1
|
Tanudisastro HA, Cuomo ASE, Weisburd B, Welland M, Spenceley E, Franklin M, Xue A, Bowen B, Wing K, Tang O, Gray M, Reis ALM, Margoliash J, Kurtas NE, Pullin JM, Lee AS, Brand H, Harper M, Bobowik K, Silk M, Marshall J, Bakiris V, Madala BS, Uren C, Bartie C, Senabouth A, Dashnow H, Fearnley L, Martin-Trujillo A, Dolzhenko E, Qiao Z, Grieve SM, Nguyen T, Ben-David E, Chen L, Farh KKH, Talkowski M, Alexander SI, Siggs OM, Gruenschloss L, Nicholas HR, Piscionere J, Simons C, Wallace C, Gymrek M, Deveson IW, Hewitt AW, Figtree GA, de Lange KM, Powell JE, MacArthur DG. Polymorphic tandem repeats influence cell type-specific gene expression across the human immune landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.02.621562. [PMID: 40291654 PMCID: PMC12026411 DOI: 10.1101/2024.11.02.621562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Tandem repeats (TRs) - highly polymorphic, repetitive sequences dispersed across the human genome - are crucial regulators of gene expression and diverse biological processes, but have remained underexplored relative to other classes of genetic variation due to historical challenges in their accurate calling and analysis. Here, we leverage whole genome and single-cell RNA sequencing from over 5.4 million blood-derived cells from 1,925 individuals to explore the impact of variation in over 1.7 million polymorphic TR loci on blood cell type-specific gene expression. We identify over 62,000 single-cell expression quantitative trait TR loci (sc-eTRs), 16.6% of which are specific to one of 28 distinct immune cell types. Further fine-mapping uncovers 4,283 sc-eTRs as candidate causal drivers of gene expression in 13.6% of genes tested genome-wide. We show through colocalization that TRs are likely mediators of genetic associations with immune-mediated and hematological traits in over 700 genes, and further identify novel TRs warranting investigation in rare disease cohorts. TRs are critical, yet long-overlooked, contributors to cell type-specific gene expression, with implications for understanding rare disease pathogenesis and the genetic architecture of complex traits.
Collapse
|
2
|
Okafor EC, Nielsen K. State of the Field: Cytotoxic Immune Cell Responses in C. neoformans and C. deneoformans Infection. J Fungi (Basel) 2024; 10:712. [PMID: 39452664 PMCID: PMC11508571 DOI: 10.3390/jof10100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cryptococcus neoformans is an environmental pathogen that causes life-threatening disease in immunocompromised persons. The majority of immunological studies have centered on CD4+ T-cell dysfunction and associated cytokine signaling pathways, optimization of phagocytic cell function against fungal cells, and identification of robust antigens for vaccine development. However, a growing body of literature exists regarding cytotoxic cells, specifically CD8+ T-cells, Natural Killer cells, gamma/delta T-cells, NK T-cells, and Cytotoxic CD4+ T-cells, and their role in the innate and adaptive immune response during C. neoformans and C. deneoformans infection. In this review, we (1) provide a comprehensive report of data gathered from mouse and human studies on cytotoxic cell function and phenotype, (2) discuss harmonious and conflicting results on cellular responses in mice models and human infection, (3) identify gaps of knowledge in the field ripe for exploration, and (4) highlight how innovative immunological tools could enhance the study of cytotoxic cells and their potential immunomodulation during cryptococcosis.
