1
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025; 64:2123-2137. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Akopyan K, Hao Z, Lindqvist A. Preparation for mitosis requires gradual CDK1 activation. iScience 2025; 28:112292. [PMID: 40256327 PMCID: PMC12008674 DOI: 10.1016/j.isci.2025.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
G2 phase is considered as a time in which cells prepare for the large structural changes in the following mitosis. Starting at completion of DNA replication, CDK1 and PLK1 kinase activities gradually increase throughout G2 phase until reaching levels that initiate mitosis. Here, we use a combination of experiments and a data-driven mathematical model to study the connection between DNA replication and mitosis. We find that gradual activation of mitotic kinases ensures CDK1-dependent transcription of factors required for mitosis. In addition, we find that gradual activation of CDK1 coordinates CDK1 and PLK1 activation. Conversely, shortening G2 phase by WEE1 inhibition leads to mitotic delays, which can be partially rescued by expression of constitutively active PLK1. Our results show a function for slow mitotic kinase activation through G2 phase and suggest a mechanism for how the timing of mitotic entry is linked to preparation for mitosis.
Collapse
Affiliation(s)
- Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum A7, 171 77 Stockholm, Sweden
| | - Zhiyu Hao
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum A7, 171 77 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum A7, 171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Wang J, Fan Y, Luo G, Xiong L, Wang L, Wu Z, Wang J, Peng Z, Rosen CJ, Lu K, Jing J, Yuan Q, Zhang Z, Zhou C. Nuclear Condensates of WW Domain-Containing Adaptor With Coiled-Coil Regulate Mitophagy via Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406759. [PMID: 39840526 PMCID: PMC11904943 DOI: 10.1002/advs.202406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP). Importantly, knockdown of RBM12, or deletion of the WAC CC domain led to altered splicing outcomes, resulting in an elevated level of BECN1-S, the short splice variant of BECN1 that is shown to upregulate mitophagy. Thus, the findings reveal a previously unrecognized mechanism for the nuclear regulation of mitochondrial function through liquid-liquid phase separation (LLPS) and provide insights into the pathogenesis of WAC-related disorders.
Collapse
Affiliation(s)
- Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Department of Rheumatology and ImmunologyWest China HospitalSichuan UniversityChengdu610041China
| | - Lijie Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhengying Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | | | - Kefeng Lu
- Department of NeurosurgeryState Key Laboratory of BiotherapyWest China HospitalSichuan University and The Research Units of West ChinaChinese Academy of Medical SciencesChengdu610041China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhenwei Zhang
- State Key Laboratory of Biotherapy and Department of Rheumatology and ImmunologyWest China HospitalSichuan UniversityChengdu610041China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
4
|
Lee KH, Stafford AM, Pacheco-Vergara M, Cichewicz K, Canales CP, Seban N, Corea M, Rahbarian D, Bonekamp KE, Gillie GR, Pacheco-Cruz D, Gill AM, Hwang HE, Uhl KL, Jager TE, Shinawi M, Li X, Obenaus A, Crandall S, Jeong J, Nord A, Kim CH, Vogt D. Complimentary vertebrate Wac models exhibit phenotypes relevant to DeSanto-Shinawi Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595966. [PMID: 38826421 PMCID: PMC11142245 DOI: 10.1101/2024.05.26.595966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.
Collapse
Affiliation(s)
- Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - April M Stafford
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Pacheco-Vergara
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Nicolas Seban
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Melissa Corea
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Darlene Rahbarian
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Kelly E. Bonekamp
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Grant R. Gillie
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Dariangelly Pacheco-Cruz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Alyssa M Gill
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Andre Obenaus
- Director, Preclinical and Translational Imaging Center, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Shane Crandall
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhee Jeong
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex Nord
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Daniel Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Ren C, Chen T, Zhang S, Gao Q, Zou J, Li P, Wang B, Zhao Y, OuYang A, Suolang S, Zhou H. PLK3 facilitates replication of swine influenza virus by phosphorylating viral NP protein. Emerg Microbes Infect 2023; 12:2275606. [PMID: 37874309 PMCID: PMC10768867 DOI: 10.1080/22221751.2023.2275606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Swine H1N1/2009 influenza is a highly infectious respiratory disease in pigs, which poses a great threat to pig production and human health. In this study, we investigated the global expression profiling of swine-encoded genes in response to swine H1N1/2009 influenza A virus (SIV-H1N1/2009) in newborn pig trachea (NPTr) cells. In total, 166 genes were found to be differentially expressed (DE) according to the gene microarray. After analyzing the DE genes which might affect the SIV-H1N1/2009 replication, we focused on polo-like kinase 3 (PLK3). PLK3 is a member of the PLK family, which is a highly conserved serine/threonine kinase in eukaryotes and well known for its role in the regulation of cell cycle and cell division. We validated that the expression of PLK3 was upregulated after SIV-H1N1/2009 infection. Additionally, PLK3 was found to interact with viral nucleoprotein (NP), significantly increased NP phosphorylation and oligomerization, and promoted viral ribonucleoprotein assembly and replication. Furthermore, we identified serine 482 (S482) as the phosphorylated residue on NP by PLK3. The phosphorylation of S482 regulated NP oligomerization, viral polymerase activity and growth. Our findings provide further insights for understanding the replication of influenza A virus.
