NAc pharmacological manipulation of DAGL and MAGL with inhibitors DO-34 and URB-602, respectively, bidirectionally regulated cue-induced cocaine seeking and altered the phosphostatus of translational initiation factor, eIF2α. Finally, we found that cocaine seeking 30 days after abstinence leads to decreased phosphorylation of eIF2α and reduced expression of its downstream target NPAS4, a protein involved in experience-dependent neuronal plasticity. Together, our findings demonstrate that lipases that regulate 2-AG expression influence transcriptional and translational changes in the NAc related to drug relapse vulnerability.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Pedro H. Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- These authors contributed equally to this work
| | - Craig T. Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Madoka Iida
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shruthi A. Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Kyra Erias
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sophia Miracle
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Charles Lafargue
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
15
|
Harpaz D, Veltman B, Sadeh Y, Marks RS, Bernstein N, Eltzov E. The effect of cannabis toxicity on a model microbiome bacterium epitomized by a panel of bioluminescent E. coli. CHEMOSPHERE 2021; 263:128241. [PMID: 33297188 DOI: 10.1016/j.chemosphere.2020.128241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 05/27/2023]
Abstract
The world acceptance of medical cannabis slowly widens. Cannabinoids are known as the main therapeutic active compounds in the cannabis plant, yet their bioactive physiological effects are still unknown. In this study, the mode of action of nine selected cannabinoids was examined using a bioluminescent bacterial panel, as well as the extracts of six different cannabis varieties and cannabinoids standards artificial mixtures. The bacterial panel was composed of genetically modified E. coli bacteria that is commonly found in the gut microbiome, to which a lux operon was added to various stress promoters. The panel was exposed to the cannabinoids in order to identify bacterial defense mechanism, via the aforementioned specific stress types response. This enables the understanding of the toxicity mode of action of cannabinoids. From all the tested cannabinoids, only delta-9-tetrahydrocannabinol (THC) and delta-9-tetrahydrocannabinolic acid A (THCA) produced a genotoxic effect, while the other tested cannabinoids, demonstrated cytotoxic or oxidative damages. Unlike pure cannabinoids, cannabis plant extracts exhibited mostly genotoxicity, with minor cytotoxicity or oxidative stress responses. Moreover, cannabinoids standards artificial mixtures produced a different response patterns compared to their individual effects, which may be due to additional synergistic or antagonistic reactions between the mixed chemicals on the bacterial panel. The results showed that despite the lack of cannabigerol (CBG), cannabidivarin (CBDV), cannabinol (CBN), and cannabichromene (CBC) in the artificial solution mimicking the CN6 cannabis variety, a similar response pattern to the cannabinoids standards mixture was obtained. This work contributes to the understanding of such correlations and may provide a realistic view of cannabinoid effects on the human microbiome.
Collapse
Affiliation(s)
- Dorin Harpaz
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel; Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Boris Veltman
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel; Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Yael Sadeh
- Institute of Soil Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, POBox 6, Bet-Dagan, 50250, Israel
| | - Robert S Marks
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, POBox 6, Bet-Dagan, 50250, Israel.
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel.
| |
Collapse
|
16
|
Hempel BJ, Crissman ME, Imanalieva A, Melkumyan M, Winston CA, Riley AL. Cross-generational THC Exposure Weakly Attenuates Cocaine's Rewarding Effects in Adult Male Offspring. Physiol Behav 2020; 227:113164. [PMID: 32891609 DOI: 10.1016/j.physbeh.2020.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Adolescents represent a large demographic of marijuana consumers. Regrettably, use during this developmental period has been associated with above average health risks. A growing body of evidence suggests that adolescent drug use in the lifetime of a parent can modify behavior and neurochemistry in descendants without direct exposure. The current study was designed to evaluate the effects of pre-conception THC during adolescence on vulnerability to cocaine in adult male offspring. Male and female rats were given an intermittent THC (0 or 1.5 mg/kg) exposure regimen during the adolescent window and mated with drug group conspecifics in adulthood. F1-THC and F1-Veh pups were cross fostered to drug naïve control dams. In Experiment 1, adult offspring underwent cocaine (0 or 15 mg/kg) locomotor sensitization procedures and showed no effect of parental THC exposure on locomotor activity. In Experiment 2, intravenous catheters were implanted and subjects were tested under a number of reinforcement schedules with cocaine (FR1, FR5, FR10, PR, dose-response, extinction, cue + stress induced reinstatement). F1-THC subjects exhibited a slight decrease in cocaine responding during acquisition and a more rapid extinction, but they failed to produce significant differences on any other measure. These findings indicate that adolescent cannabis use likely has minimal effects on cocaine abuse liability in the next generation.
