1
|
Jobichen C, Saharan K, Samal A, Choong YK, Jagdev MK, Mohapatra C, Jian S, Babbar R, Dobson RCJ, Grover A, Vasudevan D, Sivaraman J. Cryo-EM structure provides insights into the unusual heptameric assembly of rice (Oryza sativa L.) ClpB1 AAA+ ATPase. Int J Biol Macromol 2025; 311:143917. [PMID: 40324502 DOI: 10.1016/j.ijbiomac.2025.143917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Heat stress disrupts the protein homeostasis leading to the accumulation of toxic aggregated proteins in the cell. ClpB disaggregase belonging to the AAA+ ATPase superfamily removes the aggregated toxic proteins. ClpB is present ubiquitously in bacteria, yeast, protozoans and plants and plays a role in acquired heat tolerance. This study was focused on cytoplasmic ClpB1 from rice which is the staple food for more than half of world's population. In bacteria and yeast, ClpB forms a hexameric assembly for carrying out the disaggregase function, however, none of the plant ClpB isoforms have been structurally characterized. Here, we report the cryo-EM structure of ClpB1 from rice (Oryza sativa L.; OsClpB1) at 4 Å resolution. The structure reveals that OsClpB1 assembles as an unusual heptameric ring, possibly representing a non-processive open conformation. Our results point to the structural plasticity of OsClpB1 since it exists in different oligomeric forms. Analytical ultracentrifugation studies confirmed OsClpB1 exist as a heptamer in solution as well, suggesting the presence of the heptameric form of OsClpB1 within the cellular milieu of the rice plant.
Collapse
Affiliation(s)
- Chacko Jobichen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| | - Ketul Saharan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Archana Samal
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Yeu Khai Choong
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Manas Kumar Jagdev
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Chinmayee Mohapatra
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Shi Jian
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Richa Babbar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch 8140, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India; Structural Biology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram 695014, India.
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Rebeaud ME, Tiwari S, Fauvet B, Mohr A, Goloubinoff P, De Los Rios P. Autorepression of yeast Hsp70 cochaperones by intramolecular interactions involving their J-domains. Cell Stress Chaperones 2024; 29:338-348. [PMID: 38521349 PMCID: PMC10999819 DOI: 10.1016/j.cstres.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1's ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1-4 chaperones that are the most abundant Hsp70s in the yeast cytosol.
Collapse
Affiliation(s)
- Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Vaud, Switzerland; Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Satyam Tiwari
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Bruno Fauvet
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Adelaïde Mohr
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Vaud, Switzerland.
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Vaud, Switzerland.
| |
Collapse
|
3
|
Xiao X, Fay A, Molina PS, Kovach A, Glickman MS, Li H. Structure of the M. tuberculosis DnaK-GrpE complex reveals how key DnaK roles are controlled. Nat Commun 2024; 15:660. [PMID: 38253530 PMCID: PMC10803776 DOI: 10.1038/s41467-024-44933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The molecular chaperone DnaK is essential for viability of Mycobacterium tuberculosis (Mtb). DnaK hydrolyzes ATP to fold substrates, and the resulting ADP is exchanged for ATP by the nucleotide exchange factor GrpE. It has been unclear how GrpE couples DnaK's nucleotide exchange with substrate release. Here we report a cryo-EM analysis of GrpE bound to an intact Mtb DnaK, revealing an asymmetric 1:2 DnaK-GrpE complex. The GrpE dimer ratchets to modulate both DnaK nucleotide-binding domain and the substrate-binding domain. We further show that the disordered GrpE N-terminus is critical for substrate release, and that the DnaK-GrpE interface is essential for protein folding activity both in vitro and in vivo. Therefore, the Mtb GrpE dimer allosterically regulates DnaK to concomitantly release ADP in the nucleotide-binding domain and substrate peptide in the substrate-binding domain.