Collapse
Affiliation(s)
- Elizabeth C. Okafor
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech University, Blacksburg, VA 24060, USA
| |
Collapse
|
3
|
Ricci A, Carradori S, Cataldi A, Zara S. Eg5 and Diseases: From the Well-Known Role in Cancer to the Less-Known Activity in Noncancerous Pathological Conditions. Biochem Res Int 2024; 2024:3649912. [PMID: 38939361 PMCID: PMC11211015 DOI: 10.1155/2024/3649912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Eg5 is a protein encoded by KIF11 gene and is primarily involved in correct mitotic cell division. It is also involved in nonmitotic processes such as polypeptide synthesis, protein transport, and angiogenesis. The scientific literature sheds light on the ubiquitous functions of KIF11 and its involvement in the onset and progression of different pathologies. This review focuses attention on two main points: (1) the correlation between Eg5 and cancer and (2) the involvement of Eg5 in noncancerous conditions. Regarding the first point, several tumors revealed an overexpression of this kinesin, thus pushing to look for new Eg5 inhibitors for clinical practice. In addition, the evaluation of Eg5 expression represents a crucial step, as its overexpression could predict a poor prognosis for cancer patients. Referring to the second point, in specific pathological conditions, the reduced activity of Eg5 can be one of the causes of pathological onset. This is the case of Alzheimer's disease (AD), in which Aβ and Tau work as Eg5 inhibitors, or in acquired immune deficiency syndrome (AIDS), in which Tat-mediated Eg5 determines the loss of CD4+ T-lymphocytes. Reduced Eg5 activity, due to mutations of KIF11 gene, is also responsible for pathological conditions such as microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability (MCLRI) and familial exudative vitreous retinopathy (FEVR). In conclusion, this review highlights the double impact that overexpression or loss of function of Eg5 could have in the onset and progression of different pathological situations. This emphasizes, on one hand, a possible role of Eg5 as a potential biomarker and new target in cancer and, on the other hand, the promotion of Eg5 expression/activity as a new therapeutic strategy in different noncancerous diseases.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Simone Carradori
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Susi Zara
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
4
|
Jacott CN, Schoonbeek HJ, Sidhu GS, Steuernagel B, Kirby R, Zheng X, von Tiedermann A, Macioszek VK, Kononowicz AK, Fell H, Fitt BDL, Mitrousia GK, Stotz HU, Ridout CJ, Wells R. Pathogen lifestyle determines host genetic signature of quantitative disease resistance loci in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:65. [PMID: 38430276 PMCID: PMC10908622 DOI: 10.1007/s00122-024-04569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
KEY MESSAGE Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.
Collapse
Affiliation(s)
- Catherine N Jacott
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gurpinder Singh Sidhu
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Burkhard Steuernagel
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Kirby
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaorong Zheng
- Department of Crop Sciences, Georg August University, 37077, Göttingen, Germany
| | | | - Violetta K Macioszek
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245, Białystok, Poland
| | - Andrzej K Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237, Lodz, Poland
| | - Heather Fell
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Georgia K Mitrousia
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Christopher J Ridout
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Wells
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
5
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
6
|
Novel approaches to preventing phagosomal infections: timing is key. Trends Immunol 2023; 44:22-31. [PMID: 36494273 DOI: 10.1016/j.it.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Prophylactic vaccination strategies designed to prevent diseases caused by pathogens using the phagolysosome of innate immune cells as a site of intracellular replication and survival have been largely ineffective. These include Mycobacterium tuberculosis (Mtb), Leishmania spp., and Cryptococcus spp. These failed strategies have traditionally targeted CD4+ T helper (Th) 1 cell-mediated immune memory, deeming it crucial for vaccine efficacy. This failure warrants an investigation of alternative mediators of protection. Here, we suggest three novel approaches to activate phagocytic cells prior to or at the time of infection. We hypothesize that preventing the formation of the pathogen niche within the phagolysosome is essential for preventing disease, and a greater emphasis on the timing of phagocyte activation should generate more effective prophylactic treatment options.
