1
|
Samsa WE, Zhang Z, Gong Z. CBFβ Regulates RUNX3 ADP-Ribosylation to Mediate Homologous Recombination Repair. J Cell Physiol 2025; 240:e31503. [PMID: 39696918 DOI: 10.1002/jcp.31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
RUNX3 is a master developmental transcriptional factor that has been implicated as a tumor suppressor in many cancers. However, the exact role of RUNX3 in cancer pathogenesis remains to be completely elucidated. Recently, it has emerged that RUNX3 is involved in the DNA damage response. Here, we demonstrate that heterodimerization of RUNX3 with CBFβ is necessary for its stability by protecting RUNX3 from RUNX3 ADP-ribosylation-dependent ubiquitination and degradation. We further identify new amino acid residues that are targets for PARylation and demonstrate that RUNX3 PARylation at these residues is necessary for localization of RUNX3 to DNA double strand break sites (DBSs). We also demonstrate that both RUNX3 PARylation and CBFβ heterodimerization with RUNX3 positively regulates homologous recombination (HR) repair, in part by promoting the recruitment of CtIP and phospho-RPA2 to the DBSs to mediate HR repair. In summary, we provide evidence that RUNX3 regulates HR repair activity in a PARylation-dependent manner.
Collapse
Affiliation(s)
- William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Malyukova A, Lahnalampi M, Falqués-Costa T, Pölönen P, Sipola M, Mehtonen J, Teppo S, Akopyan K, Viiliainen J, Lohi O, Hagström-Andersson AK, Heinäniemi M, Sangfelt O. Sequential drug treatment targeting cell cycle and cell fate regulatory programs blocks non-genetic cancer evolution in acute lymphoblastic leukemia. Genome Biol 2024; 25:143. [PMID: 38822412 PMCID: PMC11143599 DOI: 10.1186/s13059-024-03260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/26/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.
Collapse
Affiliation(s)
- Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Mari Lahnalampi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ton Falqués-Costa
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Petri Pölönen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Sipola
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha Mehtonen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Johanna Viiliainen
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - Merja Heinäniemi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Jayne ND, Liang Z, Lim DH, Chen PB, Diaz C, Arimoto KI, Xia L, Liu M, Ren B, Fu XD, Zhang DE. RUNX1 C-terminal mutations impair blood cell differentiation by perturbing specific enhancer-promoter networks. Blood Adv 2024; 8:2410-2423. [PMID: 38513139 PMCID: PMC11112616 DOI: 10.1182/bloodadvances.2023011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.
Collapse
Affiliation(s)
- Nathan D. Jayne
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Zhengyu Liang
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Do-Hwan Lim
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Poshen B. Chen
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Cristina Diaz
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Lingbo Xia
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Mengdan Liu
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Bing Ren
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Xiang-Dong Fu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
- School of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
4
|
Toriseva M, Björkgren I, Junnila A, Mehmood A, Mattsson J, Raimoranta I, Kim B, Laiho A, Nees M, Elo L, Poutanen M, Breton S, Sipilä P. RUNX transcription factors are essential in maintaining epididymal epithelial differentiation. Cell Mol Life Sci 2024; 81:183. [PMID: 38630262 PMCID: PMC11023966 DOI: 10.1007/s00018-024-05211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Apart from the androgen receptor, transcription factors (TFs) that are required for the development and formation of the different segments of the epididymis have remained unknown. We identified TF families expressed in the developing epididymides, of which many showed segment specificity. From these TFs, down-regulation of runt related transcription factors (RUNXs) 1 and 2 expression coincides with epithelial regression in Dicer1 cKO mice. Concomitant deletion of both Runx1 and Runx2 in a mouse epididymal epithelial cell line affected cell morphology, adhesion and mobility in vitro. Furthermore, lack of functional RUNXs severely disturbed the formation of 3D epididymal organoid-like structures. Transcriptomic analysis of the epididymal cell organoid-like structures indicated that RUNX1 and RUNX2 are involved in the regulation of MAPK signaling, NOTCH pathway activity, and EMT-related gene expression. This suggests that RUNXs are master regulators of several essential signaling pathways, and necessary for the maintenance of proper differentiation of the epididymal epithelium.
