1
|
Petshow S, Coblentz A, Hamilton AM, Sarkar D, Anisimova M, Flores JC, Zito K. Activity-dependent regulation of Cdc42 by Ephexin5 drives synapse growth and stabilization. SCIENCE ADVANCES 2025; 11:eadp5782. [PMID: 40138406 PMCID: PMC11939064 DOI: 10.1126/sciadv.adp5782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Synaptic Rho guanosine triphosphatase (GTPase) guanine nucleotide exchange factors (RhoGEFs) play vital roles in regulating the activity-dependent neuronal plasticity that is critical for learning. Ephexin5, a RhoGEF implicated in the etiology of Alzheimer's disease and Angelman syndrome, was originally reported in neurons as a RhoA-specific GEF that negatively regulates spine synapse density. Here, we show that Ephexin5 activates both RhoA and Cdc42 in the brain. Furthermore, using live imaging of GTPase biosensors, we demonstrate that Ephexin5 regulates activity-dependent Cdc42, but not RhoA, signaling at single synapses. The selectivity of Ephexin5 for Cdc42 activation is regulated by tyrosine phosphorylation, which is regulated by neuronal activity. Last, in contrast to Ephexin5's role in negatively regulating synapse density, we show that, downstream of neuronal activity, Ephexin5 positively regulates synaptic growth and stabilization. Our results support a model in which plasticity-inducing neuronal activity regulates Ephexin5 tyrosine phosphorylation, driving Ephexin5-mediated activation of Cdc42 and the spine structural growth and stabilization vital for learning.
Collapse
Affiliation(s)
- Samuel Petshow
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Andrew M. Hamilton
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Dipannita Sarkar
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
2
|
Tran TP, Budnik B, Froberg JE, Macklis JD. Cortical projection neurons with distinct axonal connectivity employ ribosomal complexes with distinct protein compositions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629968. [PMID: 39763931 PMCID: PMC11703261 DOI: 10.1101/2024.12.22.629968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Diverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control. Here, we directly compare the protein compositions of RCs in vivo from two closely related cortical neuron subtypes-cortical output "subcerebral PN" (SCPN) and interhemispheric "callosal PN" (CPN)- during establishment of their distinct axonal connectivity. Using retrograde labeling of subtype-specific somata, purification by fluorescence-activated cell sorting, ribosome immunoprecipitation, and ultra-low-input mass spectrometry, we identify distinct protein compositions of RCs from these two subtypes. Strikingly, we identify 16 associated proteins reliably and exclusively detected only in RCs of SCPN. 10 of these proteins have known interaction with components of ribosomes; we further validated ribosome interaction with protein kinase C epsilon (PRKCE), a candidate with roles in synaptogenesis. PRKCE and a subset of SCPN-specific candidate ribosome-associated proteins also exhibit enriched gene expression by SCPN. Together, these results indicate that ribosomal complexes exhibit subtype-specific protein composition in distinct subtypes of cortical projection neurons during development, and identify potential candidates for further investigation of function in translational regulation involved in subtype-specific circuit formation.
Collapse
Affiliation(s)
- Tien Phuoc Tran
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John E. Froberg
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Kaizuka T, Takumi T. Alteration of synaptic protein composition during developmental synapse maturation. Eur J Neurosci 2024; 59:2894-2914. [PMID: 38571321 DOI: 10.1111/ejn.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
The postsynaptic density (PSD) is a collection of specialized proteins assembled beneath the postsynaptic membrane of dendritic spines. The PSD proteome comprises ~1000 proteins, including neurotransmitter receptors, scaffolding proteins and signalling enzymes. Many of these proteins have essential roles in synaptic function and plasticity. During brain development, changes are observed in synapse density and in the stability and shape of spines, reflecting the underlying molecular maturation of synapses. Synaptic protein composition changes in terms of protein abundance and the assembly of protein complexes, supercomplexes and the physical organization of the PSD. Here, we summarize the developmental alterations of postsynaptic protein composition during synapse maturation. We describe major PSD proteins involved in postsynaptic signalling that regulates synaptic plasticity and discuss the effect of altered expression of these proteins during development. We consider the abnormality of synaptic profiles and synaptic protein composition in the brain in neurodevelopmental disorders such as autism spectrum disorders. We also explain differences in synapse development between rodents and primates in terms of synaptic profiles and protein composition. Finally, we introduce recent findings related to synaptic diversity and nanoarchitecture and discuss their impact on future research. Synaptic protein composition can be considered a major determinant and marker of synapse maturation in normality and disease.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
4
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in synaptic proteomes of human dorsolateral prefrontal cortex and nucleus accumbens. Mol Psychiatry 2023; 28:4777-4792. [PMID: 37674018 PMCID: PMC10914630 DOI: 10.1038/s41380-023-02241-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sam-Moon Kim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mariah A Hildebrand
