1
|
Herring P, Roedgaard M, Holst CM, Christensen H, Knudsen BR, Bjergbaek L, Andersen AH. A cellular system to study responses to a collision between the transcription complex and a protein-bound nick in the DNA template. FEBS Lett 2025. [PMID: 40309784 DOI: 10.1002/1873-3468.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
We present a transcription-coupled Flp-nick system enabling a stable protein-bound nick mimicking a topoisomerase I-DNA cleavage complex. The nick is introduced at a single site within a controllable LacZ gene inserted into the Saccharomyces cerevisiae genome. This system allows unique single-site studies of a frequently occurring damage within a transcription unit in vivo. As proof of principle, we demonstrate RNA polymerase II accumulation at the damage site when MG132 inhibits the proteasome. Similarly, accumulation occurs when polymerase ubiquitination is abolished by deletion of the ubiquitinase ELC1 gene. This indicates that a topoisomerase I-DNA mimicking cleavage complex per se induces RNA polymerase II ubiquitination and degradation. These findings advance understanding of cellular responses to topoisomerase I-targeting drugs used in cancer chemotherapy.
Collapse
Affiliation(s)
- Petra Herring
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Morten Roedgaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Camilla Myrup Holst
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Helene Christensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Lotte Bjergbaek
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
2
|
Amiama-Roig A, Barrientos-Moreno M, Cruz-Zambrano E, López-Ruiz LM, González-Prieto R, Ríos-Orelogio G, Prado F. A Rfa1-MN-based system reveals new factors involved in the rescue of broken replication forks. PLoS Genet 2025; 21:e1011405. [PMID: 40168399 PMCID: PMC11984746 DOI: 10.1371/journal.pgen.1011405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
The integrity of the replication forks is essential for an accurate and timely completion of genome duplication. However, little is known about how cells deal with broken replication forks. We have generated in yeast a system based on a chimera of the largest subunit of the ssDNA binding complex RPA fused to the micrococcal nuclease (Rfa1-MN) to induce double-strand breaks (DSBs) at replication forks and searched for mutants affected in their repair. Our results show that the core homologous recombination (HR) proteins involved in the formation of the ssDNA/Rad51 filament are essential for the repair of DSBs at forks, whereas non-homologous end joining plays no role. Apart from the endonucleases Mus81 and Yen1, the repair process employs fork-associated HR factors, break-induced replication (BIR)-associated factors and replisome components involved in sister chromatid cohesion and fork stability, pointing to replication fork restart by BIR followed by fork restoration. Notably, we also found factors controlling the length of G1, suggesting that a minimal number of active origins facilitates the repair by converging forks. Our study has also revealed a requirement for checkpoint functions, including the synthesis of Dun1-mediated dNTPs. Finally, our screening revealed minimal impact from the loss of chromatin factors, suggesting that the partially disassembled nucleosome structure at the replication fork facilitates the accessibility of the repair machinery. In conclusion, this study provides an overview of the factors and mechanisms that cooperate to repair broken forks.