Collapse
Affiliation(s)
- Mervi Toriseva
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Ida Björkgren
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Arttu Junnila
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Arfa Mehmood
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jesse Mattsson
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Inka Raimoranta
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Bongki Kim
- Program in Membrane Biology/Division of Nephrology, Massachusetts General Hospital, Simches Research Center, Boston, MA, 02114, USA
- Department of Animal Resources Science, Kongju National University, Chungcheongnam-do, Yesan, 32439, Republic of Korea
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matthias Nees
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Elo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| | - Sylvie Breton
- Program in Membrane Biology/Division of Nephrology, Massachusetts General Hospital, Simches Research Center, Boston, MA, 02114, USA
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Research Center-CHU de Québec, Université Laval, Québec, QC, Canada
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Marion W, Koppe T, Chen CC, Wang D, Frenis K, Fierstein S, Sensharma P, Aumais O, Peters M, Ruiz-Torres S, Chihanga T, Boettcher S, Shimamura A, Bauer DE, Schlaeger T, Wells SI, Ebert BL, Starczynowski D, da Rocha EL, Rowe RG. RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia. Leukemia 2023; 37:1698-1708. [PMID: 37391485 PMCID: PMC11009868 DOI: 10.1038/s41375-023-01945-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.
Collapse
Affiliation(s)
- William Marion
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Tiago Koppe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Wang
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Fierstein
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Prerana Sensharma
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Olivia Aumais
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Michael Peters
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Steffen Boettcher
- Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Akiko Shimamura
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin L Ebert
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel Starczynowski
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | | | - R Grant Rowe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA.
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Liu Y, Hu L, Wu Z, Yuan K, Hong G, Lian Z, Feng J, Li N, Li D, Wong J, Chen J, Liu M, He J, Pang X. Loss of PHF8 induces a viral mimicry response by activating endogenous retrotransposons. Nat Commun 2023; 14:4225. [PMID: 37454216 PMCID: PMC10349869 DOI: 10.1038/s41467-023-39943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy has become established as major treatment modality for multiple types of solid tumors, including colorectal cancer. Identifying novel immunotherapeutic targets to enhance anti-tumor immunity and sensitize current immune checkpoint blockade (ICB) in colorectal cancer is needed. Here we report the histone demethylase PHD finger protein 8 (PHF8, KDM7B), a Jumonji C domain-containing protein that erases repressive histone methyl marks, as an essential mediator of immune escape. Ablation the function of PHF8 abrogates tumor growth, activates anti-tumor immune memory, and augments sensitivity to ICB therapy in mouse models of colorectal cancer. Strikingly, tumor PHF8 deletion stimulates a viral mimicry response in colorectal cancer cells, where the depletion of key components of endogenous nucleic acid sensing diminishes PHF8 loss-meditated antiviral immune responses and anti-tumor effects in vivo. Mechanistically, PHF8 inhibition elicits H3K9me3-dependent retrotransposon activation by promoting proteasomal degradation of the H3K9 methyltransferase SETDB1 in a demethylase-independent manner. Moreover, PHF8 expression is anti-correlated with canonical immune signatures and antiviral immune responses in human colorectal adenocarcinoma. Overall, our study establishes PHF8 as an epigenetic checkpoint, and targeting PHF8 is a promising viral mimicry-inducing approach to enhance intrinsic anti-tumor immunity or to conquer immune resistance.
Collapse
Affiliation(s)
- Yanan Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Longmiao Hu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengzhen Wu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kun Yuan
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Zhengke Lian
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Li
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiekai Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
8
|
Dutta B, Osato M. The RUNX Family, a Novel Multifaceted Guardian of the Genome. Cells 2023; 12:255. [PMID: 36672189 PMCID: PMC9856552 DOI: 10.3390/cells12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The DNA repair machinery exists to protect cells from daily genetic insults by orchestrating multiple intrinsic and extrinsic factors. One such factor recently identified is the Runt-related transcription factor (RUNX) family, a group of proteins that act as a master transcriptional regulator for multiple biological functions such as embryonic development, stem cell behaviors, and oncogenesis. A significant number of studies in the past decades have delineated the involvement of RUNX proteins in DNA repair. Alterations in RUNX genes cause organ failure and predisposition to cancers, as seen in patients carrying mutations in the other well-established DNA repair genes. Herein, we review the currently existing findings and provide new insights into transcriptional and non-transcriptional multifaceted regulation of DNA repair by RUNX family proteins.
