1
|
Burton A, Torres-Padilla ME. Epigenome dynamics in early mammalian embryogenesis. Nat Rev Genet 2025:10.1038/s41576-025-00831-4. [PMID: 40181107 DOI: 10.1038/s41576-025-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
During early embryonic development in mammals, the totipotency of the zygote - which is reprogrammed from the differentiated gametes - transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.
Collapse
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
2
|
Daskeviciute D, Chappell-Maor L, Sainty B, Arnaud P, Iglesias-Platas I, Simon C, Okae H, Arima T, Vassena R, Lartey J, Monk D. Non-canonical imprinting, manifesting as post-fertilization placenta-specific parent-of-origin dependent methylation, is not conserved in humans. Hum Mol Genet 2025; 34:626-638. [PMID: 39825493 PMCID: PMC11924184 DOI: 10.1093/hmg/ddaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated. Non-canonical imprinting, reliant on differential allelic H3K27me3 enrichment, has been reported in mouse and rat pre-implantation embryos, often overlapping long terminal repeat (LTR)-derived promoters. These non-canonical imprints lose parental allele-specific H3K27me3 specificity, subsequently gaining DNA methylation on the same allele in extra-embryonic tissues resulting in placenta-specific, somatically acquired maternal DMRs. To determine if similar non-canonical imprinting is present in the human placenta, we interrogated allelic DNA methylation for a selected number of loci, including (i) the human orthologues of non-canonical imprinted regions in mouse and rat, (ii) promoters of human LTR-derived transcripts, and (iii) CpG islands with intermediate placenta-specific methylation that are unmethylated in gametes and pre-implantation embryos. We failed to identify any non-canonical imprints in the human placenta whole villi samples. Furthermore, the assayed genes were shown to be biallelically expressed in human pre-implantation embryos, indicating they are not imprinted at earlier time points. Together, our work reiterates the continued evolution of placenta-specific imprinting in mammals, which we suggest is linked to epigenetic differences during the maternal-to-embryo transition and species-specific integration of retrotransposable elements.
Collapse
Affiliation(s)
- Dagne Daskeviciute
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Louise Chappell-Maor
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Becky Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, 49 bd François Mitterrand, Clermont-Ferrand 63001, France
| | - Isabel Iglesias-Platas
- Institut de Recerca, Sant Joan de Déu, C. de Sta. Rosa, 39, Barcelona 08950, Spain
- Neonatal Research, Norwich and Norwich University Hospital NHS Foundation Trust, Colney Ln, Norwich NR4 7UY, United Kingdom
| | - Carlos Simon
- Carlos Simon Foundation, Rda. de Narcís Monturiol, 11, Bloque C, 46980 Paterna, Valencia, Spain
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Av. Blasco Ibáñez 15, Valencia 46012, Spain
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Rita Vassena
- Fecundis, C/Baldoro i Reixac 10-12, Barcelona 08028, Spain
| | - Jon Lartey
- Department of Obstetrics and Gynaecology, Norwich and Norwich University Hospital NHS Foundation Trust, Colney Ln, Norwich NR4 7UY, United Kingdom
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
- Bellvitge Biomedical Research Institute, Avinguda de la Granvia de l’Hospitalet 199, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| |
Collapse
|
3
|
Demond H, Khan S, Castillo-Fernandez J, Hanna CW, Kelsey G. Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol Cell Biol 2025; 26:2. [PMID: 39754059 PMCID: PMC11697814 DOI: 10.1186/s12860-024-00527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes. RESULTS To study the transcriptome and DNA methylation dynamics during the NSN to SN transition, we used single-cell (sc)M&T-seq to generate scRNA-seq and sc-bisulphite-seq (scBS-seq) data from GV oocytes classified as NSN or SN by Hoechst staining of their nuclei. Transcriptome analysis showed a lower number of detected transcripts in SN compared with NSN oocytes as well as downregulation of 576 genes, which were enriched for processes related to mRNA processing. We used the transcriptome data to generate a classifier that can infer chromatin stage in scRNA-seq datasets. The classifier was successfully tested in multiple published datasets of mouse models with a known skew in NSN: SN ratios. Analysis of the scBS-seq data showed increased DNA methylation in SN compared to NSN oocytes, which was most pronounced in regions with intermediate levels of methylation. Overlap with chromatin immunoprecipitation and sequencing (ChIP-seq) data for the histone modifications H3K36me3, H3K4me3 and H3K27me3 showed that regions gaining methylation in SN oocytes are enriched for overlapping H3K36me3 and H3K27me3, which is an unusual combination, as these marks do not typically coincide. CONCLUSIONS We characterise the transcriptome and DNA methylation changes accompanying the NSN-SN transition in mouse oocytes. We develop a classifier that can be used to infer chromatin status in single-cell or bulk RNA-seq data, enabling identification of altered chromatin transition in genetic knock-outs, and a quality control to identify skewed NSN-SN proportions that could otherwise confound differential gene expression analysis. We identify late-methylating regions in SN oocytes that are associated with an unusual combination of chromatin modifications, which may be regions with high chromatin plasticity and transitioning between H3K27me3 and H3K36me3, or reflect heterogeneity on a single-cell level.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- BMRC, Biomedical Research Consortium Chile, Santiago, Chile