Collapse
|
7
|
Feehan DD, Jamil K, Polyak MJ, Ogbomo H, Hasell M, LI SS, Xiang RF, Parkins M, Trapani JA, Harrison JJ, Mody CH. Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathog 2022; 18:e1010325. [PMID: 35202434 PMCID: PMC8903247 DOI: 10.1371/journal.ppat.1010325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that often infects individuals with the genetic disease cystic fibrosis, and contributes to airway blockage and loss of lung function. Natural killer (NK) cells are cytotoxic, granular lymphocytes that are part of the innate immune system. NK cell secretory granules contain the cytolytic proteins granulysin, perforin and granzymes. In addition to their cytotoxic effects on cancer and virally infected cells, NK cells have been shown to play a role in an innate defense against microbes, including bacteria. However, it is not known if NK cells kill extracellular P. aeruginosa or how bacterial killing might occur at the molecular level. Here we show that NK cells directly kill extracellular P. aeruginosa using NK effector molecules. Live cell imaging of a co-culture of YT cells, a human NK cell line, and GFP-expressing P. aeruginosa in the presence of the viability dye propidium iodide demonstrated that YT cell killing of P. aeruginosa is contact-dependent. CRISPR knockout of granulysin or perforin in YT cells had no significant effect on YT cell killing of P. aeruginosa. Pre-treatment of YT and NK cells with the serine protease inhibitor 3,4-dichloroisocoumarin (DCI) to inhibit all granzymes, resulted in an inhibition of killing. Although singular CRISPR knockout of granzyme B or H had no effect, knockout of both in YT cells completely abrogated killing of P. aeruginosa in comparison to wild type YT cell controls. Nitrocefin assays suggest that the bacterial membrane is damaged. Inhibition of killing by antioxidants suggest that ROS are required for the bactericidal mode-of-action. Taken together, these results identify that NK cells kill P. aeruginosa through a membrane damaging, contact-dependent process that requires granzyme induced ROS production, and moreover, that granzyme B and H are redundant in this killing process. Natural Killer (NK) cells comprise at least 10% of the resident lymphocytes in the lung and are increasingly recognized as an important part of the immune response to bacterial pathogens. Despite invivo studies demonstrating the importance of NK cells in the host response to the respiratory pathogen Pseudomonas aeruginosa, the mechanism of antimicrobial activity has yet to be found. Using human NK cell lines and NK cells isolated from human peripheral blood, we show that NK cells exhibit direct, contact-dependent cytotoxicity against P. aeruginosa, leading to bacterial cell death. NK cells use granzyme B and H to damage bacterial membranes and permeabilize the cells. We provide evidence that this leads to increased reactive oxygen species (ROS) in the bacteria that kills them. Furthermore, granzyme function appears to be redundant because loss of function by one granzyme is rescued by the activity of the other. These findings identify a role for granzymes in the antibacterial functions of NK cells, providing new insight into the host response to P. aeruginosa infections.
Collapse
Affiliation(s)
- David D. Feehan
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Khusraw Jamil
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Maria J. Polyak
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Henry Ogbomo
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Family Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Hasell
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Shu Shun LI
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Richard F. Xiang
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Michael Parkins
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Christopher H. Mody
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
8
|
Trinks N, Reinhard S, Drobny M, Heilig L, Löffler J, Sauer M, Terpitz U. Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy. Commun Biol 2021; 4:1151. [PMID: 34608260 PMCID: PMC8490467 DOI: 10.1038/s42003-021-02669-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution.
Collapse
Affiliation(s)
- Nora Trinks
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Matthias Drobny
- Department of Internal Medicine II, WÜ4i, University Hospital Würzburg, Würzburg, Germany
| | - Linda Heilig
- Department of Internal Medicine II, WÜ4i, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, WÜ4i, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, Germany.
| |
Collapse
|
9
|
Mok AC, Mody CH, Li SS. Immune Cell Degranulation in Fungal Host Defence. J Fungi (Basel) 2021; 7:484. [PMID: 34208679 PMCID: PMC8234259 DOI: 10.3390/jof7060484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Humans have developed complex immune systems that defend against invading microbes, including fungal pathogens. Many highly specialized cells of the immune system share the ability to store antimicrobial compounds in membrane bound organelles that can be immediately deployed to eradicate or inhibit growth of invading pathogens. These membrane-bound organelles consist of secretory vesicles or granules, which move to the surface of the cell, where they fuse with the plasma membrane to release their contents in the process of degranulation. Lymphocytes, macrophages, neutrophils, mast cells, eosinophils, and basophils all degranulate in fungal host defence. While anti-microbial secretory vesicles are shared among different immune cell types, information about each cell type has emerged independently leading to an uncoordinated and confusing classification of granules and incomplete description of the mechanism by which they are deployed. While there are important differences, there are many similarities in granule morphology, granule content, stimulus for degranulation, granule trafficking, and release of granules against fungal pathogens. In this review, we describe the similarities and differences in an attempt to translate knowledge from one immune cell to another that may facilitate further studies in the context of fungal host defence.