Collapse
Affiliation(s)
- Bibek Dutta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
9
|
Zhu T, Zheng JY, Huang LL, Wang YH, Yao DF, Dai HB. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Front Pharmacol 2023; 14:1137151. [PMID: 36909172 PMCID: PMC9995695 DOI: 10.3389/fphar.2023.1137151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a key DNA damage sensor that is recruited to damaged sites after DNA strand breaks to initiate DNA repair. This is achieved by catalyzing attachment of ADP-ribose moieties, which are donated from NAD+, on the amino acid residues of itself or other acceptor proteins. PARP inhibitors (PARPi) that inhibit PARP catalytic activity and induce PARP trapping are commonly used for treating BRCA1/2-deficient breast and ovarian cancers through synergistic lethality. Unfortunately, resistance to PARPi frequently occurs. In this review, we present the novel substrates and regulators of the PARP1-catalyzed poly (ADP-ribosyl)ation (PARylatison) that have been identified in the last 3 years. The overall aim is the presentation of protein interactions of potential therapeutic intervention for overcoming the resistance to PARPi.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju-Yan Zheng
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Ling Huang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Wang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di-Fei Yao
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Bin Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
The H. pylori CagA Oncoprotein Induces DNA Double Strand Breaks through Fanconi Anemia Pathway Downregulation and Replication Fork Collapse. Int J Mol Sci 2022; 23:ijms23031661. [PMID: 35163588 PMCID: PMC8836099 DOI: 10.3390/ijms23031661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
The proteins from the Fanconi Anemia (FA) pathway of DNA repair maintain DNA replication fork integrity by preventing the unscheduled degradation of nascent DNA at regions of stalled replication forks. Here, we ask if the bacterial pathogen H. pylori exploits the fork stabilisation machinery to generate double stand breaks (DSBs) and genomic instability. Specifically, we study if the H. pylori virulence factor CagA generates host genomic DSBs through replication fork destabilisation and collapse. An inducible gastric cancer model was used to examine global CagA-dependent transcriptomic and proteomic alterations, using RNA sequencing and SILAC-based mass spectrometry, respectively. The transcriptional alterations were confirmed in gastric cancer cell lines infected with H. pylori. Functional analysis was performed using chromatin fractionation, pulsed-field gel electrophoresis (PFGE), and single molecule DNA replication/repair fiber assays. We found a core set of 31 DNA repair factors including the FA genes FANCI, FANCD2, BRCA1, and BRCA2 that were downregulated following CagA expression. H. pylori infection of gastric cancer cell lines showed downregulation of the aforementioned FA genes in a CagA-dependent manner. Consistent with FA pathway downregulation, chromatin purification studies revealed impaired levels of Rad51 but higher recruitment of the nuclease MRE11 on the chromatin of CagA-expressing cells, suggesting impaired fork protection. In line with the above data, fibre assays revealed higher fork degradation, lower fork speed, daughter strands gap accumulation, and impaired re-start of replication forks in the presence of CagA, indicating compromised genome stability. By downregulating the expression of key DNA repair genes such as FANCI, FANCD2, BRCA1, and BRCA2, H. pylori CagA compromises host replication fork stability and induces DNA DSBs through fork collapse. These data unveil an intriguing example of a bacterial virulence factor that induces genomic instability by interfering with the host replication fork stabilisation machinery.
Collapse
|
11
|
Chuang LSH, Ito Y. The Multiple Interactions of RUNX with the Hippo-YAP Pathway. Cells 2021; 10:2925. [PMID: 34831147 PMCID: PMC8616315 DOI: 10.3390/cells10112925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
The Hippo-YAP signaling pathway serves roles in cell proliferation, stem cell renewal/maintenance, differentiation and apoptosis. Many of its functions are central to early development, adult tissue repair/regeneration and not surprisingly, tumorigenesis and metastasis. The Hippo pathway represses the activity of YAP and paralog TAZ by modulating cell proliferation and promoting differentiation to maintain tissue homeostasis and proper organ size. Similarly, master regulators of development RUNX transcription factors have been shown to play critical roles in proliferation, differentiation, apoptosis and cell fate determination. In this review, we discuss the multiple interactions of RUNX with the Hippo-YAP pathway, their shared collaborators in Wnt, TGFβ, MYC and RB pathways, and their overlapping functions in development and tumorigenesis.