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Barrientos-Moreno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Esther Cruz-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Luz M. López-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriel Ríos-Orelogio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
3
|
Whalen JM, Earley J, Wisniewski C, Mercurio AM, Cantor SB. Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability. NATURE CANCER 2025; 6:278-291. [PMID: 39838098 PMCID: PMC12041741 DOI: 10.1038/s43018-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Tumors lacking the BRCA1 and BRCA2 (BRCA) hereditary breast cancer genes display heightened sensitivity to anti-cancer treatments, such as inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). However, when resistance develops, treatments are lacking. Using CRISPR technology, we discovered that enhancing homologous recombination through increased DNA end resection in BRCA1-deficient cells by loss of the 53BP1-Shieldin complex-which is associated with resistance to PARP inhibitors-also heightens sensitivity to DNA nicks. The sensitivity is caused by hyper-resection of nicks into extensive single-stranded regions that trigger cell death. Based on these findings and that nicks limit tumor formation in mice, we propose nickases as a tool for personalized medicine. Moreover, our findings indicate that restricting nick expansion is a critical function of the 53BP1-Shieldin complex.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jillian Earley
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christi Wisniewski
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Sasaki M, Kobayashi T. Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes. Nucleic Acids Res 2025; 53:gkaf014. [PMID: 39876709 PMCID: PMC11760980 DOI: 10.1093/nar/gkaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site. When Sir2 is absent, this transcription is stimulated but terminated by arrested replication forks. This transcription-replication collision induces DSB formation, DSB end resection and the Mre11-Rad50-Xrs2 complex-dependent DSB repair that is prone to chromosomal rDNA copy number changes and the production of extrachromosomal rDNA circles. Therefore, repression of transcription near arrested replication forks is critical for the maintenance of rDNA stability by directing DSB repair into the HR-independent, rearrangement-free pathway.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Gene Quantity Biology, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka411-8540, Japan
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka411-8540, Japan
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| |
Collapse
|
5
|
Kimble MT, Sane A, Reid RJD, Johnson MJ, Rothstein R, Symington LS. Repair of replication-dependent double-strand breaks differs between the leading and lagging strands. Mol Cell 2025; 85:61-77.e6. [PMID: 39631395 PMCID: PMC11698654 DOI: 10.1016/j.molcel.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Single-strand breaks (SSBs) are one of the most commonly occurring endogenous lesions with the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate how replication-dependent DSBs are repaired, we employed Cas9 nickase (nCas9) to generate site- and strand-specific nicks in the budding yeast genome. We found that nCas9-induced nicks are converted to mostly double-ended DSBs during S phase. Repair of replication-associated DSBs requires homologous recombination (HR) and is independent of classical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister-chromatid template, we observed minimal induction of inter-chromosomal HR by nCas9. In a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs, we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway. Our findings suggest that the RCNA pathway is especially important to repair DSBs arising from nicks in the leading-strand template through acetylation of histone H3K56.
Collapse
Affiliation(s)
- Michael T Kimble
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aakanksha Sane
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J Johnson
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Basto C, Moreira-Tavares E, Muhammad AA, Baconnais S, Mazón G, Le Cam E, Dupaigne P. Homologous Recombination and DNA Intermediates Analyzed by Electron Microscopy. Methods Mol Biol 2025; 2881:239-257. [PMID: 39704947 DOI: 10.1007/978-1-0716-4280-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Homologous recombination (HR) is a high-fidelity DNA repair pathway that uses a homologous DNA sequence as a template. Recombinase proteins are the central HR players in the three kingdoms of life. RecA/RadA/Rad51 assemble on ssDNA, generated after the processing of double-strand breaks or stalled replication forks into an active and dynamic presynaptic helical nucleofilament. Presynaptic filament formation is regulated by a series of partners of the recombinase, such as scRad52/hBRCA2 mediators or anti-recombinase proteins, to form an active machinery involved in homology search, pair-matching, and invasion within homologous sequences. During homology search, but also during strand invasion, the multiprotein complexes that form the nucleofilament induce the formation of a variety of DNA intermediate states. Here we present specific approaches to study and characterize the different DNA and DNA-protein intermediates formed during homologous recombination. The combination of powerful electron microscopy and sample preparation methods provides a better understanding of these proteins' molecular activity and their interactions.
