1
|
Roback EY, Ferrufino E, Moran RL, Shennard D, Mulliniks C, Gallop J, Weagley J, Miller J, Fily Y, Ornelas-García CP, Rohner N, Kowalko JE, McGaugh SE. Population Genomics of Premature Termination Codons in Cavefish With Substantial Trait Loss. Mol Biol Evol 2025; 42:msaf012. [PMID: 39833658 PMCID: PMC11796094 DOI: 10.1093/molbev/msaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Loss-of-function alleles are a pertinent source of genetic variation with the potential to contribute to adaptation. Cave-adapted organisms exhibit striking loss of ancestral traits such as eyes and pigment, suggesting that loss-of-function alleles may play an outsized role in these systems. Here, we leverage 141 whole genome sequences to evaluate the evolutionary history and adaptive potential of single nucleotide premature termination codons (PTCs) in Mexican tetra. We find that cave populations contain significantly more PTCs at high frequency than surface populations. We also find that PTCs occur more frequently in genes with inherent relaxed evolutionary constraint relative to the rest of the genome. Using SLiM to simulate PTC evolution in a cavefish population, we show that the smaller population size and increased genetic drift is sufficient to account for the observed increase in PTC frequency in cave populations without positive selection. Using CRISPR-Cas9, we show that mutation of one of these genes, pde6c, produces phenotypes in surface Mexican tetra that mimic cave-derived traits. Finally, we identify a small subset of candidate genes that contain high-frequency PTCs in cave populations, occur within selective sweeps, and may contribute to beneficial traits such as reduced energy expenditure, suggesting that a handful of PTCs may be adaptive. Overall, our work provides a rare characterization of PTCs across wild populations and finds that they may have an important role in loss-of-function phenotypes, contributing to a growing body of literature showing genome evolution through relaxed constraint in subterranean organisms.
Collapse
Affiliation(s)
- Emma Y Roback
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Estephany Ferrufino
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Rachel L Moran
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Devin Shennard
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Charlotte Mulliniks
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Josh Gallop
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Dermatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James Weagley
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey Miller
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03820, USA
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, México City CP 04510, Mexico
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
2
|
Striebel JF, Carroll JA, Race B, Leung JM, Schwartz C, Reese ED, Bowes Rickman C, Chesebro B, Klingeborn M. The prion protein is required for normal responses to light stimuli by photoreceptors and bipolar cells. iScience 2024; 27:110954. [PMID: 39381753 PMCID: PMC11460503 DOI: 10.1016/j.isci.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
The prion protein, PrPC, is well known as an essential susceptibility factor for neurodegenerative prion diseases, yet its function in normal, healthy cells remains uncertain. A role in synaptic function has been proposed for PrPC, supported by its cell surface expression in neurons and glia. Here, in mouse retina, we localized PrPC to the junctions between photoreceptors and bipolar cells using synaptic proteins EAAT5, CtBP2, and PSD-95. PrPC localized most densely with bipolar cell dendrites synapsing with cone photoreceptors. In two coisogenic mouse strains, deletion of the gene encoding PrPC, Prnp, significantly altered the scotopic and/or photopic electroretinographic (ERG) responses of photoreceptors and bipolar cells. Cone-dominant pathways showed the most significant ERG changes. Retinal thickness, quantitated by high-resolution optical coherence tomography (OCT), and ribbon synapse morphology were not altered upon deletion of PrPC, suggesting that the ERG changes were driven by functional rather than structural alterations.
Collapse
Affiliation(s)
- James F. Striebel
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James A. Carroll
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jacqueline M. Leung
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Cindi Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Emily D. Reese
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bruce Chesebro
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| |
Collapse
|
3
|
Stevens-Sostre WA, Hoon M. Cellular and Molecular Mechanisms Regulating Retinal Synapse Development. Annu Rev Vis Sci 2024; 10:377-402. [PMID: 39292551 PMCID: PMC12022667 DOI: 10.1146/annurev-vision-102122-105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.