Collapse
Affiliation(s)
- Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
4
|
Pan Y, Zhan J, Jiang Y, Xia D, Scheuring S. A concerted ATPase cycle of the protein transporter AAA-ATPase Bcs1. Nat Commun 2023; 14:6369. [PMID: 37821516 PMCID: PMC10567702 DOI: 10.1038/s41467-023-41806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Bcs1, a homo-heptameric transmembrane AAA-ATPase, facilitates folded Rieske iron-sulfur protein translocation across the inner mitochondrial membrane. Structures in different nucleotide states (ATPγS, ADP, apo) provided conformational snapshots, but the kinetics and structural transitions of the ATPase cycle remain elusive. Here, using high-speed atomic force microscopy (HS-AFM) and line scanning (HS-AFM-LS), we characterized single-molecule Bcs1 ATPase cycling. While the ATP conformation had ~5600 ms lifetime, independent of the ATP-concentration, the ADP/apo conformation lifetime was ATP-concentration dependent and reached ~320 ms at saturating ATP-concentration, giving a maximum turnover rate of 0.17 s-1. Importantly, Bcs1 ATPase cycle conformational changes occurred in concert. Furthermore, we propose that the transport mechanism involves opening the IMS gate through energetically costly straightening of the transmembrane helices, potentially driving rapid gate resealing. Overall, our results establish a concerted ATPase cycle mechanism in Bcs1, distinct from other AAA-ATPases that use a hand-over-hand mechanism.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Jingyu Zhan
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yining Jiang
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, USA
| | - Di Xia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology & Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Lee S, Lee SB, Sung N, Xu WW, Chang C, Kim HE, Catic A, Tsai FTF. Structural basis of impaired disaggregase function in the oxidation-sensitive SKD3 mutant causing 3-methylglutaconic aciduria. Nat Commun 2023; 14:2028. [PMID: 37041140 PMCID: PMC10090083 DOI: 10.1038/s41467-023-37657-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
Mitochondria are critical to cellular and organismal health. To prevent damage, mitochondria have evolved protein quality control machines to survey and maintain the mitochondrial proteome. SKD3, also known as CLPB, is a ring-forming, ATP-fueled protein disaggregase essential for preserving mitochondrial integrity and structure. SKD3 deficiency causes 3-methylglutaconic aciduria type VII (MGCA7) and early death in infants, while mutations in the ATPase domain impair protein disaggregation with the observed loss-of-function correlating with disease severity. How mutations in the non-catalytic N-domain cause disease is unknown. Here, we show that the disease-associated N-domain mutation, Y272C, forms an intramolecular disulfide bond with Cys267 and severely impairs SKD3Y272C function under oxidizing conditions and in living cells. While Cys267 and Tyr272 are found in all SKD3 isoforms, isoform-1 features an additional α-helix that may compete with substrate-binding as suggested by crystal structure analyses and in silico modeling, underscoring the importance of the N-domain to SKD3 function.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nuri Sung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wendy W Xu
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
- Louisiana State University Health New Orleans School of Medicine, New Orleans, LA, 70112, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Francis T F Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Hu X, Tang X, Zhou Y, Ahmad B, Zhang D, Zeng Y, Wei J, Deng L, Chen S, Pan Y. Bioinformatics Analysis, Expression Profiling, and Functional Characterization of Heat Shock Proteins in Wolfi-poria cocos. Bioengineering (Basel) 2023; 10:bioengineering10030390. [PMID: 36978781 PMCID: PMC10045903 DOI: 10.3390/bioengineering10030390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Heat shock proteins (HSPs) play critical roles in regulating different mechanisms under high-temperature conditions. HSPs have been identified and well-studied in different plants. However, there is a lack of information about their genomic organization and roles in medicinal plants and fungi, especially in Wolfi-poria cocos (W. cocos). We identified sixteen heat shock proteins (HSPs) in W. cocos and analyzed in terms of phylogenetic analysis, gene structure, motif distribution patterns, physiochemical properties, and expression comparison in different strains. Based on phylogenetic analysis, HSPs were divided into five subgroups (WcHSP100, WcHSP90, WcHSP70, WcHSP60, and WcsHSP). Subgroups WcHSP100s, WcHSP90s, WcHSP70s, WcHSP60, and WcsHSPs were further divided into 3, 2, 3, 1, and 6 subfamilies, respectively. Moreover, the expression profiling of all HSP genes in five strains of W. cocos under different temperature extremes revealed that expression of most HSPs were induced by high temperature. However, every subfamily showed different expression suggesting distinctive role in heat stress tolerance. WcHSP70-4, WcHSP90-1, and WcHSP100-1 showed the highest response to high temperature stress. Heterologous expression of WcHSP70-4, WcHSP90-1, and WcHSP100-1 genes in Escherichia coli enhanced survival rate of E. coli during heat stress. These findings suggest the role of W. cocos heat shock genes in the high temperature stress tolerance.