Collapse
Affiliation(s)
| | - Yoshiaki Ito
- NUS Centre for Cancer Research, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| |
Collapse
|
12
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
13
|
González-Acosta D, Blanco-Romero E, Ubieto-Capella P, Mutreja K, Míguez S, Llanos S, García F, Muñoz J, Blanco L, Lopes M, Méndez J. PrimPol-mediated repriming facilitates replication traverse of DNA interstrand crosslinks. EMBO J 2021; 40:e106355. [PMID: 34128550 PMCID: PMC8280817 DOI: 10.15252/embj.2020106355] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) induced by endogenous aldehydes or chemotherapeutic agents interfere with essential processes such as replication and transcription. ICL recognition and repair by the Fanconi Anemia pathway require the formation of an X‐shaped DNA structure that may arise from convergence of two replication forks at the crosslink or traversing of the lesion by a single replication fork. Here, we report that ICL traverse strictly requires DNA repriming events downstream of the lesion, which are carried out by PrimPol, the second primase‐polymerase identified in mammalian cells after Polα/Primase. The recruitment of PrimPol to the vicinity of ICLs depends on its interaction with RPA, but not on FANCM translocase or the BLM/TOP3A/RMI1‐2 (BTR) complex that also participate in ICL traverse. Genetic ablation of PRIMPOL makes cells more dependent on the fork convergence mechanism to initiate ICL repair, and PRIMPOL KO cells and mice display hypersensitivity to ICL‐inducing drugs. These results open the possibility of targeting PrimPol activity to enhance the efficacy of chemotherapy based on DNA crosslinking agents.
Collapse
Affiliation(s)
- Daniel González-Acosta
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Patricia Ubieto-Capella
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Karun Mutreja
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Samuel Míguez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Susana Llanos
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fernando García
- Proteomics Unit-ProteoRed-ISCIII, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit-ProteoRed-ISCIII, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
14
|
Cobb AM, Yusoff S, Hayward R, Ahmad S, Sun M, Verhulst A, D'Haese PC, Shanahan CM. Runx2 (Runt-Related Transcription Factor 2) Links the DNA Damage Response to Osteogenic Reprogramming and Apoptosis of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:1339-1357. [PMID: 33356386 DOI: 10.1161/atvbaha.120.315206] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Apoptosis
- Cells, Cultured
- Cellular Reprogramming
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Damage
- Disease Models, Animal
- Female
- Histones/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis
- Phosphorylation
- Rats, Wistar
- Signal Transduction
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Andrew M Cobb
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Syabira Yusoff
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Robert Hayward
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Sadia Ahmad
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Mengxi Sun
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| |
Collapse
|
15
|
RUNX3 Transcript Variants Have Distinct Roles in Ovarian Carcinoma and Differently Influence Platinum Sensitivity and Angiogenesis. Cancers (Basel) 2021; 13:cancers13030476. [PMID: 33530588 PMCID: PMC7866085 DOI: 10.3390/cancers13030476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer treatment is limited by missing predictive markers, frequent chemotherapy resistance and an incomplete understanding of the biology of tumors. Earlier work proved that hypermethylation of the gene RUNX3 coding for a transcription factor has prognostic value, and RUNX3 transcript variant overexpression, regulated by this epigenetic mechanism, influences cisplatin sensitivity and malignant properties of cells contrary. The present data validate