Collapse
Affiliation(s)
- Adley Ch Mok
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shu Shun Li
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
10
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Lam MT, Mace EM, Orange JS. A research-driven approach to the identification of novel natural killer cell deficiencies affecting cytotoxic function. Blood 2020; 135:629-637. [PMID: 31945148 PMCID: PMC7046607 DOI: 10.1182/blood.2019000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer cell deficiencies (NKDs) are an emerging phenotypic subtype of primary immune deficiency. NK cells provide a defense against virally infected cells using a variety of cytotoxic mechanisms, and patients who have defective NK cell development or function can present with atypical, recurrent, or severe herpesviral infections. The current pipeline for investigating NKDs involves the acquisition and clinical assessment of patients with a suspected NKD followed by subsequent in silico, in vitro, and in vivo laboratory research. Evaluation involves initially quantifying NK cells and measuring NK cell cytotoxicity and expression of certain NK cell receptors involved in NK cell development and function. Subsequent studies using genomic methods to identify the potential causative variant are conducted along with variant impact testing to make genotype-phenotype connections. Identification of novel genes contributing to the NKD phenotype can also be facilitated by applying the expanding knowledge of NK cell biology. In this review, we discuss how NKDs that affect NK cell cytotoxicity can be approached in the clinic and laboratory for the discovery of novel gene variants.
Collapse
Affiliation(s)
- Michael T Lam
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
- Medical Scientist Training Program, and
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Emily M Mace
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| |
Collapse
|
12
|
HOSSEINZADEH Z, RAZZAGHI-ASL N, RAMAZANI A, AGHAHOSSEINI H, RAMAZANI A. Synthesis, cytotoxic assessment, and molecular docking studies of 2,6-diaryl-substituted pyridine and 3,4- dihydropyrimidine-2(1H)-one scaffolds. Turk J Chem 2020; 44:194-213. [PMID: 33488152 PMCID: PMC7751820 DOI: 10.3906/kim-1903-72] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the main global health problems. In order to develop novel antitumor agents, we synthesized 3,4-dihydropyrimidine-2(1H)-one (DHPM) and 2,6-diaryl-substituted pyridine derivatives as potential antitumor structures and evaluated their cytotoxic effects against several cancer cell lines. An easy and convenient method is reported for the synthesis of these derivatives, employing cobalt ferrite (CoFe 2 O 4 @SiO 2 -SO 3 H) magnetic nanoparticles under microwave irradiation and solvent-free conditions. The structural characteristics of the prepared nanocatalyst were investigated by FTIR, XRD, SEM, and TGA techniques. In vitro cytotoxic effects of the synthesized products were assessed against the human breast adenocarcinoma cell line (MCF-7), gastric adenocarcinoma (AGS), and human embryonic kidney (HEK293) cells via MTT assay. The results indicated that compound 4r (DHPM derivative) was the most toxic molecule against the MCF-7 cell line (IC 50 of 0.17 μg/mL). Moreover, compounds 4j and 4r (DHPM derivatives) showed excellent cytotoxic activities against the AGS cell line, with an IC 50 of 4.90 and 4.97 μg/mL, respectively. Although they are pyridine derivatives, compounds 5g and 5m were more active against the MCF-7 cell line. Results showed that the candidate compounds exhibited low cytotoxicity against HEK293 cells. The kinesin Eg5 inhibitory potential of the candidate compounds was evaluated by molecular docking. The docking results showed that, among the pyridine derivatives, compound 5m had the most free energy of binding (-9.52 kcal/mol) and lowest Ki (0.105 μM), and among the pyrimidine derivatives, compound 4r had the most free energy of binding (-7.67 kcal/mol) and lowest Ki (2.39 μM). Ligand-enzyme affinity maps showed that compounds 4r and 5m had the potential to interact with the Eg5 binding site via H-bond interactions to GLU116 and GLY117 residues. The results of our study strongly suggest that DHPM and pyridine derivatives inhibit important tumorigenic features of breast and gastric cancer cells. Our results may be helpful in the further design of DHPMs and pyridine derivatives as potential anticancer agents.