Collapse
Affiliation(s)
- Whitney A Stevens-Sostre
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Shimohata A, Rai D, Akagi T, Usui S, Ogiwara I, Kaneda M. The intracellular C-terminal domain of mGluR6 contains ER retention motifs. Mol Cell Neurosci 2023; 126:103875. [PMID: 37352898 DOI: 10.1016/j.mcn.2023.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Metabotropic glutamate receptor 6 (mGluR6) predominantly localizes to the postsynaptic sites of retinal ON-bipolar cells, at which it recognizes glutamate released from photoreceptors. The C-terminal domain (CTD) of mGluR6 contains a cluster of basic amino acids resembling motifs for endoplasmic reticulum (ER) retention. We herein investigated whether these basic residues are involved in regulating the subcellular localization of mGluR6 in 293T cells expressing mGluR6 CTD mutants using immunocytochemistry, immunoprecipitation, and flow cytometry. We showed that full-length mGluR6 localized to the ER and cell surface, whereas mGluR6 mutants with 15- and 20-amino acid deletions from the C terminus localized to the ER, but were deficient at the cell surface. We also demonstrated that the cell surface deficiency of mGluR6 mutants was rescued by introducing an alanine substitution at basic residues within the CTD. The surface-deficient mGluR6 mutant still did not localize to the cell surface and was retained in the ER when co-expressed with surface-expressible constructs, including full-length mGluR6, even though surface-deficient and surface-expressible constructs formed heteromeric complexes. The co-expression of the surface-deficient mGluR6 mutant reduced the surface levels of surface-expressible constructs. These results indicate that basic residues in the mGluR6 CTD served as ER retention signals. We suggest that exposed ER retention motifs in the aberrant assembly containing truncated or misfolded mGluR6 prevent these protein complexes from being transported to the cell surface.
Collapse
Affiliation(s)
- Atsushi Shimohata
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiko Usui
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
5
|
Ellis EM, Paniagua AE, Scalabrino ML, Thapa M, Rathinavelu J, Jiao Y, Williams DS, Field GD, Fain GL, Sampath AP. Cones and cone pathways remain functional in advanced retinal degeneration. Curr Biol 2023; 33:1513-1522.e4. [PMID: 36977418 PMCID: PMC10133175 DOI: 10.1016/j.cub.2023.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Most defects causing retinal degeneration in retinitis pigmentosa (RP) are rod-specific mutations, but the subsequent degeneration of cones, which produces loss of daylight vision and high-acuity perception, is the most debilitating feature of the disease. To understand better why cones degenerate and how cone vision might be restored, we have made the first single-cell recordings of light responses from degenerating cones and retinal interneurons after most rods have died and cones have lost their outer-segment disk membranes and synaptic pedicles. We show that degenerating cones have functional cyclic-nucleotide-gated channels and can continue to give light responses, apparently produced by opsin localized either to small areas of organized membrane near the ciliary axoneme or distributed throughout the inner segment. Light responses of second-order horizontal and bipolar cells are less sensitive but otherwise resemble those of normal retina. Furthermore, retinal output as reflected in responses of ganglion cells is less sensitive but maintains spatiotemporal receptive fields at cone-mediated light levels. Together, these findings show that cones and their retinal pathways can remain functional even as degeneration is progressing, an encouraging result for future research aimed at enhancing the light sensitivity of residual cones to restore vision in patients with genetically inherited retinal degeneration.
