1
|
Zhou H, He X, Xiong Y, Gong Y, Zhang Y, Li S, Hu R, Li Y, Zhang X, Zhou X, Zhu J, Yang Y, Liu M. Structural insights into a highly flexible zinc finger module unravel INSM1 function in transcription regulation. Nat Commun 2025; 16:2162. [PMID: 40038295 DOI: 10.1038/s41467-025-57478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Orderly development of neuroendocrine and nervous system of mammals requires INSM1, a key regulator for cell differentiation. Ectopic expression of INSM1 is closely correlated with human neuroendocrine tumorigenesis, which makes INSM1 a reliable diagnostic biomarker and potential therapeutic target. To date, INSM1 is known as a transcription repressor binding to GGGG-contained DNA element and TEAD1 using its five zinc fingers (ZFs), while the binding mechanism remains unknown. Here, we reveal highly variable conformations of the whole structure of the five ZFs, among which ZF1 adopts an unusual CCHC-fold. ZF1 binds to the TEAD domain of TEAD1 through hydrophobic interactions, and forms a ternary complex with TEAD1 and TEAD1-targeted DNA. Based on this, INSM1 cooperates with TEAD1 to repress the transcription of TEAD1-targeted genes. ZF2 and ZF3 of INSM1 can bind to DNA but have no specificity to the GGGG-contained element due to long flexible interdomain linker. Instead, INSM1 collaborates with CTCF to target genome loci having the GGGG-contained element and regulate the expression of adjacent genes. This study defines a functional mode of INSM1 by cooperating with diverse DNA-binding proteins for targeting specific genome loci in transcription regulation, and provides structural information for designing INSM1-related therapeutic drugs and diagnostic probes.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling He
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Yue Xiong
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixuan Gong
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Perry CH, Lavado A, Thulabandu V, Ramirez C, Paré J, Dixit R, Mishra A, Yang J, Yu J, Cao X. TEAD switches interacting partners along neural progenitor lineage progression to execute distinct functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.19.629472. [PMID: 39868115 PMCID: PMC11760702 DOI: 10.1101/2024.12.19.629472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The TEAD family of transcription factors are best known as the DNA-binding factor in the Hippo pathway, where they act by interacting with transcriptional coactivators YAP and TAZ (YAP/TAZ). Despite the importance of the Hippo pathway, the in vivo functions of TEAD in mammals have not been well established. By comparing mouse mutants lacking TEAD1 and TEAD2 (TEAD1/2) to those lacking YAP/TAZ, we found that TEAD1/2 have both YAP/TAZ-dependent and -independent functions during ventral telencephalon development. TEAD1/2 loss and YAP/TAZ loss similarly disrupt neuroepithelial apical junctions. However, the impacts of their losses on progenitor lineage progression are essentially opposite: Whereas YAP/TAZ loss depletes early progenitors and increases later progenitors-consistent with their established function in promoting progenitor self-renewal and proliferation, TEAD1/2 loss expands early progenitors and reduces late progenitors, indicating that TEAD1/2 promote lineage progression. We further show that TEAD1/2 promote neural progenitor lineage progression by, at least in part, inhibiting Notch signaling and by cooperating with Insulinoma-associated 1 (INSM1). Orthologs of TEAD and INSM1 have been shown to cooperatively regulate neuronal cell fate decisions in worms and flies. Our study reveals a remarkable evolutionary conservation of the function of this transcription factor complex during metazoan neural development.