Collapse
Affiliation(s)
- Clara Basto
- Genome Integrity and Cancers, UMR 9019 CNRS, Université-Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Eliana Moreira-Tavares
- Genome Integrity and Cancers, UMR 9019 CNRS, Université-Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Ali-Akbar Muhammad
- Genome Integrity and Cancers, UMR 9019 CNRS, Université-Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sonia Baconnais
- Genome Integrity and Cancers, UMR 9019 CNRS, Université-Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Gerard Mazón
- Genome Integrity and Cancers, UMR 9019 CNRS, Université-Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Eric Le Cam
- Genome Integrity and Cancers, UMR 9019 CNRS, Université-Paris-Saclay, Gustave Roussy, Villejuif, France.
| | - Pauline Dupaigne
- Genome Integrity and Cancers, UMR 9019 CNRS, Université-Paris-Saclay, Gustave Roussy, Villejuif, France.
| |
Collapse
|
7
|
Triplett MK, Johnson MJ, Symington LS. Induction of homologous recombination by site-specific replication stress. DNA Repair (Amst) 2024; 142:103753. [PMID: 39190984 PMCID: PMC11425181 DOI: 10.1016/j.dnarep.2024.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
DNA replication stress is one of the primary causes of genome instability. In response to replication stress, cells can employ replication restart mechanisms that rely on homologous recombination to resume replication fork progression and preserve genome integrity. In this review, we provide an overview of various methods that have been developed to induce site-specific replication fork stalling or collapse in eukaryotic cells. In particular, we highlight recent studies of mechanisms of replication-associated recombination resulting from site-specific protein-DNA barriers and single-strand breaks, and we discuss the contributions of these findings to our understanding of the consequences of these forms of stress on genome stability.
Collapse
Affiliation(s)
- Marina K Triplett
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Matthew J Johnson
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Program in Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
8
|
Dumont A, Mendiboure N, Savocco J, Anani L, Moreau P, Thierry A, Modolo L, Jost D, Piazza A. Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae. Mol Cell 2024; 84:3237-3253.e6. [PMID: 39178861 DOI: 10.1016/j.molcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Collapse
Affiliation(s)
- Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicolas Mendiboure
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Loqmen Anani
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Pierrick Moreau
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Agnès Thierry
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Laurent Modolo
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
9
|
Pavani R, Tripathi V, Vrtis KB, Zong D, Chari R, Callen E, Pankajam AV, Zhen G, Matos-Rodrigues G, Yang J, Wu S, Reginato G, Wu W, Cejka P, Walter JC, Nussenzweig A. Structure and repair of replication-coupled DNA breaks. Science 2024; 385:eado3867. [PMID: 38900911 PMCID: PMC11620331 DOI: 10.1126/science.ado3867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Using CRISPR-Cas9 nicking enzymes, we examined the interaction between the replication machinery and single-strand breaks, one of the most common forms of endogenous DNA damage. We show that replication fork collapse at leading-strand nicks generates resected single-ended double-strand breaks (seDSBs) that are repaired by homologous recombination (HR). If these seDSBs are not promptly repaired, arrival of adjacent forks creates double-ended DSBs (deDSBs), which could drive genomic scarring in HR-deficient cancers. deDSBs can also be generated directly when the replication fork bypasses lagging-strand nicks. Unlike deDSBs produced independently of replication, end resection at nick-induced seDSBs and deDSBs is BRCA1-independent. Nevertheless, BRCA1 antagonizes 53BP1 suppression of RAD51 filament formation. These results highlight distinctive mechanisms that maintain replication fork stability.
Collapse
Affiliation(s)
- Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyle B. Vrtis
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ajith V. Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gang Zhen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Jiajie Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Giordano Reginato
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Petr Cejka
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
10
|
Fábián Z, Kakulidis ES, Hendriks IA, Kühbacher U, Larsen NB, Oliva-Santiago M, Wang J, Leng X, Dirac-Svejstrup AB, Svejstrup JQ, Nielsen ML, Caldecott K, Duxin JP. PARP1-dependent DNA-protein crosslink repair. Nat Commun 2024; 15:6641. [PMID: 39103378 PMCID: PMC11300803 DOI: 10.1038/s41467-024-50912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.