Collapse
Affiliation(s)
- Erika M Ellis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Antonio E Paniagua
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Miranda L Scalabrino
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mishek Thapa
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jay Rathinavelu
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuekan Jiao
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| | - Greg D Field
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Gordon L Fain
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| |
Collapse
|
6
|
Campla CK, Bocchero U, Strickland R, Nellissery J, Advani J, Ignatova I, Srivastava D, Aponte AM, Wang Y, Gumerson J, Martemyanov K, Artemyev NO, Pahlberg J, Swaroop A. Frmpd1 Facilitates Trafficking of G-Protein Transducin and Modulates Synaptic Function in Rod Photoreceptors of Mammalian Retina. eNeuro 2022; 9:ENEURO.0348-22.2022. [PMID: 36180221 PMCID: PMC9581579 DOI: 10.1523/eneuro.0348-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Trafficking of transducin (Gαt) in rod photoreceptors is critical for adaptive and modulatory responses of the retina to varying light intensities. In addition to fine-tuning phototransduction gain in rod outer segments (OSs), light-induced translocation of Gαt to the rod synapse enhances rod to rod bipolar synaptic transmission. Here, we show that the rod-specific loss of Frmpd1 (FERM and PDZ domain containing 1), in the retina of both female and male mice, results in delayed return of Gαt from the synapse back to outer segments in the dark, compromising the capacity of rods to recover from light adaptation. Frmpd1 directly interacts with Gpsm2 (G-protein signaling modulator 2), and the two proteins are required for appropriate sensitization of rod-rod bipolar signaling under saturating light conditions. These studies provide insight into how the trafficking and function of Gαt is modulated to optimize the photoresponse and synaptic transmission of rod photoreceptors in a light-dependent manner.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ulisse Bocchero
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ryan Strickland
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irina Ignatova
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Angel M Aponte
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Johan Pahlberg
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Bharathan SP, Ferrario A, Stepanian K, Fernandez GE, Reid MW, Kim JS, Hutchens C, Harutyunyan N, Marks C, Thornton ME, Grubbs BH, Cobrinik D, Aparicio JG, Nagiel A. Characterization and staging of outer plexiform layer development in human retina and retinal organoids. Development 2021; 148:272710. [PMID: 34738615 DOI: 10.1242/dev.199551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
The development of the first synapse of the visual system between photoreceptors and bipolar cells in the outer plexiform layer (OPL) of the human retina is critical for visual processing but poorly understood. By studying the maturation state and spatial organization of photoreceptors, depolarizing bipolar cells, and horizontal cells in the human fetal retina, we establish a pseudo-temporal staging system for OPL development that we term OPL-Stages 0 to 4. This was validated through quantification of increasingly precise subcellular localization of Bassoon to the OPL with each stage (p<0.0001). By applying these OPL staging criteria to human retinal organoids (HROs) derived from human embryonic and induced pluripotent stem cells, we observed comparable maturation from OPL-Stage 0 at day 100 in culture up to OPL-Stage 3 by day 160. Quantification of presynaptic protein localization confirmed progression from OPL-Stage 0 to 3 (p<0.0001). Overall, this study defines stages of human OPL development through mid-gestation and establishes HROs as a model system that recapitulates key aspects of human photoreceptor-bipolar cell synaptogenesis in vitro.
Collapse
Affiliation(s)
- Sumitha Prameela Bharathan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Angela Ferrario
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Mark W Reid
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Justin S Kim
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Chloe Hutchens
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Narine Harutyunyan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Carolyn Marks
- Core Center of Excellence in Nano Imaging, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer G Aparicio
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Rai D, Akagi T, Shimohata A, Ishii T, Gangi M, Maruyama T, Wada-Kiyama Y, Ogiwara I, Kaneda M. Involvement of the C-terminal domain in cell surface localization and G-protein coupling of mGluR6. J Neurochem 2020; 158:837-848. [PMID: 33067823 DOI: 10.1111/jnc.15217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/25/2020] [Accepted: 10/11/2020] [Indexed: 01/05/2023]
Abstract
Metabotropic glutamate receptor 6, mGluR6, interacts with scaffold proteins and Gβγ subunits via its intracellular C-terminal domain (CTD). The mGluR6 pathway is critically involved in the retinal processing of visual signals. We herein investigated whether the CTD (residues 840-871) was necessary for mGluR6 cell surface localization and G-protein coupling using mGluR6-CTD mutants with immunocytochemistry, surface biotinylation assays, and electrophysiological approaches. We used 293T cells and primary hippocampal neurons as model systems. We examined C-terminally truncated mGluR6 and showed that the removal of up to residue 858 did not affect surface localization or glutamate-induced G-protein-mediated responses, whereas a 15-amino acid deletion (Δ857-871) impaired these functions. However, a 21-amino acid deletion (Δ851-871) restored surface localization and glutamate-dependent responses, which were again attenuated when the entire CTD was removed. The sequence alignment of group III mGluRs showed conserved amino acids resembling an ER retention motif in the CTD. These results suggest that the intracellular CTD is required for the cell surface transportation and receptor function of mGluR6, whereas it may contain regulatory elements for intracellular trafficking and signaling.