Collapse
Affiliation(s)
- Charles H Perry
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Alfonso Lavado
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Venkata Thulabandu
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rajiv Dixit
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akhilesh Mishra
- Department of Computational Biology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Jiyuan Yang
- Department of Computational Biology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg MC, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 2025; 16:489. [PMID: 39788966 PMCID: PMC11717940 DOI: 10.1038/s41467-024-55257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the specialized cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level reveals the molecular logic driving cellular specializations, thus enabling the genetic dissection of auditory processing and hearing disorders with a high specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Page CG, Lonsdale A, Mitchell KA, Schröder J, Harvey KF, Oshlack A. Damsel: analysis and visualisation of DamID sequencing in R. Bioinformatics 2024; 40:btae695. [PMID: 39558607 PMCID: PMC11604169 DOI: 10.1093/bioinformatics/btae695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/09/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
SUMMARY DamID sequencing is a technique to map the genome-wide interaction of a protein with DNA. Damsel is the first Bioconductor package to provide an end to end analysis for DamID sequencing data within R. Damsel performs quantification and testing of significant binding sites along with exploratory and visual analysis. Damsel produces results consistent with previous analysis approaches. AVAILABILITY AND IMPLEMENTATION The R package Damsel is available for install through the Bioconductor project https://bioconductor.org/packages/release/bioc/html/Damsel.html and the code is available on GitHub https://github.com/Oshlack/Damsel/.
Collapse
Affiliation(s)
- Caitlin G Page
- Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Andrew Lonsdale
- Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Murdoch Children’s Research Institute, Parkville, 3052, Australia
| | - Katrina A Mitchell
- Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Jan Schröder
- Computational Sciences Initiative, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, 3000, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Alicia Oshlack
- Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
5
|
Mitchell KA, Vissers JHA, Pojer JM, Brooks E, Hilmi AJS, Papenfuss AT, Schröder J, Harvey KF. The JNK and Hippo pathways control epithelial integrity and prevent tumor initiation by regulating an overlapping transcriptome. Curr Biol 2024; 34:3966-3982.e7. [PMID: 39146938 DOI: 10.1016/j.cub.2024.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/07/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Epithelial organs maintain their integrity and prevent tumor initiation by actively removing defective cells, such as those that have lost apicobasal polarity. Here, we identify how transcription factors of two key signaling pathways-Jun-N-terminal kinase (JNK) and Hippo-regulate epithelial integrity by controlling transcription of an overlapping set of target genes. Targeted DamID experiments reveal that, in proliferating cells of the Drosophila melanogaster eye, the AP-1 transcription factor Jun and the Hippo pathway transcription regulators Yorkie and Scalloped bind to a common suite of target genes that promote organ growth. In defective neoplastic cells, AP-1 transcription factors repress transcription of growth genes together with the C-terminal binding protein (CtBP) co-repressor. If gene repression by AP-1/CtBP fails, neoplastic tumor growth ensues, driven by Yorkie/Scalloped. Thus, AP-1/CtBP eliminates defective cells and prevents tumor initiation by acting in parallel to Yorkie/Scalloped to repress expression of a shared transcriptome. These findings shed new light on the maintenance of epithelial integrity and tumor suppression.
Collapse
Affiliation(s)
- Katrina A Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph H A Vissers
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Jonathan M Pojer
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elliot Brooks
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute, Parkville, VIC 3010, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan Schröder
- Walter and Eliza Hall Institute, Parkville, VIC 3010, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Manning SA, Kroeger B, Deng Q, Brooks E, Fonseka Y, Hinde E, Harvey KF. The Drosophila Hippo pathway transcription factor Scalloped and its co-factors alter each other's chromatin binding dynamics and transcription in vivo. Dev Cell 2024; 59:1640-1654.e5. [PMID: 38670104 DOI: 10.1016/j.devcel.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. The major mechanism by which Hippo is known to control transcription is by dictating the nucleo-cytoplasmic shuttling rate of Yorkie, a transcription co-activator, which promotes transcription with the DNA binding protein Scalloped. The nuclear biophysical behavior of Yorkie and Scalloped, and whether this is regulated by the Hippo pathway, remains unexplored. Using multiple live-imaging modalities on Drosophila tissues, we found that Scalloped interacts with DNA on a broad range of timescales, and enrichment of Scalloped at sites of active transcription is mediated by longer DNA dwell times. Further, Yorkie increased Scalloped's DNA dwell time, whereas the repressors Nervous fingers 1 (Nerfin-1) and Tondu-domain-containing growth inhibitor (Tgi) decreased it. Therefore, the Hippo pathway influences transcription not only by controlling nuclear abundance of Yorkie but also by modifying the DNA binding kinetics of the transcription factor Scalloped.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Elliot Brooks