Collapse
Affiliation(s)
- Caiyue Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Shishuo Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qingxia Gao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Peng Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Biaoxiong Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yaxin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Aotian OuYang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, People’s Republic of China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Chapagai D, Merhej G, McInnes C, Wyatt MD. Structural Basis for Variations in Polo-like Kinase 1 Conformation and Intracellular Stability Induced by ATP-Competitive and Novel Noncompetitive Abbapolin Inhibitors. ACS Chem Biol 2023; 18:1642-1652. [PMID: 37433100 PMCID: PMC11295584 DOI: 10.1021/acschembio.3c00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein kinase with multiple roles in mitotic progression. PLK1 consists of a kinase domain (KD) and a phosphopeptide-binding polobox domain (PBD), which is responsible for substrate recognition and subcellular localization. The regulation of PLK1 involves an autoinhibitory conformation in which KD and PBD interact. Our previous work identified PBD-binding molecules termed abbapolins that inhibit the cellular phosphorylation of a PLK1 substrate and induce the loss of intracellular PLK1. Here, we describe a comparison of the abbapolin activity with that of KD inhibitors to gain insight into conformational features of PLK1. As measured by a cellular thermal shift assay, abbapolins produce ligand-induced thermal stabilization of PLK1. In contrast, KD inhibitors decreased the soluble PLK1, suggesting that catalytic-site binding causes a less thermally stable PLK1 conformation. Binding measurements with full-length PLK1 and a KD inhibitor also demonstrated a conformational change. Interestingly, the cellular consequences of KD versus PBD engagement contrast as KD binding causes the accumulation of intracellular PLK1, whereas PBD binding produces a striking loss of nuclear PLK1. These data are consistent with the relief of autoinhibited PLK1 by KD binders; an explanation for these observations is presented using structures for the catalytic domain and full-length PLK1 predicted by AlphaFold. Collectively, the results highlight an underappreciated aspect of targeting PLK1, namely, conformational perturbations induced by KD versus PBD binding. In addition to their significance for PBD-binding ligands, these observations have implications for the development of ATP-competitive PLK1 inhibitors because catalytic inhibitors may conversely promote PLK1 noncatalytic functions, which may explain their lack of clinical efficacy to date.
Collapse
Affiliation(s)
| | - George Merhej
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208
| | - Michael D. Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208
| |
Collapse
|
7
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
8
|
Rudolph HC, Stafford AM, Hwang HE, Kim CH, Prokop JW, Vogt D. Structure-Function of the Human WAC Protein in GABAergic Neurons: Towards an Understanding of Autosomal Dominant DeSanto-Shinawi Syndrome. BIOLOGY 2023; 12:589. [PMID: 37106788 PMCID: PMC10136313 DOI: 10.3390/biology12040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Dysfunction of the WW domain-containing adaptor with coiled-coil, WAC, gene underlies a rare autosomal dominant disorder, DeSanto-Shinawi syndrome (DESSH). DESSH is associated with facial dysmorphia, hypotonia, and cognitive alterations, including attention deficit hyperactivity disorder and autism. How the WAC protein localizes and functions in neural cells is critical to understanding its role during development. To understand the genotype-phenotype role of WAC, we developed a knowledgebase of WAC expression, evolution, human genomics, and structural/motif analysis combined with human protein domain deletions to assess how conserved domains guide cellular distribution. Then, we assessed localization in a cell type implicated in DESSH, cortical GABAergic neurons. WAC contains conserved charged amino acids, phosphorylation signals, and enriched nuclear motifs, suggesting a role in cellular signaling and gene transcription. Human DESSH variants are found within these regions. We also discovered and tested a nuclear localization domain that impacts the cellular distribution of the protein. These data provide new insights into the potential roles of this critical developmental gene, establishing a platform to assess further translational studies, including the screening of missense genetic variants in WAC. Moreover, these studies are essential for understanding the role of human WAC variants in more diverse neurological phenotypes, including autism spectrum disorder.