Collapse
Affiliation(s)
- Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
10
|
Interplay between cell-adhesion molecules governs synaptic wiring of cone photoreceptors. Proc Natl Acad Sci U S A 2020; 117:23914-23924. [PMID: 32879010 DOI: 10.1073/pnas.2009940117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Establishment of functional synaptic connections in a selective manner is essential for nervous system operation. In mammalian retinas, rod and cone photoreceptors form selective synaptic connections with different classes of bipolar cells (BCs) to propagate light signals. While there has been progress in elucidating rod wiring, molecular mechanisms used by cones to establish functional synapses with BCs have remained unknown. Using an unbiased proteomic strategy in cone-dominant species, we identified the cell-adhesion molecule ELFN2 to be pivotal for the functional wiring of cones with the ON type of BC. It is selectively expressed in cones and transsynaptically recruits the key neurotransmitter receptor mGluR6 in ON-BCs to enable synaptic transmission. Remarkably, ELFN2 in cone terminals functions in synergy with a related adhesion molecule, ELFN1, and their concerted interplay during development specifies selective wiring and transmission of cone signals. These findings identify a synaptic connectivity mechanism of cones and illustrate how interplay between adhesion molecules and postsynaptic transmitter receptors orchestrates functional synaptic specification in a neural circuit.
Collapse
|
11
|
Liang C, Chen Y, Jiang X, Zou M, Yang Z, Li H, Peng L. Pikachurin Is Partially Involved in the Synaptic Connection Between Donor and Host Cells in Late-Stage rd1 Mice Following Conspecific Photoreceptor Transplantation. Stem Cells Dev 2020; 29:786-794. [PMID: 32178579 DOI: 10.1089/scd.2019.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Photoreceptor transplantation can rescue the retinal function of late-stage rd1 mice. Many studies have used synaptic markers to suggest that there are synaptic connections after transplantation, but how donor and host cells are connected remains unknown. Many molecules are needed for triad ribbon synapse formation in wild-type mice. Among them, pikachurin is an important extracellular matrix protein that bridges the pre- and postsynaptic components. To investigate the mechanism of the synaptic connection between donor photoreceptor and host retina, we studied the expression of pikachurin in late-stage rd1 mice before and after transplantation. The results showed that the full-length form of pikachurin could still be detected in the degenerated retina. After photoreceptors were transplanted to the subretinal space of rd1 or wild-type mice, pikachurin was detected in the cytoplasm of most donor photoreceptor cells. Pikachurin puncta may represent the cleaved form of the protein and may indicate synapse generation, but it was barely observed in the donor mass of wild-type mice (3.83 ± 3.17 puncta per 100 donor cells). In contrast, pikachurin puncta could be found in the graft of the rd1 mouse retina, but the number was low (21.35 ± 9.48 puncta per 100 donor cells). In addition, 54.12 ± 8.45% of bassoon puncta were paired with pikachurin puncta and 45.5 ± 6.33% were not, indicating that there were fewer pikachurin puncta than bassoon. These results suggest that pikachurin is involved in only a portion of the synaptic connection between the donor photoreceptor and host retina.
Collapse
Affiliation(s)
- Chen Liang
- Department of Ophthalmology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Research Laboratory of Ophthalmology and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - YingYing Chen
- Department of Ophthalmology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - XiaoShuang Jiang
- Department of Ophthalmology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Zou
- Department of Ophthalmology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen Yang
- Research Core Facility, West China Hospital of Sichuan University, Chengdu, China
| | - HuiFang Li
- Research Core Facility, West China Hospital of Sichuan University, Chengdu, China
| | - LanYa Peng
- Department of Medical, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Campla CK, Mast H, Dong L, Lei J, Halford S, Sekaran S, Swaroop A. Targeted deletion of an NRL- and CRX-regulated alternative promoter specifically silences FERM and PDZ domain containing 1 (Frmpd1) in rod photoreceptors. Hum Mol Genet 2020; 28:804-817. [PMID: 30445545 DOI: 10.1093/hmg/ddy388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Mast
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sumathi Sekaran
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
ELFN2 is a postsynaptic cell adhesion molecule with essential roles in controlling group III mGluRs in the brain and neuropsychiatric behavior. Mol Psychiatry 2019; 24:1902-1919. [PMID: 31485013 PMCID: PMC6874751 DOI: 10.1038/s41380-019-0512-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
The functional characterization of the GPCR interactome has predominantly focused on intracellular binding partners; however, the recent emergence of transsynaptic GPCR complexes represents an additional dimension to GPCR function that has previously been unaccounted for in drug discovery. Here, we characterize ELFN2 as a novel postsynaptic adhesion molecule with a distinct expression pattern throughout the brain and a selective binding with group III metabotropic glutamate receptors (mGluRs) in trans. Using a transcellular GPCR signaling platform, we report that ELFN2 critically alters group III mGluR secondary messenger signaling by directly altering G protein coupling kinetics and efficacy. Loss of ELFN2 in mice results in the selective downregulation of group III mGluRs and dysregulated glutamatergic synaptic transmission. Elfn2 knockout (Elfn2 KO) mice also feature a range of neuropsychiatric manifestations including seizure susceptibility, hyperactivity, and anxiety/compulsivity, which can be rescued by pharmacological augmentation of group III mGluRs. Thus, we conclude that extracellular transsynaptic scaffolding by ELFN2 in the brain is a cardinal organizational feature of group III mGluRs essential for their signaling properties and brain function.