Collapse
Affiliation(s)
- Xin Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Xue Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Yumei Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Bilal Ahmad
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Deli Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400062, China
| | - Yue Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Jingyi Wei
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Liling Deng
- Chongqing Institute of Biotechnology Co., Ltd., Chongqing 401121, China
| | - Shijiang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400062, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| |
Collapse
|
7
|
Kahle M, Appelgren S, Elofsson A, Carroni M, Ädelroth P. Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. BMC Biol 2023; 21:47. [PMID: 36855050 PMCID: PMC9976466 DOI: 10.1186/s12915-023-01546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND NorQ, a member of the MoxR-class of AAA+ ATPases, and NorD, a protein containing a Von Willebrand Factor Type A (VWA) domain, are essential for non-heme iron (FeB) cofactor insertion into cytochrome c-dependent nitric oxide reductase (cNOR). cNOR catalyzes NO reduction, a key step of bacterial denitrification. This work aimed at elucidating the specific mechanism of NorQD-catalyzed FeB insertion, and the general mechanism of the MoxR/VWA interacting protein families. RESULTS We show that NorQ-catalyzed ATP hydrolysis, an intact VWA domain in NorD, and specific surface carboxylates on cNOR are all features required for cNOR activation. Supported by BN-PAGE, low-resolution cryo-EM structures of NorQ and the NorQD complex show that NorQ forms a circular hexamer with a monomer of NorD binding both to the side and to the central pore of the NorQ ring. Guided by AlphaFold predictions, we assign the density that "plugs" the NorQ ring pore to the VWA domain of NorD with a protruding "finger" inserting through the pore and suggest this binding mode to be general for MoxR/VWA couples. CONCLUSIONS Based on our results, we present a tentative model for the mechanism of NorQD-catalyzed cNOR remodeling and suggest many of its features to be applicable to the whole MoxR/VWA family.
Collapse
Affiliation(s)
- Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden. .,Present Address: Department of Biochemistry, University of Potsdam, 14476, Potsdam, Germany.
| | - Sofia Appelgren
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden. .,Swedish Cryo-EM Facility, Science for Life Laboratory Stockholm University, Solna, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Lee G, Kim RS, Lee SB, Lee S, Tsai FT. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Biochem Soc Trans 2022; 50:1725-1736. [PMID: 36454589 PMCID: PMC9784670 DOI: 10.1042/bst20220590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Hsp100 chaperones, also known as Clp proteins, constitute a family of ring-forming ATPases that differ in 3D structure and cellular function from other stress-inducible molecular chaperones. While the vast majority of ATP-dependent molecular chaperones promote the folding of either the nascent chain or a newly imported polypeptide to reach its native conformation, Hsp100 chaperones harness metabolic energy to perform the reverse and facilitate the unfolding of a misfolded polypeptide or protein aggregate. It is now known that inside cells and organelles, different Hsp100 members are involved in rescuing stress-damaged proteins from a previously aggregated state or in recycling polypeptides marked for degradation. Protein degradation is mediated by a barrel-shaped peptidase that physically associates with the Hsp100 hexamer to form a two-component system. Notable examples include the ClpA:ClpP (ClpAP) and ClpX:ClpP (ClpXP) proteases that resemble the ring-forming FtsH and Lon proteases, which unlike ClpAP and ClpXP, feature the ATP-binding and proteolytic domains in a single polypeptide chain. Recent advances in electron cryomicroscopy (cryoEM) together with single-molecule biophysical studies have now provided new mechanistic insight into the structure and function of this remarkable group of macromolecular machines.