RUNX3 transcript variant-specific effects for high-grade serous ovarian cancer and identify RUNX3-regulated genes and processes. Specifically, DNA damage repair and angiogenesis are influenced by RUNX3, and transcript variant 1 mediates stronger carcinogenic properties. Abstract The prognosis of late-stage epithelial ovarian cancer (EOC) patients is affected by chemotherapy response and the malignant potential of the tumor cells. In earlier work, we identified hypermethylation of the runt-related transcription factor 3 gene (RUNX3) as a prognostic biomarker and contrary functions of transcript variants (TV1 and TV2) in A2780 and SKOV3 cells. The aim of the study was to further validate these results and to increase the knowledge about RUNX3 function in EOC. New RUNX3 overexpression models of high-grade serous ovarian cancer (HGSOC) were established and analyzed for phenotypic (IC50 determination, migration, proliferation and angiogenesis assay, DNA damage analysis) and transcriptomic consequences (NGS) of RUNX3 TV1 and TV2 overexpression. Platinum sensitivity was affected by a specific transcript variant depending on BRCA background. RUNX3 TV2 induced an increased sensitivity in BRCA1wt cells (OVCAR3), whereas TV1 increased the sensitivity and induced a G2/M arrest under treatment in BRCA1mut cells (A13-2-12). These different phenotypes relate to differences in DNA repair: homologous recombination deficient A13-2-12 cells show less γH2AX foci despite higher levels of Pt-DNA adducts. RNA-Seq analyses prove transcript variant and cell-line-specific RUNX3 effects. Pathway analyses revealed another clinically important function of RUNX3—regulation of angiogenesis. This was confirmed by thrombospondin1 analyses, HUVEC spheroid sprouting assays and proteomic profiling. Importantly, conditioned media (CM) from RUNX3 TV1 overexpressing A13-2-12 cells induced an increased HUVEC sprouting. Altogether, the presented data support the hypothesis of different functions of RUNX3 transcript variants related to the clinically relevant processes—platinum resistance and angiogenesis.
Collapse
|
16
|
Runx proteins mediate protective immunity against Leishmania donovani infection by promoting CD40 expression on dendritic cells. PLoS Pathog 2020; 16:e1009136. [PMID: 33370418 PMCID: PMC7793297 DOI: 10.1371/journal.ppat.1009136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2021] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
The level of CD40 expression on dendritic cells (DCs) plays a decisive role in disease protection during Leishmania donovani (LD) infection. However, current understanding of the molecular regulation of CD40 expression remains elusive. Using molecular, cellular and functional approaches, we identified a role for Runx1 and Runx3 transcription factors in the regulation of CD40 expression in DCs. In response to lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFα) or antileishmanial drug sodium antimony gluconate (SAG), both Runx1 and Runx3 translocated to the nucleus, bound to the CD40 promoter and upregulated CD40 expression on DCs. These activities of Runx proteins were mediated by the upstream phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Notably, LD infection attenuated LPS- or TNFα-induced CD40 expression in DCs by inhibiting PI3K-Akt-Runx axis via protein tyrosine phosphatase SHP-1. In contrast, CD40 expression induced by SAG was unaffected by LD infection, as SAG by blocking LD-induced SHP-1 activation potentiated PI3K-Akt signaling to drive Runx-mediated CD40 upregulation. Adoptive transfer experiments further showed that Runx1 and Runx3 play a pivotal role in eliciting antileishmanial immune response of SAG-treated DCs in vivo by promoting CD40-mediated type-1 T cell responses. Importantly, antimony-resistant LD suppressed SAG-induced CD40 upregulation on DCs by blocking the PI3K-Akt-Runx pathway through sustained SHP-1 activation. These findings unveil an immunoregulatory role for Runx proteins during LD infection.