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Soumen Khan
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
4
|
Chatterjee K, Uyehara CM, Kasliwal K, Madhuranath S, Scourzic L, Polyzos A, Apostolou E, Stadtfeld M. Coordinated repression of totipotency-associated gene loci by histone methyltransferase EHMT2 through binding to LINE-1 regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629181. [PMID: 39763795 PMCID: PMC11702699 DOI: 10.1101/2024.12.18.629181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition. This allowed us to define categories of EHMT2 target genes characterized by distinct modes of EHMT2 chromatin engagement and repression. Most notably, EHMT2 directly represses large clusters of co-regulated gene loci that comprise a significant fraction of the 2CLC-specific transcriptome by initiating H3K9me2 spreading from distal LINE-1 elements. EHMT2 counteracts the recruitment of the activator DPPA2/4 to promoter-proximal endogenous retroviral elements (ERVs) at 2CLC genes. EHMT2 depletion elevates the expression of ZGA-associated transcripts in 2CLCs and synergizes with spliceosome inhibition and retinoic acid signaling in facilitating the mESC-to-2CLC transition. In contrast to ZGA-associated genes, repression of germ layer-associated transcripts by EHMT2 occurs outside of gene clusters in collaboration with ZFP462 and entails binding to non-repeat enhancers. Our observations show that EHMT2 attenuates the bidirectional differentiation potential of mouse pluripotent stem cells and define molecular modes for locus-specific transcriptional repression by this essential histone methyltransferase.
Collapse
Affiliation(s)
- K Chatterjee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - C M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - K Kasliwal
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - S Madhuranath
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - L Scourzic
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Wada S, Ideno H, Nakashima K, Komatsu K, Demura N, Tomonari H, Kimura H, Tachibana M, Nifuji A. The histone H3K9 methyltransferase G9a regulates tendon formation during development. Sci Rep 2024; 14:20771. [PMID: 39237663 PMCID: PMC11377446 DOI: 10.1038/s41598-024-71570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hisashi Ideno
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Noboru Demura
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan.
| |
Collapse
|
6
|
Tong H, Omar MAA, Wang Y, Li M, Li Z, Li Z, Ao Y, Wang Y, Jiang M, Li F. Essential roles of histone lysine methyltransferases EZH2 and EHMT1 in male embryo development of Phenacoccus solenopsis. Commun Biol 2024; 7:1021. [PMID: 39164404 PMCID: PMC11336100 DOI: 10.1038/s42003-024-06705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
Paternal genome elimination (PGE) is an intriguing but poorly understood reproductive strategy in which females are typically diploid, but males lose paternal genomes. Paternal genome heterochromatin (PGH) occurs in arthropods with germline PGE, such as the mealybug, coffee borer beetles, and booklice. Here, we present evidence that PGH initially occurs during early embryo development at around 15 h post-mating (hpm) in the cotton mealybug, Phenacoccus solenopsis Tinsley. Transcriptome analysis followed by qPCR validation indicated that six histone lysine methyltransferase (KMT) genes are predominantly expressed in adult females. We knocked down these five genes through dsRNA microinjection. We found that downregulation of two KMT genes, PsEZH2-X1 and PsEHMT1, resulted in a decrease of heterochromatin-related methylations, including H3K27me1, H3K27me3, and H3K9me3 in the ovaries, fewer PGH male embryos, and reduced male offspring. For further confirmation, we obtained two strains of transgenic tobacco highly expressing dsRNA targeting PsEZH2-X1 and PsEHMT1, respectively. Similarly, fewer PGH embryos and fewer male offspring were observed when feeding on these transgenic tobacco plants. Overall, we present evidence that PsEZH2-X1 and PsEHMT1 have essential roles in male embryo survival by regulating PGH formation in cotton mealybugs.
Collapse
Affiliation(s)
- Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yuan Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zicheng Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Ao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Rother F, Depping R, Popova E, Huegel S, Heiler A, Hartmann E, Bader M. Karyopherin α2 is a maternal effect gene required for early embryonic development and female fertility in mice. FASEB J 2024; 38:e23623. [PMID: 38656660 DOI: 10.1096/fj.202301572rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.
Collapse
Affiliation(s)
- Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | | | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Ariane Heiler
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
8
|
Toriyama K, Au Yeung WK, Inoue A, Kurimoto K, Yabuta Y, Saitou M, Nakamura T, Nakano T, Sasaki H. DPPA3 facilitates genome-wide DNA demethylation in mouse primordial germ cells. BMC Genomics 2024; 25:344. [PMID: 38580899 PMCID: PMC10996186 DOI: 10.1186/s12864-024-10192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.