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Yoshana Fonseka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Almeaqli MT, Alaidaa Y, Alnajjar FM, Al Shararh AS, Alharbi DS, Almslmani YI, Alotibi YA, Alrashidi HS, Alshehri WA, Hassan HM, Al-Gayyar MMH. Therapeutic Effects of Arctiin on Alzheimer's Disease-like Model in Rats by Reducing Oxidative Stress, Inflammasomes and Fibrosis. Curr Alzheimer Res 2024; 21:276-288. [PMID: 39136502 DOI: 10.2174/0115672050333388240801043509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) affects approximately 50 million people globally and is expected to triple by 2050. Arctiin is a lignan found in the Arctium lappa L. plant. Arctiin possesses anti-proliferative, antioxidative and anti-adipogenic. OBJECTIVES We aimed to explore the potential therapeutic effects of Arctiin on rats with AD by evaluating the expression of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. METHODS AD was induced in rats by administering 70 mg/kg of aluminum chloride through intraperitoneal injection daily for six weeks. After inducing AD, some rats were treated with 25 mg/kg of Arctiin daily for three weeks through oral gavage. Furthermore, to examine the brain tissue structure, hippocampal sections were stained with hematoxylin/eosin and anti-TLR4 antibodies. The collected samples were analyzed for gene expression and protein levels of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. RESULTS In behavioral tests, rats showed a significant improvement in their behavior when treated with Arctiin. Microimages stained with hematoxylin/eosin showed that Arctiin helped to improve the structure and cohesion of the hippocampus, which was previously impaired by AD. Furthermore, Arctiin reduced the expression of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. CONCLUSION Arctiin can enhance rats' behavior and structure of the hippocampus in AD rats. This is achieved through its ability to reduce the expression of both TLR4 and NLRP3, hence inhibiting the inflammasome pathway. Furthermore, Arctiin can improve tissue fibrosis by regulating STAT3 and TGF-β. Lastly, it can block the cell cycle proteins cyclin D1 and CDK2.
Collapse
Affiliation(s)
- Mohamed T Almeaqli
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yazeed Alaidaa
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Faisal M Alnajjar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah S Al Shararh
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Danah S Alharbi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yazeed I Almslmani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yousef A Alotibi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hani S Alrashidi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Wael A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
8
|
Veen K, Krylov A, Yu S, He J, Boyd P, Hyde DR, Mantamadiotis T, Cheng LY, Jusuf PR. Her6 and Prox1a are novel regulators of photoreceptor regeneration in the zebrafish retina. PLoS Genet 2023; 19:e1011010. [PMID: 37930995 PMCID: PMC10653607 DOI: 10.1371/journal.pgen.1011010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/16/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023] Open
Abstract
Damage to light-sensing photoreceptors (PRs) occurs in highly prevalent retinal diseases. As humans cannot regenerate new PRs, these diseases often lead to irreversible blindness. Intriguingly, animals, such as the zebrafish, can regenerate PRs efficiently and restore functional vision. Upon injury, mature Müller glia (MG) undergo reprogramming to adopt a stem cell-like state. This process is similar to cellular dedifferentiation, and results in the generation of progenitor cells, which, in turn, proliferate and differentiate to replace lost retinal neurons. In this study, we tested whether factors involved in dedifferentiation of Drosophila CNS are implicated in the regenerative response in the zebrafish retina. We found that hairy-related 6 (her6) negatively regulates of PR production by regulating the rate of cell divisions in the MG-derived progenitors. prospero homeobox 1a (prox1a) is expressed in differentiated PRs and may promote PR differentiation through phase separation. Interestingly, upon Her6 downregulation, Prox1a is precociously upregulated in the PRs, to promote PR differentiation; conversely, loss of Prox1a also induces a downregulation of Her6. Together, we identified two novel candidates of PR regeneration that cross regulate each other; these may be exploited to promote human retinal regeneration and vision recovery.