Collapse
Affiliation(s)
- Hannah C. Rudolph
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - April M. Stafford
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Yuki R, Ikeda Y, Yasutake R, Saito Y, Nakayama Y. SH2D4A promotes centrosome maturation to support spindle microtubule formation and mitotic progression. Sci Rep 2023; 13:2067. [PMID: 36739326 PMCID: PMC9899277 DOI: 10.1038/s41598-023-29362-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/06/2023] Open
Abstract
Mitotic progression requires the precise formation of spindle microtubules based on mature centrosomes. During the G2/M transition, centrosome maturation progresses, and associated microtubules bundle to form mitotic spindle fibers and capture the chromosomes for alignment at the cell equator. Mitotic kinases-induced phosphorylation signaling is necessary for these processes. Here, we identified SH2 domain-containing protein 4A (SH2D4A/PPP1R38) as a new mitotic regulator. SH2D4A knockdown delays mitotic progression. The time-lapse imaging analysis showed that SH2D4A specifically contributes to the alignment of chromosomes. The cold treatment assay and microtubule regrowth assay indicated that SH2D4A promotes microtubule nucleation to support kinetochore-microtubule attachment. This may be due to the centrosome maturation by SH2D4A via centrosomal recruitment of pericentriolar material (PCM) such as cep192, γ-tubulin, and PLK1. SH2D4A was found to be a negative regulator of PP1 phosphatase. Consistently, treatment with a PP1 inhibitor rescues SH2D4A-knockdown-induced phenotypes, including the microtubule nucleation and centrosomal recruitment of active PLK1. These results suggest that SH2D4A is involved in PCM recruitment to centrosomes and centrosome maturation through attenuation of PP1 phosphatases, accelerating the spindle formation and supporting mitotic progression.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Yuki Ikeda
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
10
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
11
|
Raab M, Matthess Y, Raab CA, Gutfreund N, Dötsch V, Becker S, Sanhaji M, Strebhardt K. A dimerization-dependent mechanism regulates enzymatic activation and nuclear entry of PLK1. Oncogene 2022; 41:372-386. [PMID: 34759346 PMCID: PMC8755526 DOI: 10.1038/s41388-021-02094-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Christopher A Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Niklas Gutfreund
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sven Becker
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
| | - Klaus Strebhardt
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
- German Cancer Consortium (DKTK) / German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
12
|
Pal-Ghosh R, Xue D, Warburton R, Hill N, Polgar P, Wilson JL. CDC2 Is an Important Driver of Vascular Smooth Muscle Cell Proliferation via FOXM1 and PLK1 in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:6943. [PMID: 34203295 PMCID: PMC8268698 DOI: 10.3390/ijms22136943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.
Collapse
Affiliation(s)
- Ruma Pal-Ghosh
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Danfeng Xue
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Rod Warburton
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Nicholas Hill
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Peter Polgar
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Jamie L. Wilson
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| |
Collapse
|
13
|
Silva Cascales H, Burdova K, Middleton A, Kuzin V, Müllers E, Stoy H, Baranello L, Macurek L, Lindqvist A. Cyclin A2 localises in the cytoplasm at the S/G2 transition to activate PLK1. Life Sci Alliance 2021; 4:e202000980. [PMID: 33402344 PMCID: PMC7812317 DOI: 10.26508/lsa.202000980] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/23/2023] Open
Abstract
Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.
Collapse
Affiliation(s)
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna Middleton
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Müllers
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henriette Stoy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Guedj F, Siegel AE, Pennings JLA, Alsebaa F, Massingham LJ, Tantravahi U, Bianchi DW. Apigenin as a Candidate Prenatal Treatment for Trisomy 21: Effects in Human Amniocytes and the Ts1Cje Mouse Model. Am J Hum Genet 2020; 107:911-931. [PMID: 33098770 PMCID: PMC7675036 DOI: 10.1016/j.ajhg.2020.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Human fetuses with trisomy 21 (T21) have atypical brain development that is apparent sonographically in the second trimester. We hypothesize that by analyzing and integrating dysregulated gene expression and pathways common to humans with Down syndrome (DS) and mouse models we can discover novel targets for prenatal therapy. Here, we tested the safety and efficacy of apigenin, identified with this approach, in both human amniocytes from fetuses with T21 and in the Ts1Cje mouse model. In vitro, T21 cells cultured with apigenin had significantly reduced oxidative stress and improved antioxidant defense response. In vivo, apigenin treatment mixed with chow was administered prenatally to the dams and fed to the pups over their lifetimes. There was no significant increase in birth defects or pup deaths resulting from prenatal apigenin treatment. Apigenin significantly improved several developmental milestones and spatial olfactory memory in Ts1Cje neonates. In addition, we noted sex-specific effects on exploratory behavior and long-term hippocampal memory in adult mice, and males showed significantly more improvement than females. We demonstrated that the therapeutic effects of apigenin are pleiotropic, resulting in decreased oxidative stress, activation of pro-proliferative and pro-neurogenic genes (KI67, Nestin, Sox2, and PAX6), reduction of the pro-inflammatory cytokines INFG, IL1A, and IL12P70 through the inhibition of NFκB signaling, increase of the anti-inflammatory cytokines IL10 and IL12P40, and increased expression of the angiogenic and neurotrophic factors VEGFA and IL7. These studies provide proof of principle that apigenin has multiple therapeutic targets in preclinical models of DS.