Collapse
Affiliation(s)
- Zita Fábián
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ellen S Kakulidis
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ivo A Hendriks
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ulrike Kühbacher
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Nicolai B Larsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Marta Oliva-Santiago
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Junhui Wang
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RH, UK
| | - Xueyuan Leng
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - A Barbara Dirac-Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Michael L Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Keith Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RH, UK
| | - Julien P Duxin
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
11
|
Kimble MT, Sane A, Reid RJ, Johnson MJ, Rothstein R, Symington LS. Strand asymmetry in the repair of replication dependent double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598707. [PMID: 38948862 PMCID: PMC11212877 DOI: 10.1101/2024.06.17.598707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-strand breaks (SSBs) are one of the most common endogenous lesions and have the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate the mechanism of replication fork collapse at SSBs and subsequent repair, we employed Cas9 nickase (nCas9) to generate site and strand-specific nicks in the budding yeast genome. We show that nCas9-induced nicks are converted to mostly double-ended DSBs during S-phase. We find that repair of replication-dependent DSBs requires homologous recombination (HR) and is independent of canonical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister chromatid template, we observe minimal induction of inter-chromosomal HR by nCas9. Using nCas9 and a gRNA to nick either the leading or lagging strand template, we carried out a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs. All the core HR genes were recovered in the screen with both gRNAs, but we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway with only the gRNA targeting the leading strand template. By use of additional gRNAs, we find that the RCNA pathway is especially important to repair a leading strand fork collapse.
Collapse
|
12
|
Feng YL, Liu Q, Chen RD, Liu SC, Huang ZC, Liu KM, Yang XY, Xie AY. DNA nicks induce mutational signatures associated with BRCA1 deficiency. Nat Commun 2022; 13:4285. [PMID: 35879372 PMCID: PMC9314409 DOI: 10.1038/s41467-022-32011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Analysis of human cancer genome sequences has revealed specific mutational signatures associated with BRCA1-deficient tumors, but the underlying mechanisms remain poorly understood. Here, we show that one-ended DNA double strand breaks (DSBs) converted from CRISPR/Cas9-induced nicks by DNA replication, not two-ended DSBs, cause more characteristic chromosomal aberrations and micronuclei in Brca1-deficient cells than in wild-type cells. BRCA1 is required for efficient homologous recombination of these nick-converted DSBs and suppresses bias towards long tract gene conversion and tandem duplication (TD) mediated by two-round strand invasion in a replication strand asymmetry. However, aberrant repair of these nick-converted one-ended DSBs, not that of two-ended DSBs in Brca1-deficient cells, generates mutational signatures such as small indels with microhomology (MH) at the junctions, translocations and small MH-mediated TDs, resembling those in BRCA1-deficient tumors. These results suggest a major contribution of DNA nicks to mutational signatures associated with BRCA1 deficiency in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Yi-Li Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China. .,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China.
| | - Qian Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Ruo-Dan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Si-Cheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Zhi-Cheng Huang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Kun-Ming Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Xiao-Ying Yang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - An-Yong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China. .,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
13
|
Vrtis KB, Dewar JM, Chistol G, Wu RA, Graham TGW, Walter JC. Single-strand DNA breaks cause replisome disassembly. Mol Cell 2021; 81:1309-1318.e6. [PMID: 33484638 DOI: 10.1016/j.molcel.2020.12.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
DNA damage impedes replication fork progression and threatens genome stability. Upon encounter with most DNA adducts, the replicative CMG helicase (CDC45-MCM2-7-GINS) stalls or uncouples from the point of synthesis, yet eventually resumes replication. However, little is known about the effect on replication of single-strand breaks or "nicks," which are abundant in mammalian cells. Using Xenopus egg extracts, we reveal that CMG collision with a nick in the leading strand template generates a blunt-ended double-strand break (DSB). Moreover, CMG, which encircles the leading strand template, "runs off" the end of the DSB. In contrast, CMG collision with a lagging strand nick generates a broken end with a single-stranded overhang. In this setting, CMG translocates along double-stranded DNA beyond the break and is then ubiquitylated and removed from chromatin by the same pathway used during replication termination. Our results show that nicks are uniquely dangerous DNA lesions that invariably cause replisome disassembly, and they suggest that CMG cannot be stored on dsDNA while cells resolve replication stress.