Collapse
Affiliation(s)
- Kellie Veen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron Krylov
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Patrick Boyd
- Department of Biological Sciences, Center for Zebrafish Research, and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David R. Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patricia R. Jusuf
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Brown HE, Weasner BP, Weasner BM, Kumar JP. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. Development 2023; 150:dev201872. [PMID: 37702007 PMCID: PMC10560572 DOI: 10.1242/dev.201872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Aughey GN. Maintenance of neuronal fate and transcriptional identity. Biol Open 2023; 12:bio059953. [PMID: 37272626 PMCID: PMC10259840 DOI: 10.1242/bio.059953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
The processes that drive naive multipotent stem cells towards fully differentiated fates are increasingly well understood. However, once differentiated, the mechanisms and molecular factors involved in maintaining differentiated states and associated transcriptomes are less well studied. Neurons are a post-mitotic cell-type with highly specialised functions that largely lack the capacity for renewal. Therefore, neuronal cell identities and the transcriptional states that underpin them are locked into place by active mechanisms that prevent lineage reversion/dedifferentiation and repress cell cycling. Furthermore, individual neurons may be very long-lived, so these mechanisms must be sufficient to ensure the fidelity of neuronal transcriptomes over long time periods. This Review aims to provide an overview of recent progress in understanding how neuronal cell fate and associated gene expression are maintained and the transcriptional regulators that are involved. Maintenance of neuronal fate and subtype specification are discussed, as well as the activating and repressive mechanisms involved. The relevance of these processes to disease states, such as brain cancers and neurodegeneration is outlined. Finally, outstanding questions and hypotheses in this field are proposed.
Collapse
Affiliation(s)
- Gabriel N. Aughey
- Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK
| |
Collapse
|
11
|
Beckmann A, Ramirez P, Gamez M, Gonzalez E, De Mange J, Bieniek KF, Ray WJ, Frost B. Moesin is an effector of tau-induced actin overstabilization, cell cycle activation, and neurotoxicity in Alzheimer's disease. iScience 2023; 26:106152. [PMID: 36879821 PMCID: PMC9984563 DOI: 10.1016/j.isci.2023.106152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.
Collapse
Affiliation(s)
- Adrian Beckmann
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Gamez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elias Gonzalez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jasmine De Mange
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
12
|
Zhao H, Moberg KH, Veraksa A. Hippo pathway and Bonus control developmental cell fate decisions in the Drosophila eye. Dev Cell 2023; 58:416-434.e12. [PMID: 36868234 PMCID: PMC10023510 DOI: 10.1016/j.devcel.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
The canonical function of the Hippo signaling pathway is the regulation of organ growth. How this pathway controls cell-fate determination is less well understood. Here, we identify a function of the Hippo pathway in cell-fate decisions in the developing Drosophila eye, exerted through the interaction of Yorkie (Yki) with the transcriptional regulator Bonus (Bon), an ortholog of mammalian transcriptional intermediary factor 1/tripartite motif (TIF1/TRIM) family proteins. Instead of controlling tissue growth, Yki and Bon promote epidermal and antennal fates at the expense of the eye fate. Proteomic, transcriptomic, and genetic analyses reveal that Yki and Bon control these cell-fate decisions by recruiting transcriptional and post-transcriptional co-regulators and by repressing Notch target genes and activating epidermal differentiation genes. Our work expands the range of functions and regulatory mechanisms under Hippo pathway control.
Collapse
Affiliation(s)
- Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
13
|
Zhang Y, Yang J, Dai R, Yang W, Zhang X. Immune function analysis of LsSd, a transcription factor of the Hippo signaling pathway, in the cigarette beetle Lasioderma serricorne. Front Physiol 2022; 13:1042897. [PMID: 36304578 PMCID: PMC9593042 DOI: 10.3389/fphys.2022.1042897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The Scalloped (Sd) is a transcription factor that regulates organ size control in the Hippo-signaling pathway. Recent studies have showed that Hippo signaling also functions in the innate immune response. Although the Sd gene has been reported in many insects, their immune functions remain unexplored. In this study, the LsSd gene of Lasioderma serricorne, with a complete open reading frame that encodes a protein composed of 402 amino acids was identified. LsSd was predominantly expressed in early pupae. Tissue-specific analyses revealed that the highest concentrations of LsSd were detected in the midgut and brain. At 1–24 h after Escherichia coli infection, LsSd expression increased substantially. However, LsSd expression was downregulated 3–12 h after Staphylococcus aureus infection. RNA interference-mediated silencing of the LsSd transcript resulted in deformed, considerably smaller, and degenerated wings. Meanwhile, LsCycE, LsDiap1, and LsVg, which are involved in cell proliferation and wing development, were drastically reduced when LsSd was depleted. In a survival assay, the LsSd knockdown considerably decreased the susceptibility to S. aureus, a gram-positive bacterium. In addition, knockdown of LsSd remarkably downregulated the transcription of LsCact in response to S. aureus stimulation, while upregulating the expression of five immune-related genes. Our results provide conclusive proof for the important roles of LsSd in the immune response of L. serricorne.