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in the synaptic proteomes of the human dorsolateral prefrontal cortex and nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536056. [PMID: 37066169 PMCID: PMC10104116 DOI: 10.1101/2023.04.07.536056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
|
6
|
Colgan LA, Parra-Bueno P, Holman HL, Tu X, Jain A, Calubag MF, Misler JA, Gary C, Oz G, Suponitsky-Kroyter I, Okaz E, Yasuda R. Dual Regulation of Spine-Specific and Synapse-to-Nucleus Signaling by PKCδ during Plasticity. J Neurosci 2023; 43:5432-5447. [PMID: 37277178 PMCID: PMC10376934 DOI: 10.1523/jneurosci.0208-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023] Open
Abstract
The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, because of a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of fluorescence lifetime imaging-fluorescence resonance energy transfer activity sensors, we investigate novel PKC isozymes in synaptic plasticity in CA1 pyramidal neurons of mice of either sex. We find that PKCδ is activated downstream of TrkB and DAG production, and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single-spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multispine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating cAMP response-element binding protein activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity, or the ability to change the strength of the connections between neurons, underlies learning and memory and is critical for brain health. The protein kinase C (PKC) family is central to this process. However, understanding how these kinases work to mediate plasticity has been limited by a lack of tools to visualize and perturb their activity. Here, we introduce and use new tools to reveal a dual role for PKCδ in facilitating local synaptic plasticity and stabilizing this plasticity through spine-to-nucleus signaling to regulate transcription. This work provides new tools to overcome limitations in studying isozyme-specific PKC function and provides insight into molecular mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Lesley A Colgan
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Paula Parra-Bueno
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Heather L Holman
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Xun Tu
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Anant Jain
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Mariah F Calubag
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Jaime A Misler
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Chancellor Gary
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Goksu Oz
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Irena Suponitsky-Kroyter
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Elwy Okaz
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Ryohei Yasuda
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| |
Collapse
|
7
|
Ge C, Wang X, Wang Y, Lei L, Song G, Qian M, Wang S. PKCε inhibition prevents ischemia‑induced dendritic spine impairment in cultured primary neurons. Exp Ther Med 2023; 25:152. [PMID: 36911376 PMCID: PMC9995843 DOI: 10.3892/etm.2023.11851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Brain ischemia is an independent risk factor for Alzheimer's disease (AD); however, the mechanisms underlining ischemic stroke and AD remain unclear. The present study aimed to investigate the function of the ε isoform of protein kinase C (PKCε) in brain ischemia-induced dendritic spine dysfunction to elucidate how brain ischemia causes AD. In the present study, primary hippocampus and cortical neurons were cultured while an oxygen-glucose deprivation (OGD) model was used to simulate brain ischemia. In the OGD cell model, in vitro kinase activity assay was performed to investigate whether the PKCε kinase activity changed after OGD treatment. Confocal microscopy was performed to investigate whether inhibiting PKCε kinase activity protects dendritic spine morphology and function. G-LISA was used to investigate whether small GTPases worked downstream of PKCε. The results showed that PKCε kinase activity was significantly increased following OGD treatment in primary neurons, leading to dendritic spine dysfunction. Pre-treatment with PKCε-inhibiting peptide, which blocks PKCε activity, significantly rescued dendritic spine function following OGD treatment. Furthermore, PKCε could activate Ras homolog gene family member A (RhoA) as a downstream molecule, which mediated OGD-induced dendritic spine morphology changes and caused dendritic spine dysfunction. In conclusion, the present study demonstrated that the PKCε/RhoA signalling pathway is a novel mechanism mediating brain ischemia-induced dendritic spine dysfunction. Developing therapeutic targets for this pathway may protect against and prevent brain ischemia-induced cognitive impairment and AD.
Collapse
Affiliation(s)
- Chenjie Ge
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Xuefeng Wang
- WuXi AppTec Co., Ltd., Shanghai 200131, P.R. China
| | - Yunhong Wang
- WuXi AppTec Co., Ltd., Shanghai 200131, P.R. China
| | - Lilei Lei
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Guohua Song
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Mincai Qian
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Shiliang Wang
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
8
|
Dugan MP, Ferguson LB, Hertz NT, Chalkley RJ, Burlingame AL, Shokat KM, Parker PJ, Messing RO. Chemical Genetic Identification of PKC Epsilon Substrates in Mouse Brain. Mol Cell Proteomics 2023; 22:100522. [PMID: 36863607 PMCID: PMC10105488 DOI: 10.1016/j.mcpro.2023.100522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.