Collapse
Affiliation(s)
- Grace Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Rebecca S. Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Structure of the drug target ClpC1 unfoldase in action provides insights on antibiotic mechanism of action. J Biol Chem 2022; 298:102553. [PMID: 36208775 PMCID: PMC9661721 DOI: 10.1016/j.jbc.2022.102553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
Abstract
The unfoldase ClpC1 is one of the most exciting drug targets against tuberculosis. This AAA+ unfoldase works in cooperation with the ClpP1P2 protease and is the target of at least four natural product antibiotics: cyclomarin, ecumicin, lassomycin, and rufomycin. Although these molecules are promising starting points for drug development, their mechanisms of action remain largely unknown. Taking advantage of a middle domain mutant, we determined the first structure of Mycobacterium tuberculosis ClpC1 in its apo, cyclomarin-, and ecumicin-bound states via cryo-EM. The obtained structure displays features observed in other members of the AAA+ family and provides a map for further drug development. While the apo and cyclomarin-bound structures are indistinguishable and have N-terminal domains that are invisible in their respective EM maps, around half of the ecumicin-bound ClpC1 particles display three of their six N-terminal domains in an extended conformation. Our structural observations suggest a mechanism where ecumicin functions by mimicking substrate binding, leading to ATPase activation and changes in protein degradation profile.
Collapse
|
10
|
Harari A, Zoltsman G, Levin T, Rosenzweig R. Hsp104 N-terminal domain interaction with substrates plays a regulatory role in protein disaggregation. FEBS J 2022; 289:5359-5377. [PMID: 35305079 PMCID: PMC9541529 DOI: 10.1111/febs.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 01/19/2023]
Abstract
Heat shock protein 104 (Hsp104) protein disaggregases are powerful molecular machines that harness the energy derived from ATP binding and hydrolysis to disaggregate a wide range of protein aggregates and amyloids, as well as to assist in yeast prion propagation. Little is known, however, about how Hsp104 chaperones recognize such a diversity of substrates, or indeed the contribution of the substrate‐binding N‐terminal domain (NTD) to Hsp104 function. Herein, we present a NMR spectroscopy study, which structurally characterizes the Hsp104 NTD‐substrate interaction. We show that the NTD includes a substrate‐binding groove that specifically recognizes exposed hydrophobic stretches in unfolded, misfolded, amyloid and prion substrates of Hsp104. In addition, we find that the NTD itself has chaperoning activities which help to protect the exposed hydrophobic regions of its substrates from further misfolding and aggregation, thereby priming them for threading through the Hsp104 central channel. We further demonstrate that mutations to this substrate‐binding groove abolish Hsp104 activation by client proteins and keep the chaperone in a partially inhibited state. The Hsp104 variant with these mutations also exhibited significantly reduced disaggregation activity and cell survival at extreme temperatures. Together, our findings provide both a detailed characterization of the NTD‐substrate complex and insight into the functional regulatory role of the NTD in protein disaggregation and yeast thermotolerance.
Collapse
Affiliation(s)
- Anna Harari
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Riven I, Mazal H, Iljina M, Haran G. Fast dynamics shape the function of the
AAA
+ machine
ClpB
: lessons from single‐molecule
FRET
spectroscopy. FEBS J 2022. [DOI: 10.1111/febs.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Inbal Riven
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Marija Iljina
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
13
|
Mabanglo MF, Houry WA. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. J Biol Chem 2022; 298:101781. [PMID: 35245501 PMCID: PMC9035409 DOI: 10.1016/j.jbc.2022.101781] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Neijenhuis T, van Keulen SC, Bonvin AMJJ. Interface refinement of low- to medium-resolution Cryo-EM complexes using HADDOCK2.4. Structure 2022; 30:476-484.e3. [PMID: 35216656 DOI: 10.1016/j.str.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
A wide range of cellular processes requires the formation of multimeric protein complexes. The rise of cryo-electron microscopy (cryo-EM) has enabled the structural characterization of these protein assemblies. The density maps produced can, however, still suffer from limited resolution, impeding the process of resolving structures at atomic resolution. In order to solve this issue, monomers can be fitted into low- to medium-resolution maps. Unfortunately, the models produced frequently contain atomic clashes at the protein-protein interfaces (PPIs), as intermolecular interactions are typically not considered during monomer fitting. Here, we present a refinement approach based on HADDOCK2.4 to remove intermolecular clashes and optimize PPIs. A dataset of 14 cryo-EM complexes was used to test eight protocols. The best-performing protocol, consisting of a semi-flexible simulated annealing refinement with centroid restraints on the monomers, was able to decrease intermolecular atomic clashes by 98% without significantly deteriorating the quality of the cryo-EM density fit.