Collapse
Affiliation(s)
- Kyle B Vrtis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Thomas G W Graham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
15
|
Cerritelli SM, El Hage A. RNases H1 and H2: guardians of the stability of the nuclear genome when supply of dNTPs is limiting for DNA synthesis. Curr Genet 2020; 66:1073-1084. [PMID: 32886170 DOI: 10.1007/s00294-020-01086-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
RNA/DNA hybrids are processed by RNases H1 and H2, while single ribonucleoside-monophosphates (rNMPs) embedded in genomic DNA are removed by the error-free, RNase H2-dependent ribonucleotide excision repair (RER) pathway. In the absence of RER, however, topoisomerase 1 (Top1) can cleave single genomic rNMPs in a mutagenic manner. In RNase H2-deficient mice, the accumulation of genomic rNMPs above a threshold of tolerance leads to catastrophic genomic instability that causes embryonic lethality. In humans, deficiencies in RNase H2 induce the autoimmune disorders Aicardi-Goutières syndrome and systemic lupus erythematosus, and cause skin and intestinal cancers. Recently, we reported that in Saccharomyces cerevisiae, the depletion of Rnr1, the major catalytic subunit of ribonucleotide reductase (RNR), which converts ribonucleotides to deoxyribonucleotides, leads to cell lethality in absence of RNases H1 and H2. We hypothesized that under replicative stress and compromised DNA repair that are elicited by an insufficient supply of deoxyribonucleoside-triphosphates (dNTPs), cells cannot survive the accumulation of persistent RNA/DNA hybrids. Remarkably, we found that cells lacking RNase H2 accumulate ~ 5-fold more genomic rNMPs in absence than in presence of Rnr1. When the load of genomic rNMPs is further increased in the presence of a replicative DNA polymerase variant that over-incorporates rNMPs in leading or lagging strand, cells missing both Rnr1 and RNase H2 suffer from severe growth defects. These are reversed in absence of Top1. Thus, in cells lacking RNase H2 and containing a limiting supply of dNTPs, there is a threshold of tolerance for the accumulation of genomic ribonucleotides that is tightly associated with Top1-mediated DNA damage. In this mini-review, we describe the implications of the loss of RNase H2, or RNases H1 and H2, on the integrity of the nuclear genome and viability of budding yeast cells that are challenged with a critically low supply of dNTPs. We further propose that our findings in budding yeast could pave the way for the study of the potential role of mammalian RNR in RNase H2-related diseases.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Aziz El Hage
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Pardo B, Moriel‐Carretero M, Vicat T, Aguilera A, Pasero P. Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Rep 2020; 21:e49367. [PMID: 32419301 PMCID: PMC7332989 DOI: 10.15252/embr.201949367] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Impediments to DNA replication threaten genome stability. The homologous recombination (HR) pathway has been involved in the restart of blocked replication forks. Here, we used a method to increase yeast cell permeability in order to study at the molecular level the fate of replication forks blocked by DNA topoisomerase I poisoning by camptothecin (CPT). Our results indicate that Rad52 and Rad51 HR factors are required to complete DNA replication in response to CPT. Recombination events occurring during S phase do not generally lead to the restart of DNA synthesis but rather protect blocked forks until they merge with convergent forks. This fusion generates structures requiring their resolution by the Mus81 endonuclease in G2 /M. At the global genome level, the multiplicity of replication origins in eukaryotic genomes and the fork protection mechanism provided by HR appear therefore to be essential to complete DNA replication in response to fork blockage.