Collapse
Affiliation(s)
- Briana J Hempel
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| | - Madeline E Crissman
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Aikerim Imanalieva
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Mariam Melkumyan
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Chloe A Winston
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| |
Collapse
|
17
|
Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science 2020; 368:368/6489/eaat5314. [PMID: 32327570 DOI: 10.1126/science.aat5314] [Citation(s) in RCA: 869] [Impact Index Per Article: 173.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell's proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine. Proc Natl Acad Sci U S A 2020; 117:9991-10002. [PMID: 32312805 PMCID: PMC7211986 DOI: 10.1073/pnas.1920866117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The endocannabinoid system has a modulatory role in brain reward and cognitive processes. It has been hypothesized that repeated interference with endocannabinoid signaling (e.g., through abuse of cannabis or synthetic cannabinoids) can remodel the adolescent brain and make it respond differently to more addictive substances, such as cocaine. In the present study, we demonstrate that a history of synthetic cannabinoid exposure in adolescent animals results in distinct molecular and epigenetic changes following initial exposure to cocaine. These changes were pronounced in the prefrontal cortex and associated with an enhanced response to cocaine’s stimulatory effects. The prefrontal cortex is a brain region that still undergoes maturation in adolescence and its dysfunction contributes to the development of addictions. The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological evidence demonstrating that cannabinoids can also alter the brain’s initial molecular and epigenetic response to cocaine. Here, we utilized a multiomics approach (epigenomics, transcriptomics, proteomics, and phosphoproteomics) to characterize how the rat brain responds to its first encounter with cocaine, with or without preexposure to the synthetic cannabinoid WIN 55,212-2 (WIN). We find that in adolescent (but not in adult) rats, preexposure to WIN results in cross-sensitization to cocaine, which correlates with histone hyperacetylation and decreased levels of HDAC6 in the prefrontal cortex (PFC). In the PFC, we also find that WIN preexposure blunts the typical mRNA response to cocaine and instead results in alternative splicing and chromatin accessibility events, involving genes such as Npas2. Moreover, preexposure to WIN enhances the effects of cocaine on protein phosphorylation, including ERK/MAPK-targets like gephyrin, and modulates the synaptic AMPAR/GluR composition both in the PFC and the nucleus accumbens (NAcc). PFC–NAcc gene network topological analyses, following cocaine exposure, reveal distinct top nodes in the WIN preexposed group, which include PACAP/ADCYAP1. These preclinical data demonstrate that adolescent cannabinoid exposure reprograms the initial behavioral, molecular, and epigenetic response to cocaine.
Collapse
|
19
|
Struik D, Sanna F, Fattore L. The Modulating Role of Sex and Anabolic-Androgenic Steroid Hormones in Cannabinoid Sensitivity. Front Behav Neurosci 2018; 12:249. [PMID: 30416437 PMCID: PMC6212868 DOI: 10.3389/fnbeh.2018.00249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide. Although its use is associated with multiple adverse health effects, including the risk of developing addiction, recreational and medical cannabis use is being increasing legalized. In addition, use of synthetic cannabinoid drugs is gaining considerable popularity and is associated with mass poisonings and occasional deaths. Delineating factors involved in cannabis use and addiction therefore becomes increasingly important. Similarly to other drugs of abuse, the prevalence of cannabis use and addiction differs remarkably between males and females, suggesting that sex plays a role in regulating cannabinoid sensitivity. Although it remains unclear how sex may affect the initiation and maintenance of cannabis use in humans, animal studies strongly suggest that endogenous sex hormones modulate cannabinoid sensitivity. In addition, synthetic anabolic-androgenic steroids alter substance use and further support the importance of sex steroids in controlling drug sensitivity. The recent discovery that pregnenolone, the precursor of all steroid hormones, controls cannabinoid receptor activation corroborates the link between steroid hormones and the endocannabinoid system. This article reviews the literature regarding the influence of endogenous and synthetic steroid hormones on the endocannabinoid system and cannabinoid action.
Collapse
Affiliation(s)
- Dicky Struik
- Department of Biomedical Sciences, University of Cagliari - Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari - Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| |
Collapse
|
20
|
Adolescent cannabinoid exposure induces irritability-like behavior and cocaine cross-sensitization without affecting the escalation of cocaine self-administration in adulthood. Sci Rep 2018; 8:13893. [PMID: 30224774 PMCID: PMC6141462 DOI: 10.1038/s41598-018-31921-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 11/26/2022] Open
Abstract
Cannabis use is typically initiated during adolescence and is a significant risk factor for the development of cocaine use in adulthood. However, no preclinical studies have examined the effects of adolescent cannabinoid exposure on cocaine dependence in adulthood using the escalation model of cocaine self-administration and the assessment of negative emotional states. In the present study, we found that exposure to the cannabinoid receptor agonist WIN55,212-2 (WIN) in adolescence produced irritability-like behavior and psychomotor cross-sensitization to cocaine in adolescence. In adulthood, rats were allowed to self-administer cocaine. The acquisition of cocaine self-administration was lower in rats with adolescent WIN exposure compared with controls. However, both WIN-exposed and control rats escalated their cocaine intake at the same rate, had similar responding under a progressive-ratio schedule of reinforcement, and had similar psychomotor responses to cocaine. Interestingly, the increase in irritability-like behavior that was previously observed in adolescence after WIN exposure persisted into adulthood. Whether the persisting increase in irritability-like behavior after WIN exposure has translational relevance remains to be studied. In summary, these results suggest that psychoactive cannabinoid exposure during adolescence is unlikely to have a major effect on the escalation of cocaine intake or the development of compulsive-like responding per se in adulthood in a rat model of cocaine self-administration. However, whether the persisting irritability-like behavior may predispose an individual to mood-related impairments in adulthood or predict such impairments warrants further investigation.
Collapse
|