Collapse
Affiliation(s)
- Tim Neijenhuis
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Science for Life, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Siri C van Keulen
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Science for Life, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Science for Life, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Low KJY, Venkatraman A, Mehta JS, Pervushin K. Molecular mechanisms of amyloid disaggregation. J Adv Res 2022; 36:113-132. [PMID: 35127169 PMCID: PMC8799873 DOI: 10.1016/j.jare.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Importance of disaggregation mechanism and innate disaggregation in living systems. Different types and mechanism of disaggregation reported in literature. Structural details of the interactions and the disaggregation mechanisms. Amyloid disaggregation in protein aggregation disorders as a potential treatment. Proposed amyloid disaggregation mechanism of an ATP-independent chaperone (L-PGDS).
Introduction Protein aggregation and deposition of uniformly arranged amyloid fibrils in the form of plaques or amorphous aggregates is characteristic of amyloid diseases. The accumulation and deposition of proteins result in toxicity and cause deleterious effects on affected individuals known as amyloidosis. There are about fifty different proteins and peptides involved in amyloidosis including neurodegenerative diseases and diseases affecting vital organs. Despite the strenuous effort to find a suitable treatment option for these amyloid disorders, very few compounds had made it to unsuccessful clinical trials. It has become a compelling challenge to understand and manage amyloidosis with the increased life expectancy and ageing population. Objective While most of the currently available literature and knowledge base focus on the amyloid inhibitory mechanism as a treatment option, it is equally important to organize and understand amyloid disaggregation strategies. Disaggregation strategies are important and crucial as they are present innately functional in many living systems and dissolution of preformed amyloids may provide a direct benefit in many pathological conditions. In this review, we have compiled the known amyloid disaggregation mechanism, interactions, and possibilities of using disaggregases as a treatment option for amyloidosis. Methods We have provided the structural details using protein-ligand docking models to visualize the interaction between these disaggregases with amyloid fibrils and their respective proposed amyloid disaggregation mechanisms. Results After reviewing and comparing the different amyloid disaggregase systems and their proposed mechanisms, we presented two different hypotheses for ATP independent disaggregases using L-PGDS as a model. Conclusion Finally, we have highlighted the importance of understanding the underlying disaggregation mechanisms used by these chaperones and organic compounds before the implementation of these disaggregases as a potential treatment option for amyloidosis.
Collapse
|
16
|
Damre M, Dayananda A, Varikoti RA, Stan G, Dima RI. Factors underlying asymmetric pore dynamics of disaggregase and microtubule-severing AAA+ machines. Biophys J 2021; 120:3437-3454. [PMID: 34181904 PMCID: PMC8391056 DOI: 10.1016/j.bpj.2021.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Disaggregation and microtubule-severing nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily assemble into ring-shaped hexamers that enable protein remodeling by coupling large-scale conformational changes with application of mechanical forces within a central pore by loops protruding within the pore. We probed the asymmetric pore motions and intraring interactions that support them by performing extensive molecular dynamics simulations of single-ring severing proteins and the double-ring disaggregase ClpB. Simulations reveal that dynamic stability of hexameric pores of severing proteins and of the nucleotide-binding domain 1 (NBD1) ring of ClpB, which belong to the same clade, involves a network of salt bridges that connect conserved motifs of central pore loops. Clustering analysis of ClpB highlights correlated motions of domains of neighboring protomers supporting strong interprotomer collaboration. Severing proteins have weaker interprotomer coupling and stronger intraprotomer stabilization through salt bridges involving pore loops. Distinct mechanisms are identified in the NBD2 ring of ClpB involving weaker interprotomer coupling through salt bridges formed by noncanonical loops and stronger intraprotomer coupling. Analysis of collective motions of PL1 loops indicates that the largest amplitude motions in the spiral complex of spastin and ClpB involve axial excursions of the loops, whereas for katanin they involve opening and closing of the central pore. All three motors execute primarily axial excursions in the ring complex. These results suggest distinct substrate processing mechanisms of remodeling and translocation by ClpB and spastin compared to katanin, thus providing dynamic support for the differential action of the two severing proteins. Relaxation dynamics of the distance between the PL1 loops and the center of mass of protomers reveals observation-time-dependent dynamics, leading to predicted relaxation times of tens to hundreds of microseconds on millisecond experimental timescales. For ClpB, the predicted relaxation time is in excellent agreement with the extracted time from smFRET experiments.