Collapse
Affiliation(s)
- Benjamin Pardo
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María Moriel‐Carretero
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Present address:
Centre de Recherche en Biologie cellulaire de MontpellierUniversité de Montpellier‐CNRSMontpellierFrance
| | - Thibaud Vicat
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Philippe Pasero
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
| |
Collapse
|
17
|
Limiting the DNA Double-Strand Break Resectosome for Genome Protection. Trends Biochem Sci 2020; 45:779-793. [PMID: 32513599 DOI: 10.1016/j.tibs.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly channel the resected DNA to the appropriate DNA repair pathway. Herein, we review the mechanisms of regulation of DNA resection, with an emphasis on negative regulators that prevent single-strand (ss)DNA accumulation to maintain genome stability. Interest in targeting DNA resection inhibitors is emerging because their inactivation leads to poly(ADP-ribose) polymerase inhibitor (PARPi) resistance. We also present detailed regulation of DNA resection machineries, their analysis by functional assays, and their impact on disease and PARPi resistance.
Collapse
|
18
|
Tesauro C, Simonsen AK, Andersen MB, Petersen KW, Kristoffersen EL, Algreen L, Hansen NY, Andersen AB, Jakobsen AK, Stougaard M, Gromov P, Knudsen BR, Gromova I. Topoisomerase I activity and sensitivity to camptothecin in breast cancer-derived cells: a comparative study. BMC Cancer 2019; 19:1158. [PMID: 31783818 PMCID: PMC6884793 DOI: 10.1186/s12885-019-6371-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
Background Camptothecin (CPT) and its derivatives are currently used as second- or third-line treatment for patients with endocrine-resistant breast cancer (BC). These drugs convert nuclear enzyme DNA topoisomerase I (TOP1) to a cell poison with the potential to damage DNA by increasing the half-life of TOP1-DNA cleavage complexes (TOP1cc), ultimately resulting in cell death. In small and non-randomized trials for BC, researchers have observed extensive variation in CPT response rates, ranging from 14 to 64%. This variability may be due to the absence of reliable selective parameters for patient stratification. BC cell lines may serve as feasible models for generation of functional criteria that may be used to predict drug sensitivity for patient stratification and, thus, lead to more appropriate applications of CPT in clinical trials. However, no study published to date has included a comparison of multiple relevant parameters and CPT response across cell lines corresponding to specific BC subtypes. Method We evaluated the levels and possible associations of seven parameters including the status of the TOP1 gene (i.e. amplification), TOP1 protein expression level, TOP1 activity and CPT susceptibility, activity of the tyrosyl-DNA phosphodiesterase 1 (TDP1), the cellular CPT response and the cellular growth rate across a representative panel of BC cell lines, which exemplifies three major BC subtypes: Luminal, HER2 and TNBC. Results In all BC cell lines analyzed (without regard to subtype classification), we observed a significant overall correlation between growth rate and CPT response. In cell lines derived from Luminal and HER2 subtypes, we observed a correlation between TOP1 gene copy number, TOP1 activity, and CPT response, although the data were too limited for statistical analyses. In cell lines representing Luminal and TNBC subtypes, we observed a direct correlation between TOP1 protein abundancy and levels of enzymatic activity. In all three subtypes (Luminal, HER2, and TNBC), TOP1 exhibits approximately the same susceptibility to CPT. Of the three subtypes examined, the TNBC-like cell lines exhibited the highest CPT sensitivity and were characterized by the fastest growth rate. This indicates that breast tumors belonging to the TNBC subtype, may benefit from treatment with CPT derivatives. Conclusion TOP1 activity is not a marker for CPT sensitivity in breast cancer.
Collapse
Affiliation(s)
- Cinzia Tesauro
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anne Katrine Simonsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Present Address: Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Marie Bech Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Emil Laust Kristoffersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Present Address: MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Line Algreen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Anne Bech Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Pavel Gromov
- Genome Integrity Unit, Breast Cancer Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Irina Gromova
- Genome Integrity Unit, Breast Cancer Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|