Collapse
|
17
|
Zhang C, Chen H, Deng Z, Long D, Xu L, Liu Z. DGCR8/miR-106 Axis Enhances Radiosensitivity of Head and Neck Squamous Cell Carcinomas by Downregulating RUNX3. Front Med (Lausanne) 2020; 7:582097. [PMID: 33385002 PMCID: PMC7770216 DOI: 10.3389/fmed.2020.582097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignant tumor worldwide, and the radiotherapy effect is strongly associated with human papillomavirus (HPV) infection. Therefore, the aim of our study was to analyze the mechanism of HPV E7 and its effects on radiosensitivity in HNSCC cells. Methods: The mRNA expression of DiGeorge syndrome critical region gene 8 (DGCR8), has-miR-106a, and Runt-related transcription factor 3 (RUNX3) was examined by quantitative real-time PCR (RT-qPCR). The protein expression of DGCR8, E7, RUNX3, caspase-3/cleaved caspase-3, poly(ADP-ribose) polymerase (PARP)/cleaved PARP, and γH2AX was measured by Western blot. The expression level of DGCR8 was measured by immunofluorescence assay. Starbase database (http://starbase.sysu.edu.cn/) was used to analyze the correlation between has-miR-106a-5p and DGCR8. TargetScan database (http://www.targetscan.org/vert_72/) was adopted to calculate the prediction of binding sites. Radiosensitivity was evaluated through clone formation assays and Cell Counting Kit-8 (CCK-8) assays. Results: In our study, we found that the mRNA and protein expression levels of HPV E7 and DGCR8 in HPV-positive HNSCC cells were higher than those in HPV-negative cells. The expression of DGCR8 was increased in FaDu and UM-SCC-4 with E7 overexpression, while the expression of DGCR8 was decreased in UM-SCC-47 and UPCI-SCC-090 with E7 silence. The miR-106a expression was increased after DGCR8 overexpression in FaDu and UM-SCC-4. However, the miR-106a expression was decreased in UM-SCC-47 and UPCI-SCC-090 with E7 silence. In radiation conditions, clone formation assays found that less clones formed in FaDu and UM-SCC-4 cells subsequent to silencing DGCR8 or miR-106a than that in the control group, and more clones were formed in UM-SCC-47 and UPCI-SCC-090 cells overexpressing DGCR8 or miR-106a than that in the control group. Luciferase reporter gene assays verified that miR-106a targeted the 3' untranslated region (UTR) of RUNX3 mRNA. MiR-106a overexpression resulted in a decrease in RUNX3 expression, and miR-106a silence increased RUNX3 expression. Rescue experiments conducted with miR-106a inhibitor restored radiation resistance and reduced DNA damage in radiation condition. Conclusions: Our study indicated that HPV E7 activated DGCR8/miR-106a/RUNX3 axis to enhance radiation sensitivity and provided directions for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hangqi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Long
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaohui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Bae SC, Kolinjivadi AM, Ito Y. Functional relationship between p53 and RUNX proteins. J Mol Cell Biol 2020; 11:224-230. [PMID: 30535344 PMCID: PMC6478125 DOI: 10.1093/jmcb/mjy076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/04/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
RUNX genes belong to a three-membered family of transcription factors, which are well established as master regulators of development. Of them, aberrations in RUNX3 expression are frequently observed in human malignancies primarily due to epigenetic silencing, which is often overlooked. At the G1 phase of the cell cycle, RUNX3 regulates the restriction (R)-point, a mechanism that decides cell cycle entry. Deregulation at the R-point or loss of RUNX3 results in premature entry into S phase, leading to a proliferative advantage. Inactivation of Runx1 and Runx2 induce immortalization of mouse embryo fibroblast. As a consequence, RUNX loss induces pre-cancerous lesions independent of oncogene activation. p53 is the most extensively studied tumour suppressor. p53 plays an important role to prevent tumour progression but not tumour initiation. Therefore, upon oncogene activation, early inactivation of RUNX genes and subsequent mutation of p53 appear to result in tumour initiation and progression. Recently, transcription-independent DNA repairing roles of RUNX3 and p53 are emerging. Being evolutionarily old genes, it appears that the primordial function of p53 is to protect genome integrity, a function that likely extends to the RUNX gene as well. In this review, we examine the mechanism and sequence of actions of these tumour suppressors in detail.
Collapse
Affiliation(s)
- Suk-Chul Bae
- Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, South Korea
| | - Arun Mouli Kolinjivadi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Duer M, Cobb AM, Shanahan CM. DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification. Arterioscler Thromb Vasc Biol 2020; 40:e193-e202. [PMID: 32404005 DOI: 10.1161/atvbaha.120.313792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.
Collapse
Affiliation(s)
- Melinda Duer
- From the Department of Chemistry, University of Cambridge, United Kingdom (M.D.)
| | - Andrew M Cobb
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| |
Collapse
|
20
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|
21
|
Samarakkody AS, Shin NY, Cantor AB. Role of RUNX Family Transcription Factors in DNA Damage Response. Mol Cells 2020; 43:99-106. [PMID: 32024352 PMCID: PMC7057837 DOI: 10.14348/molcells.2019.0304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023] Open
Abstract
Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.