Collapse
Affiliation(s)
- Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Ashan Dayananda
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
17
|
Hsp100 Molecular Chaperone ClpB and Its Role in Virulence of Bacterial Pathogens. Int J Mol Sci 2021; 22:ijms22105319. [PMID: 34070174 PMCID: PMC8158500 DOI: 10.3390/ijms22105319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023] Open
Abstract
This review focuses on the molecular chaperone ClpB that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and its biological function in selected bacterial pathogens, causing a variety of human infectious diseases, including zoonoses. It has been established that ClpB disaggregates and reactivates aggregated cellular proteins. It has been postulated that ClpB’s protein disaggregation activity supports the survival of pathogenic bacteria under host-induced stresses (e.g., high temperature and oxidative stress), which allows them to rapidly adapt to the human host and establish infection. Interestingly, ClpB may also perform other functions in pathogenic bacteria, which are required for their virulence. Since ClpB is not found in human cells, this chaperone emerges as an attractive target for novel antimicrobial therapies in combating bacterial infections.
Collapse
|
18
|
Maity S, Chakrabarti O. Mitochondrial protein import as a quality control sensor. Biol Cell 2021; 113:375-400. [PMID: 33870508 DOI: 10.1111/boc.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| |
Collapse
|
19
|
Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci 2021; 8:681439. [PMID: 34017857 PMCID: PMC8129007 DOI: 10.3389/fmolb.2021.681439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Valentin Bohl
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
20
|
Yin Y, Feng X, Yu H, Fay A, Kovach A, Glickman MS, Li H. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Rep 2021; 35:109166. [PMID: 34038719 PMCID: PMC8209680 DOI: 10.1016/j.celrep.2021.109166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/30/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The M. tuberculosis (Mtb) ClpB is a protein disaggregase that helps to rejuvenate the bacterial cell. DnaK is a protein foldase that can function alone, but it can also bind to the ClpB hexamer to physically couple protein disaggregation with protein refolding, although the molecular mechanism is not well understood. Here, we report the cryo-EM analysis of the Mtb ClpB-DnaK bi-chaperone in the presence of ATPγS and a protein substrate. We observe three ClpB conformations in the presence of DnaK, identify a conserved TGIP loop linking the oligonucleotide/oligosaccharide-binding domain and the nucleotide-binding domain that is important for ClpB function, derive the interface between the regulatory middle domain of the ClpB and the DnaK nucleotide-binding domain, and find that DnaK binding stabilizes, but does not bend or tilt, the ClpB middle domain. We propose a model for the synergistic actions of aggregate dissolution and refolding by the Mtb ClpB-DnaK bi-chaperone system. Yin et al. use cryo-EM to analyze the structure of the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. They find that the Mtb ClpB middle domain does not bend or tilt when interacting with DnaK. They therefore propose that the Mtb DnaK facilitates protein folding following protein disaggregation by ClpB.
Collapse
Affiliation(s)
- Yanting Yin
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongjun Yu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
21
|
Split conformation of Chaetomium thermophilum Hsp104 disaggregase. Structure 2021; 29:721-730.e6. [PMID: 33651974 DOI: 10.1016/j.str.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/08/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Hsp104 and its bacterial homolog ClpB form hexameric ring structures and mediate protein disaggregation. The disaggregated polypeptide is thought to thread through the central channel of the ring. However, the dynamic behavior of Hsp104 during disaggregation remains unclear. Here, we reported the stochastic conformational dynamics and a split conformation of Hsp104 disaggregase from Chaetomium thermophilum (CtHsp104) in the presence of ADP by X-ray crystallography, cryo-electron microscopy (EM), and high-speed atomic force microscopy (AFM). ADP-bound CtHsp104 assembles into a 65 left-handed spiral filament in the crystal structure at a resolution of 2.7 Å. The unit of the filament is a hexamer of the split spiral structure. In the cryo-EM images, staggered and split hexameric rings were observed. Further, high-speed AFM observations showed that a substrate addition enhanced the conformational change and increased the split structure's frequency. Our data suggest that split conformation is an off-pathway state of CtHsp104 during disaggregation.