Collapse
|
15
|
Dunn HA, Orlandi C, Martemyanov KA. Beyond the Ligand: Extracellular and Transcellular G Protein-Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacol Rev 2019; 71:503-519. [PMID: 31515243 PMCID: PMC6742926 DOI: 10.1124/pr.119.018044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain one of the most successful targets of U.S. Food and Drug Administration-approved drugs. GPCR research has predominantly focused on the characterization of the intracellular interactome's contribution to GPCR function and pharmacology. However, emerging evidence uncovers a new dimension in the biology of GPCRs involving their extracellular and transcellular interactions that critically impact GPCR function and pharmacology. The seminal examples include a variety of adhesion GPCRs, such as ADGRLs/latrophilins, ADGRBs/brain angiogenesis inhibitors, ADGRG1/GPR56, ADGRG6/GPR126, ADGRE5/CD97, and ADGRC3/CELSR3. However, recent advances have indicated that class C GPCRs that contain large extracellular domains, including group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8), γ-aminobutyric acid receptors, and orphans GPR158 and GPR179, can also participate in this form of transcellular regulation. In this review, we will focus on a variety of identified extracellular and transcellular GPCR-interacting partners, including teneurins, neurexins, integrins, fibronectin leucine-rich transmembranes, contactin-6, neuroligin, laminins, collagens, major prion protein, amyloid precursor protein, complement C1q-likes, stabilin-2, pikachurin, dystroglycan, complement decay-accelerating factor CD55, cluster of differentiation CD36 and CD90, extracellular leucine-rich repeat and fibronectin type III domain containing 1, and leucine-rich repeat, immunoglobulin-like domain and transmembrane domains. We provide an account on the diversity of extracellular and transcellular GPCR complexes and their contribution to key cellular and physiologic processes, including cell migration, axon guidance, cellular and synaptic adhesion, and synaptogenesis. Furthermore, we discuss models and mechanisms by which extracellular GPCR assemblies may regulate communication at cellular junctions. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) continue to be the prominent focus of pharmacological intervention for a variety of human pathologies. Although the majority of GPCR research has focused on the intracellular interactome, recent advancements have identified an extracellular dimension of GPCR modulation that alters accepted pharmacological principles of GPCRs. Herein, we describe known endogenous allosteric modulators acting on GPCRs both in cis and in trans.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | | |
Collapse
|
16
|
Hasan N, Pangeni G, Cobb CA, Ray TA, Nettesheim ER, Ertel KJ, Lipinski DM, McCall MA, Gregg RG. Presynaptic Expression of LRIT3 Transsynaptically Organizes the Postsynaptic Glutamate Signaling Complex Containing TRPM1. Cell Rep 2019; 27:3107-3116.e3. [PMID: 31189098 PMCID: PMC6628893 DOI: 10.1016/j.celrep.2019.05.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022] Open
Abstract
Throughout the CNS, interactions between pre- and postsynaptic adhesion molecules establish normal synaptic structure and function. Leucine-rich repeat (LRR) domain-containing proteins are a large family that has a diversity of ligands, and their absence can cause disease. At the first retinal synapse, the absence of LRIT3 expression leads to the disassembly of the postsynaptic glutamate signaling complex (signalplex) expressed on depolarizing bipolar cell (DBC) dendrites. The prevalent view is that assembly of the signalplex results from direct postsynaptic protein:protein interactions. In contrast, we demonstrate that LRIT3 is expressed presynaptically, in rod photoreceptors (rods), and when we restore LRIT3 expression in Lrit3-/- rods, we restore expression of the postsynaptic glutamate signalplex and rod-driven vision. Our results demonstrate that, in the retina, the LRR-containing protein LRIT3 acts as a transsynaptic organizer of the postsynaptic complex required for normal synaptic function.