Collapse
Affiliation(s)
- Yue Zhang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jiapeng Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Renhuai Dai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- *Correspondence: Renhuai Dai,
| | - Wenjia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Xiaomin Zhang
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| |
Collapse
|
14
|
Zhu H, Zhao SD, Ray A, Zhang Y, Li X. A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing. Nat Commun 2022; 13:1247. [PMID: 35273186 PMCID: PMC8913700 DOI: 10.1038/s41467-022-28915-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
During development, neural progenitors are temporally patterned to sequentially generate a variety of neural types. In Drosophila neural progenitors called neuroblasts, temporal patterning is regulated by cascades of Temporal Transcription Factors (TTFs). However, known TTFs were mostly identified through candidate approaches and may not be complete. In addition, many fundamental questions remain concerning the TTF cascade initiation, progression, and termination. In this work, we use single-cell RNA sequencing of Drosophila medulla neuroblasts of all ages to identify a list of previously unknown TTFs, and experimentally characterize their roles in temporal patterning and neuronal specification. Our study reveals a comprehensive temporal gene network that patterns medulla neuroblasts from start to end. Furthermore, the speed of the cascade progression is regulated by Lola transcription factors expressed in all medulla neuroblasts. Our comprehensive study of the medulla neuroblast temporal cascade illustrates mechanisms that may be conserved in the temporal patterning of neural progenitors. During development, neural progenitors generate a variety of neural types sequentially. Here the authors examine gene expression patterns in Drosophila neural progenitors at single-cell level, and identify a gene regulatory network controlling the sequential generation of different neural types.
Collapse
Affiliation(s)
- Hailun Zhu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Katsanos D, Barkoulas M. Targeted DamID in C. elegans reveals a direct role for LIN-22 and NHR-25 in antagonizing the epidermal stem cell fate. SCIENCE ADVANCES 2022; 8:eabk3141. [PMID: 35119932 PMCID: PMC8816332 DOI: 10.1126/sciadv.abk3141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Transcription factors are key players in gene networks controlling cell fate specification during development. In multicellular organisms, they display complex patterns of expression and binding to their targets, hence, tissue specificity is required in the characterization of transcription factor-target interactions. We introduce here targeted DamID (TaDa) as a method for tissue-specific transcription factor target identification in intact Caenorhabditis elegans animals. We use TaDa to recover targets in the epidermis for two factors, the HES1 homolog LIN-22, and the NR5A1/2 nuclear hormone receptor NHR-25. We demonstrate a direct link between LIN-22 and the Wnt signaling pathway through repression of the Frizzled receptor lin-17. We report a direct role for NHR-25 in promoting cell differentiation via repressing the expression of stem cell-promoting GATA factors. Our results expand our understanding of the epidermal gene network and highlight the potential of TaDa to dissect the architecture of tissue-specific gene regulatory networks.
Collapse
|
16
|
Saul J, Hirose T, Horvitz HR. The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. eLife 2022; 11:74557. [PMID: 35119366 PMCID: PMC8816384 DOI: 10.7554/elife.74557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cell identity is characterized by a distinct combination of gene expression, cell morphology, and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here, we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in later larval stage and adult worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Josh Saul
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - Takashi Hirose
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - H Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| |
Collapse
|
17
|
Tumor-derived MMPs regulate cachexia in a Drosophila cancer model. Dev Cell 2021; 56:2664-2680.e6. [PMID: 34473940 DOI: 10.1016/j.devcel.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFβ signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFβ signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.
