1
|
Zhu M, Kuhlman SJ, Barth AL. Transient enhancement of stimulus-evoked activity in neocortex during sensory learning. Learn Mem 2024; 31:a053870. [PMID: 38955432 PMCID: PMC11261211 DOI: 10.1101/lm.053870.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Synaptic potentiation has been linked to learning in sensory cortex, but the connection between this potentiation and increased sensory-evoked neural activity is not clear. Here, we used longitudinal in vivo Ca2+ imaging in the barrel cortex of awake mice to test the hypothesis that increased excitatory synaptic strength during the learning of a whisker-dependent sensory-association task would be correlated with enhanced stimulus-evoked firing. To isolate stimulus-evoked responses from dynamic, task-related activity, imaging was performed outside of the training context. Although prior studies indicate that multiwhisker stimuli drive robust subthreshold activity, we observed sparse activation of L2/3 pyramidal (Pyr) neurons in both control and trained mice. Despite evidence for excitatory synaptic strengthening at thalamocortical and intracortical synapses in this brain area at the onset of learning-indeed, under our imaging conditions thalamocortical axons were robustly activated-we observed that L2/3 Pyr neurons in somatosensory (barrel) cortex displayed only modest increases in stimulus-evoked activity that were concentrated at the onset of training. Activity renormalized over longer training periods. In contrast, when stimuli and rewards were uncoupled in a pseudotraining paradigm, stimulus-evoked activity in L2/3 Pyr neurons was significantly suppressed. These findings indicate that sensory-association training but not sensory stimulation without coupled rewards may briefly enhance sensory-evoked activity, a phenomenon that might help link sensory input to behavioral outcomes at the onset of learning.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Sandra J Kuhlman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
2
|
Abbasi A, Lassagne H, Estebanez L, Goueytes D, Shulz DE, Ego-Stengel V. Brain-machine interface learning is facilitated by specific patterning of distributed cortical feedback. SCIENCE ADVANCES 2023; 9:eadh1328. [PMID: 37738340 PMCID: PMC10516504 DOI: 10.1126/sciadv.adh1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Neuroprosthetics offer great hope for motor-impaired patients. One obstacle is that fine motor control requires near-instantaneous, rich somatosensory feedback. Such distributed feedback may be recreated in a brain-machine interface using distributed artificial stimulation across the cortical surface. Here, we hypothesized that neuronal stimulation must be contiguous in its spatiotemporal dynamics to be efficiently integrated by sensorimotor circuits. Using a closed-loop brain-machine interface, we trained head-fixed mice to control a virtual cursor by modulating the activity of motor cortex neurons. We provided artificial feedback in real time with distributed optogenetic stimulation patterns in the primary somatosensory cortex. Mice developed a specific motor strategy and succeeded to learn the task only when the optogenetic feedback pattern was spatially and temporally contiguous while it moved across the topography of the somatosensory cortex. These results reveal spatiotemporal properties of the sensorimotor cortical integration that set constraints on the design of neuroprosthetics.
Collapse
Affiliation(s)
| | | | | | - Dorian Goueytes
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay (NeuroPSI), 91400 Saclay, France
| | | | | |
Collapse
|
3
|
Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex. Nat Commun 2022; 13:6611. [PMID: 36329010 PMCID: PMC9633707 DOI: 10.1038/s41467-022-34261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Rodent sensory cortex contains salt-and-pepper maps of sensory features, whose structure is not fully known. Here we investigated the structure of the salt-and-pepper whisker somatotopic map among L2/3 pyramidal neurons in somatosensory cortex, in awake mice performing one-vs-all whisker discrimination. Neurons tuned for columnar (CW) and non-columnar (non-CW) whiskers were spatially intermixed, with co-tuned neurons forming local (20 µm) clusters. Whisker tuning was markedly unstable in expert mice, with 35-46% of pyramidal cells significantly shifting tuning over 5-18 days. Tuning instability was highly concentrated in non-CW tuned neurons, and thus was structured in the map. Instability of non-CW neurons was unchanged during chronic whisker paralysis and when mice discriminated individual whiskers, suggesting it is an inherent feature. Thus, L2/3 combines two distinct components: a stable columnar framework of CW-tuned cells that may promote spatial perceptual stability, plus an intermixed, non-columnar surround with highly unstable tuning.