Collapse
Affiliation(s)
- Nazarul Hasan
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Gobinda Pangeni
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA
| | - Catherine A Cobb
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Thomas A Ray
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Emily R Nettesheim
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina J Ertel
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel M Lipinski
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - Ronald G Gregg
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA; Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
17
|
Zhang J, Zhang L, Chen Y, Shi H, Huang X, Wang Y, Wang Y, Wei Y, Xue W, Han J. Effect and mechanism of mGluR6 on the biological function of rat embryonic neural stem cells. Biosci Biotechnol Biochem 2019; 83:1027-1034. [PMID: 30739574 DOI: 10.1080/09168451.2019.1578639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here, we investigated the effects and molecular mechanisms of metabotropic glutamate receptor 6 (mGluR6) on rat embryonic neural stem cells (NSCs). Overexpression of mGluR6 significantly promoted the proliferation of NSCs and increased the diameter of neutrospheres after treatment for 24 h, 48 h and 72 h. Overexpression of mGluR6 promoted G1 to S phase transition, with significantly decreased cell ratio in G1/G0 phase but significantly increased cell ratio in S phase. Additionally, mGluR6 overexpression for 48 h decreased the early and late apoptosis significantly. Moreover, overexpression of mGluR6 significantly increased the expression of p-ERK1/2, Cyclin D1 and CDK2, while the expression of p-p38 was significantly decreased. On the contrary, these effects of mGluR6 overexpression were reversed by mGluR6 knockdown. In conclusion, mGluR6 promotes the proliferation of NSCs by activation of ERK1/2-Cyclin D1/CDK2 signaling pathway and inhibits the apoptosis of NSCs by blockage of the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Lu Zhang
- b Department of Foreign Languages , Ming De College of Northwestern Polytechnical University , Xi'an , P.R. China
| | - Yani Chen
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Haiyan Shi
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Xiaoyong Huang
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Yanfeng Wang
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Yu Wang
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Yameng Wei
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Wanjuan Xue
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| | - Jiming Han
- a Department of Clinical Medicine , Medical College of Yan'an University , Yan'an , P.R. China
| |
Collapse
|
18
|
Papal S, Monti CE, Tennison ME, Swaroop A. Molecular dissection of cone photoreceptor-enriched genes encoding transmembrane and secretory proteins. J Neurosci Res 2018; 97:16-28. [PMID: 30260491 DOI: 10.1002/jnr.24329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Cone photoreceptors mediate color perception and daylight vision through intricate synaptic circuitry. In most mammalian retina, cones are greatly outnumbered by rods and exhibit inter-dependence for functional maintenance and survival. Currently, we have limited understanding of cone-specific molecular components that mediate response to extrinsic signaling factors or are involved in communication with rods and other retinal cells. To fulfill this gap, we compared the recently-published transcriptomes of developing S-cone-like photoreceptors from the Nrl-/- mouse retina with those of rods and identified candidate genes responsible for cone cell functions and communication. We generated an in silico expression profile of 823 genes that encode candidate transmembrane and secretory proteins and are up-regulated in Nrl-/- cone photoreceptors compared to wild type cones. In situ hybridization analysis validated high expression of seven of the selected candidate genes in the Nrl-/- retina. To examine their relevance to cone function, we performed in vivo knockdown of Epha10 in the Nrl-/- retina and demonstrated aberrant morphology and mislocalization of the photoreceptor cell bodies. Thus, the receptor tyrosine kinase Ephrin type-A receptor 10 appears to influence cone morphogenesis. Our studies reveal novel cone-enriched genes involved in interaction of cones with other retinal cell types and provide a framework for examining molecular pathways associated with intercellular communication.
Collapse
Affiliation(s)
- Samantha Papal
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher E Monti
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mackenzie E Tennison
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|