Collapse
|
18
|
Currey L, Thor S, Piper M. TEAD family transcription factors in development and disease. Development 2021; 148:269158. [PMID: 34128986 DOI: 10.1242/dev.196675] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The balance between stem cell potency and lineage specification entails the integration of both extrinsic and intrinsic cues, which ultimately influence gene expression through the activity of transcription factors. One example of this is provided by the Hippo signalling pathway, which plays a central role in regulating organ size during development. Hippo pathway activity is mediated by the transcriptional co-factors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which interact with TEA domain (TEAD) proteins to regulate gene expression. Although the roles of YAP and TAZ have been intensively studied, the roles played by TEAD proteins are less well understood. Recent studies have begun to address this, revealing that TEADs regulate the balance between progenitor self-renewal and differentiation throughout various stages of development. Furthermore, it is becoming apparent that TEAD proteins interact with other co-factors that influence stem cell biology. This Primer provides an overview of the role of TEAD proteins during development, focusing on their role in Hippo signalling as well as within other developmental, homeostatic and disease contexts.
Collapse
Affiliation(s)
- Laura Currey
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
19
|
Van de Walle P, Muñoz-Jiménez C, Askjaer P, Schoofs L, Temmerman L. DamID identifies targets of CEH-60/PBX that are associated with neuron development and muscle structure in Caenorhabditis elegans. PLoS One 2020; 15:e0242939. [PMID: 33306687 PMCID: PMC7732058 DOI: 10.1371/journal.pone.0242939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Transcription factors govern many of the time- and tissue-specific gene expression events in living organisms. CEH-60, a homolog of the TALE transcription factor PBX in vertebrates, was recently characterized as a new regulator of intestinal lipid mobilization in Caenorhabditis elegans. Because CEH-60's orthologs and paralogs exhibit several other functions, notably in neuron and muscle development, and because ceh-60 expression is not limited to the C. elegans intestine, we sought to identify additional functions of CEH-60 through DNA adenine methyltransferase identification (DamID). DamID identifies protein-genome interaction sites through GATC-specific methylation. We here report 872 putative CEH-60 gene targets in young adult animals, and 587 in L2 larvae, many of which are associated with neuron development or muscle structure. In light of this, we investigate morphology and function of ceh-60 expressing AWC neurons, and contraction of pharyngeal muscles. We find no clear functional consequences of loss of ceh-60 in these assays, suggesting that in AWC neurons and pharyngeal muscle, CEH-60 function is likely more subtle or redundant with other factors.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Celia Muñoz-Jiménez
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
20
|
Magadi SS, Voutyraki C, Anagnostopoulos G, Zacharioudaki E, Poutakidou IK, Efraimoglou C, Stapountzi M, Theodorou V, Nikolaou C, Koumbanakis KA, Fullard JF, Delidakis C. Dissecting Hes-centred transcriptional networks in neural stem cell maintenance and tumorigenesis in Drosophila. Development 2020; 147:147/22/dev191544. [PMID: 33229432 DOI: 10.1242/dev.191544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/05/2020] [Indexed: 01/26/2023]
Abstract
Neural stem cells divide during embryogenesis and juvenile life to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that, in every asymmetric cell division, progenitors send a Delta-Notch signal to their sibling stem cells. Here, we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. We describe the impact of two of these 'anti-stemness' factors, Zfh1 and Gcm, on Notch/Hes-triggered tumorigenesis.