Collapse
|
22
|
Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 2020; 184:545-559.e22. [PMID: 33357446 PMCID: PMC7836100 DOI: 10.1016/j.cell.2020.12.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/21/2020] [Accepted: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology. Dynamic structural proteomic screens detect functional changes at high resolution Detect enzyme activity, phosphorylation, and molecular interactions in situ Generate new molecular hypotheses and increase functional proteomics coverage Enabled discovery of a regulatory mechanism of glucose uptake in E. coli
Collapse
|
23
|
Fercher C, Zacchi LF. Resolving the TorsinA Oligomerization Conundrum: The Glycan Hypothesis. Front Mol Biosci 2020; 7:585643. [PMID: 33134321 PMCID: PMC7567157 DOI: 10.3389/fmolb.2020.585643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
TorsinA is a AAA+ ATPase involved in the severe neurological disease Early Onset Torsion Dystonia. Despite the impressive progress in the field in the recent years, the structural organization and function of this intriguing molecule is still not clear. One outstanding difference between torsinA and other AAA+ ATPases is that torsinA is a glycoprotein. TorsinA N-linked glycans impact torsinA biogenesis and subcellular localization. Here, we propose that torsinA glycans also modulate torsinA oligomerization properties. We used structural modeling to test this idea, and show that N-linked glycans appear to restrict torsinA's ability to form closed homohexameric ring assemblies, and instead promote an open hexameric conformation that allows torsinA interaction with key cofactors required for ATP hydrolysis. This mechanism would make torsinA a prime example of Nature's sophisticated molecular glycoengineering.
Collapse
Affiliation(s)
- Christian Fercher
- Australian Research Council (ARC), Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Lucía F Zacchi
- Australian Research Council (ARC), Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
24
|
Structural and kinetic basis for the regulation and potentiation of Hsp104 function. Proc Natl Acad Sci U S A 2020; 117:9384-9392. [PMID: 32277033 DOI: 10.1073/pnas.1921968117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.
Collapse
|
25
|
Kim DS, Choi YW, Shanmugasundaram A, Jeong YJ, Park J, Oyunbaatar NE, Kim ES, Choi M, Lee DW. Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility. Nat Commun 2020; 11:535. [PMID: 31988308 PMCID: PMC6985253 DOI: 10.1038/s41467-019-14019-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
To date, numerous biosensing platforms have been developed for assessing drug-induced cardiac toxicity by measuring the change in contractile force of cardiomyocytes. However, these low sensitivity, low-throughput, and time-consuming processes are severely limited in their real-time applications. Here, we propose a cantilever device integrated with a polydimethylsiloxane (PDMS)-encapsulated crack sensor to measure cardiac contractility. The crack sensor is chemically bonded to a PDMS thin layer that allows it to be operated very stably in culture media. The reliability of the proposed crack sensor has been improved dramatically compared to no encapsulation layer. The highly sensitive crack sensor continuously measures the cardiac contractility without changing its gauge factor for up to 26 days (>5 million heartbeats), while changes in contractile force induced by drugs are monitored using the crack sensor-integrated cantilever. Finally, experimental results are compared with those obtained via conventional optical methods to verify the feasibility of building a contraction-based drug-toxicity testing system. Measuring cardiac contractility is challenging. Here, the authors encapsulated a crack-based sensor with polydimethylsiloxane, thereby endowing the sensor with the stability to measure cardiac contractility for up to 26 days as well as monitoring drug-induced cardiac toxicity in cell culture.