Collapse
Affiliation(s)
- Michael P Dugan
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Laura B Ferguson
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas T Hertz
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA
| | - Peter J Parker
- The Francis Crick Institute, London, United Kingdom; School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
9
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
10
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Sell GL, Xin W, Cook EK, Zbinden MA, Schaffer TB, O'Meally RN, Cole RN, Margolis SS. Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice. Sci Rep 2021; 11:19414. [PMID: 34593829 PMCID: PMC8484563 DOI: 10.1038/s41598-021-97898-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
In humans, loss-of-function mutations in the UBE3A gene lead to the neurodevelopmental disorder Angelman syndrome (AS). AS patients have severe impairments in speech, learning and memory, and motor coordination, for which there is currently no treatment. In addition, UBE3A is duplicated in > 1-2% of patients with autism spectrum disorders-a further indication of the significant role it plays in brain development. Altered expression of UBE3A, an E3 ubiquitin ligase, is hypothesized to lead to impaired levels of its target proteins, but identifying the contribution of individual UBE3A targets to UBE3A-dependent deficits remains of critical importance. Ephexin5 is a putative UBE3A substrate that has restricted expression early in development, regulates synapse formation during hippocampal development, and is abnormally elevated in AS mice, modeled by maternally-derived Ube3a gene deletion. Here, we report that Ephexin5 can be directly ubiquitylated by UBE3A. Furthermore, removing Ephexin5 from AS mice specifically rescued hippocampus-dependent behaviors, CA1 physiology, and deficits in dendritic spine number. Our findings identify Ephexin5 as a key driver of hippocampal dysfunction and related behavioral deficits in AS mouse models. These results demonstrate the exciting potential of targeting Ephexin5, and possibly other UBE3A substrates, to improve symptoms of AS and other UBE3A-related developmental disorders.
Collapse
Affiliation(s)
- Gabrielle L Sell
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Wood Basic Science Building Room 517, 725 N. Wolfe St., Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Wendy Xin
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Neurology and the Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Emily K Cook
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Wood Basic Science Building Room 517, 725 N. Wolfe St., Baltimore, MD, 21205, USA
| | - Mark A Zbinden
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Wood Basic Science Building Room 517, 725 N. Wolfe St., Baltimore, MD, 21205, USA
- Human Metabolome Technologies America, Inc., Boston, MA, 02134, USA
| | - Thomas B Schaffer
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Wood Basic Science Building Room 517, 725 N. Wolfe St., Baltimore, MD, 21205, USA
- NextCure Inc., Beltsville, MD, 20705, USA
| | - Robert N O'Meally
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Wood Basic Science Building Room 517, 725 N. Wolfe St., Baltimore, MD, 21205, USA
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Wood Basic Science Building Room 517, 725 N. Wolfe St., Baltimore, MD, 21205, USA
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Wood Basic Science Building Room 517, 725 N. Wolfe St., Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Enhancement of parvalbumin interneuron-mediated neurotransmission in the retrosplenial cortex of adolescent mice following third trimester-equivalent ethanol exposure. Sci Rep 2021; 11:1716. [PMID: 33462326 PMCID: PMC7814038 DOI: 10.1038/s41598-021-81173-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal ethanol exposure causes a variety of cognitive deficits that have a persistent impact on quality of life, some of which may be explained by ethanol-induced alterations in interneuron function. Studies from several laboratories, including our own, have demonstrated that a single binge-like ethanol exposure during the equivalent to the third trimester of human pregnancy leads to acute apoptosis and long-term loss of interneurons in the rodent retrosplenial cortex (RSC). The RSC is interconnected with the hippocampus, thalamus, and other neocortical regions and plays distinct roles in visuospatial processing and storage, as well as retrieval of hippocampal-dependent episodic memories. Here we used slice electrophysiology to characterize the acute effects of ethanol on GABAergic neurotransmission in the RSC of neonatal mice, as well as the long-term effects of neonatal ethanol exposure on parvalbumin-interneuron mediated neurotransmission in adolescent mice. Mice were exposed to ethanol using vapor inhalation chambers. In postnatal day (P) 7 mouse pups, ethanol unexpectedly failed to potentiate GABAA receptor-mediated synaptic transmission. Binge-like ethanol exposure of P7 mice expressing channel rhodopsin in parvalbumin-positive interneurons enhanced the peak amplitudes, asynchronous activity and total charge, while decreasing the rise-times of optically-evoked GABAA receptor-mediated inhibitory postsynaptic currents in adolescent animals. These effects could partially explain the learning and memory deficits that have been documented in adolescent and young adult mice exposed to ethanol during the third trimester-equivalent developmental period.