Collapse
Affiliation(s)
| | - Nima RAZZAGHI-ASL
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, ArdabilIran
| | - Ali RAMAZANI
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, ZanjanIran
| | - Hamideh AGHAHOSSEINI
- Department of Chemistry, University of Zanjan, ZanjanIran
- Research Institute of Modern Biological Techniques, University of Zanjan, ZanjanIran
| | - Ali RAMAZANI
- Department of Chemistry, University of Zanjan, ZanjanIran
- Research Institute of Modern Biological Techniques, University of Zanjan, ZanjanIran
| |
Collapse
|
13
|
Kinesin family member KIF18A is a critical cellular factor that regulates the differentiation and activation of dendritic cells. Genes Genomics 2019; 42:41-46. [PMID: 31677127 DOI: 10.1007/s13258-019-00875-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND KIF18A is a kinesin family member that is involved in various cellular processes including cell division, cell transformation, and carcinogenesis. However, its possible role in the regulation of host immunity has not been examined. OBJECTIVE The aim of this study is to investigate the functional role of KIF18A in the differentiation and activation of dendritic cells (DCs) that are the most efficient antigen-presenting cells. METHODS A bioinformatic analysis of the KIF18A gene family was performed to understand its sequence variability and evolutionary history. To inhibit KIF18A activity, a highly specific small molecule inhibitor for KIF18A, BTB-1 was used. DCs were differentiated from mouse bone marrow (BM) cells from 6 to 7 week old C57BL/6 mice with recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression of KIF18A was measured by Western blotting. The surface expression of differentiation and activation markers on DCs were analyzed by flow cytometry. RESULTS The phylogenetic analysis revealed that the KIF18A gene family is remarkably conserved across vertebrates. Interestingly, the expression of KIF18A was increased as BM precursor cells differentiated into DCs. BTB-1 treatment strongly inhibited the differentiation of BM cells into DCs in a dose-dependent manner. Furthermore, treatment of immature DCs with BTB-1 significantly impaired the expression of activation markers on DCs including MHC class I, CD80, and CD86 upon TLR4 or TLR7 treatment. CONCLUSION Our results reveal that KIF18A is a critical DC differentiation and activation regulator. Therefore, KIF18A could be a potential therapeutic target for immune-mediated disorders.
Collapse
|
14
|
Granulysin: killer lymphocyte safeguard against microbes. Curr Opin Immunol 2019; 60:19-29. [PMID: 31112765 DOI: 10.1016/j.coi.2019.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
Abstract
Primary T cell immunodeficiency and HIV-infected patients are plagued by non-viral infections caused by bacteria, fungi, and parasites, suggesting an important and underappreciated role for T lymphocytes in controlling microbes. Here, we review recent studies showing that killer lymphocytes use the antimicrobial cytotoxic granule pore-forming peptide granulysin, induced by microbial exposure, to permeabilize cholesterol-poor microbial membranes and deliver death-inducing granzymes into these pathogens. Granulysin and granzymes cause microptosis, programmed cell death in microbes, by inducing reactive oxygen species and destroying microbial antioxidant defenses and disrupting biosynthetic and central metabolism pathways required for their survival, including protein synthesis, glycolysis, and the Krebs cycle.
Collapse
|
15
|
Mody CH, Ogbomo H, Xiang RF, Kyei SK, Feehan D, Islam A, Li SS. Microbial killing by NK cells. J Leukoc Biol 2019; 105:1285-1296. [PMID: 30821868 DOI: 10.1002/jlb.mr0718-298r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 02/10/2019] [Indexed: 11/07/2022] Open
Abstract
It is now evident that NK cells kill bacteria, fungi, and parasites in addition to tumor and virus-infected cells. In addition to a number of recent publications that have identified the receptors and ligands, and mechanisms of cytotoxicity, new insights are reflected in the reports from researchers all over the world at the 17th Meeting of the Society for Natural Immunity held in San Antonio, TX, USA from May 28 through June 1, 2018. We will provide an overview of the field and discuss how the presentations at the meeting might shape our knowledge and future directions in the field.
Collapse
Affiliation(s)
- Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Stephen K Kyei
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - David Feehan
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Anowara Islam
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|