Collapse
|
4
|
Murphy BB, Apollo NV, Unegbu P, Posey T, Rodriguez-Perez N, Hendricks Q, Cimino F, Richardson AG, Vitale F. Vitamin C-reduced graphene oxide improves the performance and stability of multimodal neural microelectrodes. iScience 2022; 25:104652. [PMID: 35811842 PMCID: PMC9263525 DOI: 10.1016/j.isci.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/28/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
Nanocarbons are often employed as coatings for neural electrodes to enhance surface area. However, processing and integrating them into microfabrication flows requires complex and harmful chemical and heating conditions. This article presents a safe, scalable, cost-effective method to produce reduced graphene oxide (rGO) coatings using vitamin C (VC) as the reducing agent. We spray coat GO + VC mixtures onto target substrates, and then heat samples for 15 min at 150°C. The resulting rGO films have conductivities of ∼44 S cm−1, and are easily integrated into an ad hoc microfabrication flow. The rGO/Au microelectrodes show ∼8x lower impedance and ∼400x higher capacitance than bare Au, resulting in significantly enhanced charge storage and injection capacity. We subsequently use rGO/Au arrays to detect dopamine in vitro, and to map cortical activity intraoperatively over rat whisker barrel cortex, demonstrating that conductive VC-rGO coatings improve the performance and stability of multimodal microelectrodes for different applications. Easy, scalable, and safe reduction method to create rGO films with vitamin C VC-rGO coatings improve the performance of bare gold microelectrodes in vitro VC-rGO coatings enable the voltammetric detection of dopamine on the microscale rGO/Au electrode arrays enable high-resolution microscale recording in vivo
Collapse
Affiliation(s)
- Brendan B. Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Nicholas V. Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Placid Unegbu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Tessa Posey
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29206, USA
| | - Nancy Rodriguez-Perez
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Quincy Hendricks
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesca Cimino
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G. Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA 19146, USA
- Corresponding author
| |
Collapse
|
5
|
Lassagne H, Goueytes D, Shulz DE, Estebanez L, Ego-Stengel V. Continuity within the somatosensory cortical map facilitates learning. Cell Rep 2022; 39:110617. [PMID: 35385729 DOI: 10.1016/j.celrep.2022.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/03/2022] Open
Abstract
The topographic organization is a prominent feature of sensory cortices, but its functional role remains controversial. Particularly, it is not well determined how integration of activity within a cortical area depends on its topography during sensory-guided behavior. Here, we train mice expressing channelrhodopsin in excitatory neurons to track a photostimulation bar that rotated smoothly over the topographic whisker representation of the primary somatosensory cortex. Mice learn to discriminate angular positions of the light bar to obtain a reward. They fail not only when the spatiotemporal continuity of the photostimulation is disrupted in this area but also when cortical areas displaying map discontinuities, such as the trunk and legs, or areas without topographic map, such as the posterior parietal cortex, are photostimulated. In contrast, when cortical topographic continuity enables to predict future sensory activation, mice demonstrate anticipation of reward availability. These findings could be helpful for optimizing feedback while designing cortical neuroprostheses.
Collapse
Affiliation(s)
- Henri Lassagne
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Dorian Goueytes
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Daniel E Shulz
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Luc Estebanez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Valerie Ego-Stengel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| |
Collapse
|
6
|
A novel stimulator to investigate the tuning of multi-whisker responsive neurons for speed and the direction of global motion: Contact-sensitive moving stimulator for multi-whisker stimulation. J Neurosci Methods 2022; 374:109565. [PMID: 35292306 PMCID: PMC9295048 DOI: 10.1016/j.jneumeth.2022.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The rodent vibrissal (whisker) systcnsorimotor integration and active tactile sensing. Experiments on the vibrissal system often require highly repeatable stimulation of multiple whiskers and the ability to vary stimulation parameters across a wide range. The stimulator must also be easy to position and adjust. Developing a multi-whisker stimulation system that meets these criteria remains challenging. NEW METHOD We describe a novel multi-whisker stimulator to assess neural selectivity for the direction of global motion. The device can generate repeatable, linear sweeps of tactile stimulation across the whisker array in any direction and with a range of speeds. A fiber optic beam break detects the interval of whisker contact as the stimulator passes through the array. RESULTS We demonstrate the device's function and utility by recording from a small number of multi-whisker-responsive neurons in the trigeminal brainstem. Neurons had higher firing rates in response to faster stimulation speeds; some also exhibited strong direction-of-motion tuning. COMPARISON WITH EXISTING METHODS The stimulator complements more standard piezo-electric stimulators, which offer precise control but typically stimulate only single whiskers, require whisker trimming, and travel through small angles. It also complements non-contact methods of stimulation such as air-puffs and electromagnetic-induced stimulation. Tradeoffs include stimulation speed and frequency, and the inability to stimulate whiskers individually. CONCLUSIONS The stimulator could be used - in either anesthetized or awake, head-fixed preparations - as an approach to studying global motion selectivity of multi-whisker sensitive neurons at multiple levels of the vibrissal-trigeminal system.