Collapse
|
13
|
FYN is required for ARHGEF16 to promote proliferation and migration in colon cancer cells. Cell Death Dis 2020; 11:652. [PMID: 32811808 PMCID: PMC7435200 DOI: 10.1038/s41419-020-02830-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022]
Abstract
ARHGEF16 is a recently identified Rho-family guanine nucleotide exchange factor (GEF) that has been implicated in the activation of Rho-family GTPases such as Rho G, Rac, and Cdc42. However, its functions in colon cancer cell proliferation and migration are not well understood. In this study, we showed that ARHGEF16 was highly expressed in clinical specimens of colon cancer. In colon cancer cells, ARHGEF16-stimulated proliferation and migration in vitro and in vivo. Furthermore, we identified a nonreceptor tyrosine kinase, FYN, as a novel partner of ARHGEF16. Knocking down FYN expression decreased ARHGEF16 protein level in colon cancer cells. We further demonstrated that ARHGEF16-induced colon cancer cell proliferation and migration were dependent on FYN since knockdown FYN abolished the ARHGEF16-induced proliferation and migration of colon cancer cells. The FYN-ARHGEF16 axis mediates colon cancer progression and is a potential therapeutic target for colon cancer treatment.
Collapse
|
14
|
Ly C, Shimizu AJ, Vargas MV, Duim WC, Wender PA, Olson DE. Bryostatin 1 Promotes Synaptogenesis and Reduces Dendritic Spine Density in Cortical Cultures through a PKC-Dependent Mechanism. ACS Chem Neurosci 2020; 11:1545-1554. [PMID: 32437156 PMCID: PMC7332236 DOI: 10.1021/acschemneuro.0c00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The marine natural product bryostatin 1 has demonstrated procognitive and antidepressant effects in animals and has been entered into human clinical trials for treating Alzheimer's disease (AD). The ability of bryostatin 1 to enhance learning and memory has largely been attributed to its effects on the structure and function of hippocampal neurons. However, relatively little is known about how bryostatin 1 influences the morphology of cortical neurons, key cells that also support learning and memory processes and are negatively impacted in AD. Here, we use a combination of carefully designed chemical probes and pharmacological inhibitors to establish that bryostatin 1 increases cortical synaptogenesis while decreasing dendritic spine density in a protein kinase C (PKC)-dependent manner. The effects of bryostatin 1 on cortical neurons are distinct from those induced by neural plasticity-promoting psychoplastogens such as ketamine. Compounds capable of increasing synaptic density with concomitant loss of immature dendritic spines may represent a unique pharmacological strategy for enhancing memory by improving signal-to-noise ratio in the central nervous system.
Collapse
Affiliation(s)
- Calvin Ly
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Akira J Shimizu
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Maxemiliano V Vargas
- Neuroscience Graduate Program, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| | - Whitney C Duim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States.,Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, California 94305, United States
| | - David E Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, California 95817, United States.,Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| |
Collapse
|
15
|
Carriba P, Wyatt S, Davies AM. CD40L Reverse Signaling Influences Dendrite Spine Morphology and Expression of PSD-95 and Rho Small GTPases. Front Cell Dev Biol 2020; 8:254. [PMID: 32411702 PMCID: PMC7198883 DOI: 10.3389/fcell.2020.00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
CD40-activated CD40L reverse signaling is a major physiological regulator of neural process growth from many kinds of developing neurons. Here we have investigated whether CD40L-reverse signaling also influences dendrite spine number and morphology in striatal medium spiny neurons (MSNs). Golgi preparations revealed no differences in the spine density, but because the dendrite arbors of MSNs were larger and branched in Cd40 -/- mice, the total number of spines was greater in Cd40 -/- mice. We also detected more mature spines compared with wild-type littermates. Western blot revealed that MSN cultures from Cd40 -/- mice had significantly less PSD-95 and there were changes in RhoA/B/C and Cdc42. Immunocytochemistry revealed that PSD-95 was clustered in spines in Cd40 -/- neurons compared with more diffuse labeling in Cd40 +/+ neurons. Activation of CD40L-reverse signaling with CD40-Fc prevented the changes observed in Cd40 -/- cultures. Our findings suggest that CD40L-reverse signaling influences dendrite spine morphology and related protein expression and distribution.
Collapse
Affiliation(s)
- Paulina Carriba
- Neuron Development, Neurosciences Department, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sean Wyatt
- Neuron Development, Neurosciences Department, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alun M Davies
- Neuron Development, Neurosciences Department, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
Cook EK, Sell GL, Schaffer TB, Margolis SS. The emergence of Ephexin5 as a therapeutic target in Alzheimer's disease. Expert Opin Ther Targets 2019; 23:263-265. [PMID: 30810053 PMCID: PMC6715421 DOI: 10.1080/14728222.2019.1586884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Emily K. Cook
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle L. Sell
- Center for Neuroscience, University of California, Davis, California 95618, USA
| | - Thomas B. Schaffer
- Research and Development, Columbia Biosciences Corporation, Frederick, MD 21703, USA
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|