Collapse
Affiliation(s)
- Srivathsa S Magadi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Chrysanthi Voutyraki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Gerasimos Anagnostopoulos
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Evanthia Zacharioudaki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Ioanna K Poutakidou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christina Efraimoglou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Margarita Stapountzi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Vasiliki Theodorou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Konstantinos A Koumbanakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - John F Fullard
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece .,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
21
|
Ng J, Sutherland KD. NOTCH Your Usual Suspect: MYC Charged with Controlling Neuroendocrine Cell-Fate in Small Cell Lung Cancer. Cancer Cell 2020; 38:17-20. [PMID: 32663464 DOI: 10.1016/j.ccell.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is highly heterogeneous. In this issue of Cancer Cell, Ireland et al. demonstrate that MYC mediates neuroendocrine cell plasticity in SCLC by activating NOTCH signaling. This MYC-NOTCH axis controls the dynamic behavior of tumor cells, resulting in the co-existence of SCLC subtypes within individual tumors.
Collapse
Affiliation(s)
- Jin Ng
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
22
|
The Hippo Pathway as a Driver of Select Human Cancers. Trends Cancer 2020; 6:781-796. [PMID: 32446746 DOI: 10.1016/j.trecan.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The Hippo pathway regulates myriad biological processes in diverse species and is a key cancer signaling network in humans. Although Hippo has been linked to multiple aspects of cancer, its role in this disease is incompletely understood. Large-scale pan-cancer analyses of core Hippo pathway genes reveal that the pathway is mutated at a high frequency only in select human cancers, including malignant mesothelioma and meningioma. Hippo pathway deregulation is also enriched in squamous epithelial cancers. We discuss cancer-related functions of the Hippo pathway and potential explanations for the cancer-restricted mutation profile of core Hippo pathway genes. Greater understanding of Hippo pathway deregulation in cancers will be essential to guide the imminent use of Hippo-targeted therapies.
Collapse
|
23
|
Vissers JHA, Dent LG, House CM, Kondo S, Harvey KF. Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi. Genetics 2020; 215:117-128. [PMID: 32122936 PMCID: PMC7198276 DOI: 10.1534/genetics.120.303147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved signaling network that regulates organ size, cell fate, and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues, such as cell polarity and adhesion, into an integrated transcriptional response. The central Hippo signaling effector is the transcriptional coactivator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood, and therefore we sought to identify proteins that potentially operate together with Tgi. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the Drosophila melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits repressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologs of Tgi, CtBP, and Pits (VGLL4, CTBP2, and IRF2BP2) have previously been shown to physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution.
Collapse
Affiliation(s)
- Joseph H A Vissers
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Lucas G Dent
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Colin M House
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| |
Collapse
|
24
|
Manning SA, Kroeger B, Harvey KF. The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway. Development 2020; 147:147/8/dev179069. [PMID: 32341025 DOI: 10.1242/dev.179069] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Hippo pathway is a highly conserved signalling pathway that regulates multiple biological processes, including organ size control and cell fate. Since its discovery, genetic and biochemical studies have elucidated several key signalling steps important for pathway activation and deactivation. In recent years, technical advances in microscopy and genome modification have allowed new insights into Hippo signalling to be revealed. These studies have highlighted that the nuclear-cytoplasmic shuttling behaviour of the Hippo pathway transcriptional co-activators Yorkie, YAP and TAZ is far more dynamic than previously appreciated, and YAP and TAZ are also regulated by liquid-liquid phase separation. Here, we review our current understanding of Yorkie, YAP and TAZ regulation, with a focus on recent microscopy-based studies.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800 .,Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia 3000.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia 3010
| |
Collapse
|
25
|
TaDa! Analysing cell type-specific chromatin in vivo with Targeted DamID. Curr Opin Neurobiol 2019; 56:160-166. [PMID: 30844670 DOI: 10.1016/j.conb.2019.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
Abstract
The emergence of neuronal diversity during development of the nervous system relies on dynamic changes in the epigenetic landscape of neural stem cells and their progeny. Targeted DamID (TaDa) is proving invaluable in identifying the genome-wide binding sites of chromatin-associated proteins in vivo, without fixation, cell isolation, or immunoprecipitation. The simplicity and efficiency of the technique have led to an ever-expanding TaDa toolbox. These tools enable profiling of gene expression and chromatin accessibility, as well as the identification of the genome-wide binding sites of chromatin complexes, transcription factors and RNAs. Here, we review these new developments, with particular emphasis on the use of TaDa in studying neuronal specification.
Collapse
|