Collapse
Affiliation(s)
- Ann Sanoji Samarakkody
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Nah-Young Shin
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
- Harvard Stem Cell Institute, Cambridge, MA 0138, USA
| |
Collapse
|
22
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
23
|
NAD + in sulfur mustard toxicity. Toxicol Lett 2020; 324:95-103. [PMID: 32017979 DOI: 10.1016/j.toxlet.2020.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) is a toxicant and chemical warfare agent with strong vesicant properties. The mechanisms behind SM-induced toxicity are not fully understood and no antidote or effective therapy against SM exists. Both, the risk of SM release in asymmetric conflicts or terrorist attacks and the usage of SM-derived nitrogen mustards as cancer chemotherapeutics, render the mechanisms of mustard-induced toxicity a highly relevant research subject. Herein, we review a central role of the abundant cellular molecule nicotinamide adenine dinucleotide (NAD+) in molecular mechanisms underlying SM toxicity. We also discuss the potential beneficial effects of NAD+ precursors in counteracting SM-induced damage.
Collapse
|
24
|
Abstract
Poly(ADP-ribosyl)ation (PARylation) mediated by poly ADP-ribose polymerases (PARPs) plays a key role in DNA damage repair. Suppression of PARylation by PARP inhibitors impairs DNA damage repair and induces apoptosis of tumor cells with repair defects. Thus, PARP inhibitors have been approved by the US FDA for various types of cancer treatment. However, recent studies suggest that dePARylation also plays a key role in DNA damage repair. Instead of antagonizing PARylation, dePARylation acts as a downstream step of PARylation in DNA damage repair. Moreover, several types of dePARylation inhibitors have been developed and examined in the preclinical studies for cancer treatment. In this review, we will discuss the recent progress on the role of dePARylation in DNA damage repair and cancer suppression. We expect that targeting dePARylation could be a promising approach for cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Lily L. Yu
- Westridge School, 324 Madeline Dr., Pasadena, CA 91105 USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
25
|
Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res 2019; 47:8502-8520. [PMID: 31616951 PMCID: PMC6895267 DOI: 10.1093/nar/gkz545] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/25/2023] Open
Abstract
Microrchidia family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling enzyme with an emerging role in DNA damage response (DDR), but the underlying mechanism remains largely unknown. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1), a key chromatin-associated enzyme responsible for the synthesis of poly(ADP-ribose) (PAR) polymers in mammalian cells, interacts with and PARylates MORC2 at two residues within its conserved CW-type zinc finger domain. Following DNA damage, PARP1 recruits MORC2 to DNA damage sites and catalyzes MORC2 PARylation, which stimulates its ATPase and chromatin remodeling activities. Mutation of PARylation residues in MORC2 results in reduced cell survival after DNA damage. MORC2, in turn, stabilizes PARP1 through enhancing acetyltransferase NAT10-mediated acetylation of PARP1 at lysine 949, which blocks its ubiquitination at the same residue and subsequent degradation by E3 ubiquitin ligase CHFR. Consequently, depletion of MORC2 or expression of an acetylation-defective PARP1 mutant impairs DNA damage-induced PAR production and PAR-dependent recruitment of DNA repair proteins to DNA lesions, leading to enhanced sensitivity to genotoxic stress. Collectively, these findings uncover a previously unrecognized mechanistic link between MORC2 and PARP1 in the regulation of cellular response to DNA damage.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
27
|
Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A 2019; 116:2282-2289. [PMID: 30670656 DOI: 10.1073/pnas.1819386116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 integrates into the genome of target cells and establishes latency indefinitely. Understanding the molecular mechanism of HIV-1 latency maintenance is needed for therapeutic strategies to combat existing infection. In this study, we found an unexpected role for Apobec3A (apolipoprotein B MRNA editing enzyme catalytic subunit 3A, abbreviated "A3A") in maintaining the latency state within HIV-1-infected cells. Overexpression of A3A in latently infected cell lines led to lower reactivation, while knockdown or knockout of A3A led to increased spontaneous and inducible HIV-1 reactivation. A3A maintains HIV-1 latency by associating with proviral DNA at the 5' long terminal repeat region, recruiting KAP1 and HP1, and imposing repressive histone marks. We show that knockdown of A3A in latently infected human primary CD4 T cells enhanced HIV-1 reactivation. Collectively, we provide evidence and a mechanism by which A3A reinforces HIV-1 latency in infected CD4 T cells.
Collapse
|