Collapse
Affiliation(s)
- Dong-Su Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Whan Choi
- Division of Mechanical Convergence Engineering, College of MICT Convergence Engineering, Silla University, Busan, 46958, Republic of Korea
| | - Arunkumar Shanmugasundaram
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yun-Jin Jeong
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jongsung Park
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.,Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
26
|
Kater L, Wagener N, Berninghausen O, Becker T, Neupert W, Beckmann R. Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins. Nat Struct Mol Biol 2020; 27:142-149. [DOI: 10.1038/s41594-019-0364-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022]
|
27
|
Weber B, Maier A, Buchner J. Peptides in proteins. J Pept Sci 2019; 26:e3235. [PMID: 31867828 DOI: 10.1002/psc.3235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
During evolution C-terminal peptide extensions were added to proteins on the gene level. These convey additional functions such as interaction with partner proteins or oligomerisation. IgM antibodies and molecular chaperones are two prominent examples discussed.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Andreas Maier
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
28
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
29
|
The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat Rev Mol Cell Biol 2019; 21:43-58. [PMID: 31754261 DOI: 10.1038/s41580-019-0183-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/26/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are macromolecular machines that convert the chemical energy contained in ATP molecules into powerful mechanical forces to remodel a vast array of cellular substrates, including protein aggregates, macromolecular complexes and polymers. AAA+ proteins have key functionalities encompassing unfolding and disassembly of such substrates in different subcellular localizations and, hence, power a plethora of fundamental cellular processes, including protein quality control, cytoskeleton remodelling and membrane dynamics. Over the past 35 years, many of the key elements required for AAA+ activity have been identified through genetic, biochemical and structural analyses. However, how ATP powers substrate remodelling and whether a shared mechanism underlies the functional diversity of the AAA+ superfamily were uncertain. Advances in cryo-electron microscopy have enabled high-resolution structure determination of AAA+ proteins trapped in the act of processing substrates, revealing a conserved core mechanism of action. It has also become apparent that this common mechanistic principle is structurally adjusted to carry out a diverse array of biological functions. Here, we review how substrate-bound structures of AAA+ proteins have expanded our understanding of ATP-driven protein remodelling.
Collapse
|
30
|
Botos I, Lountos GT, Wu W, Cherry S, Ghirlando R, Kudzhaev AM, Rotanova TV, de Val N, Tropea JE, Gustchina A, Wlodawer A. Cryo-EM structure of substrate-free E. coli Lon protease provides insights into the dynamics of Lon machinery. Curr Res Struct Biol 2019; 1:13-20. [PMID: 34235464 PMCID: PMC8244335 DOI: 10.1016/j.crstbi.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022] Open
Abstract
Energy-dependent Lon proteases play a key role in cellular regulation by degrading short-lived regulatory proteins and misfolded proteins in the cell. The structure of the catalytically inactive S679A mutant of Escherichia coli LonA protease (EcLon) has been determined by cryo-EM at the resolution of 3.5 Å. EcLonA without a bound substrate adopts a hexameric open-spiral quaternary structure that might represent the resting state of the enzyme. Upon interaction with substrate the open-spiral hexamer undergoes a major conformational change resulting in a compact, closed-circle hexamer as in the recent structure of a complex of Yersinia pestis LonA with a protein substrate. This major change is accomplished by the rigid-body rearrangement of the individual domains within the protomers of the complex around the hinge points in the interdomain linkers. Comparison of substrate-free and substrate-bound Lon structures allows to mark the location of putative pivotal points involved in such conformational changes.
Collapse
Affiliation(s)
- Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - George T. Lountos
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Scott Cherry
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Arsen M. Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Tatyana V. Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Electron Microscopy Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Ramírez-Aportela E, Mota J, Conesa P, Carazo JM, Sorzano COS. DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps. IUCRJ 2019; 6:1054-1063. [PMID: 31709061 PMCID: PMC6830216 DOI: 10.1107/s2052252519011692] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/22/2019] [Indexed: 05/26/2023]
Abstract
In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a 'local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed.
Collapse
Affiliation(s)
- Erney Ramírez-Aportela
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Javier Mota
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Pablo Conesa
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Universidad CEU San Pablo, Campus Urbanizacion Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
32
|
Rizo AN, Lin J, Gates SN, Tse E, Bart SM, Castellano LM, DiMaio F, Shorter J, Southworth DR. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. Nat Commun 2019; 10:2393. [PMID: 31160557 PMCID: PMC6546751 DOI: 10.1038/s41467-019-10150-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle.
Collapse
Affiliation(s)
- Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Stephen M Bart
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|