Collapse
Affiliation(s)
- Faycal Guedj
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA.
| | - Ashley E Siegel
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, BA 3720, the Netherlands
| | - Fatimah Alsebaa
- Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Lauren J Massingham
- Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Umadevi Tantravahi
- Department of Pathology, Women and Infants' Hospital, Providence, RI 02912, USA
| | - Diana W Bianchi
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA.
| |
Collapse
|
15
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
16
|
Zheng H, Chen T, Li C, Xu C, Ding C, Chen J, Ju S, Zhang Z, Liang Z, Cui Z, Zhao J. A circular RNA hsa_circ_0079929 inhibits tumor growth in hepatocellular carcinoma. Cancer Manag Res 2019; 11:443-454. [PMID: 30655696 PMCID: PMC6322497 DOI: 10.2147/cmar.s189338] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Most recently, circular RNAs (circRNAs) were considered playing regulatory roles in tumor initiation and development. The specific function of circRNAs in hepatocellular carcinoma (HCC) remains unknown. This study was designed to detect specific roles of a circRNA hsa_circ_0079299 in HCC. Methods The expression of hsa_circ_0079299 in HCC and tumor cell lines was detected using quantitative PCR (qPCR). Cell proliferation, migration, cell cycle and apoptosis after overexpression of the circRNA were measured using cell counting kit-8 (CCK8) assay, colony formation, 5-ethynyl-2′-deoxyuridine (EdU) assay, wound healing assay, transwell culture system and flow cytometry. Western blotting assay detected the protein expression of PI3K/AKT/mTOR signaling pathway and cyclin B1 (CCNB1). Overexpression of the circRNA in vivo was measured by nude mice tumorigenesis. Results The expression of hsa_circ_0079299 was lower in HCC tissues. Overexpression of hsa_circ_0079299 suppressed tumor growth in vitro and in vivo, retarded cell cycle progression while had no effect on cell migration and apoptosis. The inhibitory effect of hsa_circ_0079299 was partly mediated by PI3K/AKT/mTOR signaling pathway. Conclusion Our study shows that tumor suppressive role of hsa_circ_0079299 in HCC provides new recognition of circRNAs in cancers.
Collapse
Affiliation(s)
- Huifei Zheng
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tengfei Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Chang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Chun Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Cheng Ding
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Jun Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Sheng Ju
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zhiwei Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zhipan Liang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zihan Cui
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Jun Zhao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| |
Collapse
|
17
|
Pintard L, Archambault V. A unified view of spatio-temporal control of mitotic entry: Polo kinase as the key. Open Biol 2018; 8:180114. [PMID: 30135239 PMCID: PMC6119860 DOI: 10.1098/rsob.180114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022] Open
Abstract
The Polo kinase is an essential regulator of cell division. Its ability to regulate multiple events at distinct subcellular locations and times during mitosis is remarkable. In the last few years, a much clearer mechanistic understanding of the functions and regulation of Polo in cell division has emerged. In this regard, the importance of coupling changes in activity with changes in localization is striking, both for Polo itself and for its upstream regulators. This review brings together several new pieces of the puzzle that are gradually revealing how Polo is regulated, in space and time, to enable its functions in the early stages of mitosis in animal cells. As a result, a unified view of how mitotic entry is spatio-temporally regulated is emerging.
Collapse
Affiliation(s)
- Lionel Pintard
- Cell Cycle and Development Team, Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, Ligue contre le Cancer, Paris, France
- Equipe labellisée, Ligue contre le Cancer, Paris, France
| | - Vincent Archambault
- Institut de recherche en immunologie et en cancérologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|