Collapse
|
7
|
Rodgers CC, Nogueira R, Pil BC, Greeman EA, Park JM, Hong YK, Fusi S, Bruno RM. Sensorimotor strategies and neuronal representations for shape discrimination. Neuron 2021; 109:2308-2325.e10. [PMID: 34133944 PMCID: PMC8298290 DOI: 10.1016/j.neuron.2021.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/28/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Humans and other animals can identify objects by active touch, requiring the coordination of exploratory motion and tactile sensation. Both the motor strategies and neural representations employed could depend on the subject's goals. We developed a shape discrimination task that challenged head-fixed mice to discriminate concave from convex shapes. Behavioral decoding revealed that mice did this by comparing contacts across whiskers. In contrast, a separate group of mice performing a shape detection task simply summed up contacts over whiskers. We recorded populations of neurons in the barrel cortex, which processes whisker input, and found that individual neurons across the cortical layers encoded touch, whisker motion, and task-related signals. Sensory representations were task-specific: during shape discrimination, but not detection, neurons responded most to behaviorally relevant whiskers, overriding somatotopy. Thus, sensory cortex employs task-specific representations compatible with behaviorally relevant computations.
Collapse
Affiliation(s)
- Chris C Rodgers
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Ramon Nogueira
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - B Christina Pil
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Esther A Greeman
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Jung M Park
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Y Kate Hong
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Stefano Fusi
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Brown J, Oldenburg IA, Telian GI, Griffin S, Voges M, Jain V, Adesnik H. Spatial integration during active tactile sensation drives orientation perception. Neuron 2021; 109:1707-1720.e7. [PMID: 33826906 PMCID: PMC8944414 DOI: 10.1016/j.neuron.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/24/2020] [Accepted: 03/11/2021] [Indexed: 01/07/2023]
Abstract
Active haptic sensation is critical for object identification, but its neural circuit basis is poorly understood. We combined optogenetics, two-photon imaging, and high-speed behavioral tracking in mice solving a whisker-based object orientation discrimination task. We found that orientation discrimination required animals to summate input from multiple whiskers specifically along the whisker arc. Animals discriminated the orientation of the stimulus per se as their performance was invariant to the location of the presented stimulus. Populations of barrel cortex neurons summated across whiskers to encode each orientation. Finally, acute optogenetic inactivation of the barrel cortex and cell-type-specific optogenetic suppression of layer 4 excitatory neurons degraded performance, implying that infragranular layers alone are not sufficient to solve the task. These data suggest that spatial summation over an active haptic array generates representations of an object's orientation, which may facilitate encoding of complex three-dimensional objects during active exploration.
Collapse
Affiliation(s)
- Jennifer Brown
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gregory I Telian
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sandon Griffin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mieke Voges
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vedant Jain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Mocanu VM, Shmuel A. Optical Imaging-Based Guidance of Viral Microinjections and Insertion of a Laminar Electrophysiology Probe Into a Predetermined Barrel in Mouse Area S1BF. Front Neural Circuits 2021; 15:541676. [PMID: 34054436 PMCID: PMC8158817 DOI: 10.3389/fncir.2021.541676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/31/2021] [Indexed: 12/04/2022] Open
Abstract
Wide-field Optical Imaging of Intrinsic Signals (OI-IS; Grinvald et al., 1986) is a method for imaging functional brain hemodynamic responses, mainly used to image activity from the surface of the cerebral cortex. It localizes small functional modules – such as cortical columns – with great spatial resolution and spatial specificity relative to the site of increases in neuronal activity. OI-IS is capable of imaging responses either through an intact or thinned skull or following a craniotomy. Therefore, it is minimally invasive, which makes it ideal for survival experiments. Here we describe OI-IS-based methods for guiding microinjections of optogenetics viral vectors in proximity to small functional modules (S1 barrels) of the cerebral cortex and for guiding the insertion of electrodes for electrophysiological recording into such modules. We validate our proposed methods by tissue processing of the cerebral barrel field area, revealing the track of the electrode in a predetermined barrel. In addition, we demonstrate the use of optical imaging to visualize the spatial extent of the optogenetics photostimulation, making it possible to estimate one of the two variables that conjointly determine which region of the brain is stimulated. Lastly, we demonstrate the use of OI-IS at high-magnification for imaging the upper recording contacts of a laminar probe, making it possible to estimate the insertion depth of all contacts relative to the surface of the cortex. These methods support the precise positioning of microinjections and recording electrodes, thus overcoming the variability in the spatial position of fine-scale functional modules.
Collapse
Affiliation(s)
- Victor M Mocanu
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Pauzin FP, Schwarz N, Krieger P. Activation of Corticothalamic Layer 6 Cells Decreases Angular Tuning in Mouse Barrel Cortex. Front Neural Circuits 2019; 13:67. [PMID: 31736714 PMCID: PMC6838007 DOI: 10.3389/fncir.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023] Open
Abstract
In the mouse whisker system, the contribution of L6 corticothalamic cells (L6 CT) to cortical and thalamic processing of the whisker deflection direction was investigated. A genetically defined population of L6 CT cells project to infragranular GABAergic interneurons that hyperpolarize neurons in somatosensory barrel cortex (BC). Optogenetic activation of these neurons switched BC to an adapted mode in which excitatory cells lost their angular tuning. In contrast, however, this was not the case with a general activation of inhibitory interneurons via optogenetic activation of Gad2-expressing cells. The decrease in angular tuning, when L6 CT cells were activated, was due to changes in cortical inhibition, and not inherited from changes in the thalamic output. Furthermore, L6 CT driven cortical inhibition, but not the general activation of GABAergic interneurons, abolished adaptation to whisker responses. In the present study, evidence is presented that a subpopulation of L6 CT activates a specific circuit of GABAergic interneurons that will predispose neocortex toward processing of tactile information requiring multiple whisker touches, such as in a texture discrimination task.
Collapse
Affiliation(s)
- François Philippe Pauzin
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nadja Schwarz
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrik Krieger
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Laboy-Juárez KJ, Langberg T, Ahn S, Feldman DE. Elementary motion sequence detectors in whisker somatosensory cortex. Nat Neurosci 2019; 22:1438-1449. [PMID: 31332375 PMCID: PMC6713603 DOI: 10.1038/s41593-019-0448-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
How somatosensory cortex (S1) encodes complex patterns of touch, as occur during tactile exploration, is poorly understood. In mouse whisker S1, temporally dense stimulation of local whisker pairs revealed that most neurons are not classical single-whisker feature detectors, but instead are strongly tuned to 2-whisker sequences involving the columnar whisker (CW) and one, specific surround whisker (SW), usually in SW-leading-CW order. Tuning was spatiotemporally precise and diverse across cells, generating a rate code for local motion vectors defined by SW-CW combinations. Spatially asymmetric, sublinear suppression for suboptimal combinations and near-linearity for preferred combinations sharpened combination tuning relative to linearly predicted tuning. This resembles computation of motion direction selectivity in vision. SW-tuned neurons, misplaced in the classical whisker map, had the strongest combination tuning. Thus, each S1 column contains a rate code for local motion sequences involving the CW, providing a basis for higher-order feature extraction.
Collapse
Affiliation(s)
- Keven J Laboy-Juárez
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.,Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Tomer Langberg
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Seoiyoung Ahn
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Daniel E Feldman
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Schriver BJ, Bagdasarov S, Wang Q. Pupil-linked arousal modulates behavior in rats performing a whisker deflection direction discrimination task. J Neurophysiol 2018; 120:1655-1670. [PMID: 29995602 PMCID: PMC6230792 DOI: 10.1152/jn.00290.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/22/2022] Open
Abstract
Non-luminance-mediated changes in pupil size have been widely used to index arousal state. Recent animal studies have demonstrated correlations between behavioral state-related pupil dynamics and sensory processing. However, the relationship between pupil-linked arousal and behavior in animals performing perceptual tasks has not been fully elucidated. In the present study, we trained head-fixed rats to discriminate between directions of whisker movements using a Go/No-Go discrimination paradigm while imaging their pupils. Reaction times in this discrimination task were significantly slower than in previously reported detection tasks with similar setup, suggesting that discrimination required an increased cognitive load. We found the pupils dilated for all trials following stimulus presentation. Interestingly, in correct rejection trials, where pupil dilations solely resulted from cognitive processing, dilations were larger for more difficult stimuli. Baseline pupil size before stimulus presentation strongly correlated with behavior, as perceptual sensitivity peaked at intermediate pupil baselines and reaction time was fastest at large baselines. We further explored these relationships by investigating to what extent pupil baseline was predictive of upcoming behavior and found that a Bayesian decoder had significantly greater-than-chance probability in correctly predicting behavioral outcomes. Moreover, the outcome of the previous trial showed a strong correlation with behavior on present trials. Animals were more liberal and faster in responding following hit trials, whereas perceptual sensitivity was greatest following correct rejection trials. Taken together, these results suggest a tight correlation between pupil dynamics, perceptual performance, and reaction time in behaving rats, all of which are modulated by fluctuating arousal state. NEW & NOTEWORTHY In this study, we for the first time demonstrated that head-fixed rats were able to discriminate different directions of whisker movement. Interestingly, we found that the pupil dilated more when discriminating more difficult stimuli, a phenomenon reported in human subjects but not in animals. Baseline pupil size before stimulus presentation was found to strongly correlate with behavior, and a Bayesian decoder had significantly greater-than-chance probability in correctly predicting behavioral outcomes based on the baseline pupil size.
Collapse
Affiliation(s)
- Brian J Schriver
- Department of Biomedical Engineering, Columbia University , New York, New York
| | - Svetlana Bagdasarov
- Department of Biomedical Engineering, Columbia University , New York, New York
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|