Collapse
Affiliation(s)
- Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, Riken Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
- Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Animal Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
| | - Toru Nakano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Uehara R, Au Yeung WK, Toriyama K, Ohishi H, Kubo N, Toh H, Suetake I, Shirane K, Sasaki H. The DNMT3A ADD domain is required for efficient de novo DNA methylation and maternal imprinting in mouse oocytes. PLoS Genet 2023; 19:e1010855. [PMID: 37527244 PMCID: PMC10393158 DOI: 10.1371/journal.pgen.1010855] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Establishment of a proper DNA methylation landscape in mammalian oocytes is important for maternal imprinting and embryonic development. De novo DNA methylation in oocytes is mediated by the DNA methyltransferase DNMT3A, which has an ATRX-DNMT3-DNMT3L (ADD) domain that interacts with histone H3 tail unmethylated at lysine-4 (H3K4me0). The domain normally blocks the methyltransferase domain via intramolecular interaction and binding to histone H3K4me0 releases the autoinhibition. However, H3K4me0 is widespread in chromatin and the role of the ADD-histone interaction has not been studied in vivo. We herein show that amino-acid substitutions in the ADD domain of mouse DNMT3A cause dwarfism. Oocytes derived from homozygous females show mosaic loss of CG methylation and almost complete loss of non-CG methylation. Embryos derived from such oocytes die in mid-to-late gestation, with stochastic and often all-or-none-type CG-methylation loss at imprinting control regions and misexpression of the linked genes. The stochastic loss is a two-step process, with loss occurring in cleavage-stage embryos and regaining occurring after implantation. These results highlight an important role for the ADD domain in efficient, and likely processive, de novo CG methylation and pose a model for stochastic inheritance of epigenetic perturbations in germ cells to the next generation.
Collapse
Affiliation(s)
- Ryuji Uehara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Isao Suetake
- Department of Nutrition Science, Nakamura Gakuen University, Fukuoka, Japan
| | - Kenjiro Shirane
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Richard Albert J, Kobayashi T, Inoue A, Monteagudo-Sánchez A, Kumamoto S, Takashima T, Miura A, Oikawa M, Miura F, Takada S, Hirabayashi M, Korthauer K, Kurimoto K, Greenberg MVC, Lorincz M, Kobayashi H. Conservation and divergence of canonical and non-canonical imprinting in murids. Genome Biol 2023; 24:48. [PMID: 36918927 PMCID: PMC10012579 DOI: 10.1186/s13059-023-02869-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Genomic imprinting affects gene expression in a parent-of-origin manner and has a profound impact on complex traits including growth and behavior. While the rat is widely used to model human pathophysiology, few imprinted genes have been identified in this murid. To systematically identify imprinted genes and genomic imprints in the rat, we use low input methods for genome-wide analyses of gene expression and DNA methylation to profile embryonic and extraembryonic tissues at allele-specific resolution. RESULTS We identify 14 and 26 imprinted genes in these tissues, respectively, with 10 of these genes imprinted in both tissues. Comparative analyses with mouse reveal that orthologous imprinted gene expression and associated canonical DNA methylation imprints are conserved in the embryo proper of the Muridae family. However, only 3 paternally expressed imprinted genes are conserved in the extraembryonic tissue of murids, all of which are associated with non-canonical H3K27me3 imprints. The discovery of 8 novel non-canonical imprinted genes unique to the rat is consistent with more rapid evolution of extraembryonic imprinting. Meta-analysis of novel imprinted genes reveals multiple mechanisms by which species-specific imprinted expression may be established, including H3K27me3 deposition in the oocyte, the appearance of ZFP57 binding motifs, and the insertion of endogenous retroviral promoters. CONCLUSIONS In summary, we provide an expanded list of imprinted loci in the rat, reveal the extent of conservation of imprinted gene expression, and identify potential mechanisms responsible for the evolution of species-specific imprinting.
Collapse
Affiliation(s)
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Azusa Inoue
- YCI Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Asuka Miura
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Keegan Korthauer
- Department of Statistics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara, Japan
| | | | - Matthew Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
11
|
Hung FY, Feng YR, Hsin KT, Shih YH, Chang CH, Zhong W, Lai YC, Xu Y, Yang S, Sugimoto K, Cheng YS, Wu K. Arabidopsis histone H3 lysine 9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to repress KNAT1 and KNAT2. Commun Biol 2023; 6:219. [PMID: 36828846 PMCID: PMC9958104 DOI: 10.1038/s42003-023-04607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
The Arabidopsis H3K9 methyltransferases KRYPTONITE/SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG 4 (KYP/SUVH4), SUVH5 and SUVH6 are redundantly involved in silencing of transposable elements (TEs). Our recent study indicated that KYP/SUVH5/6 can directly interact with the histone deacetylase HDA6 to synergistically regulate TE expression. However, the function of KYP/SUVH5/6 in plant development is still unclear. The transcriptional factors ASYMMETRIC LEAVES1 (AS1) and AS2 form a transcription complex, which is involved in leaf development by repressing the homeobox genes KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1 (KNAT1) and KNAT2. In this study, we found that KYP and SUVH5/6 directly interact with AS1-AS2 to repress KNAT1 and KNAT2 by altering histone H3 acetylation and H3K9 dimethylation levels. In addition, KYP can directly target the promoters of KNAT1 and KNAT2, and the binding of KYP depends on AS1. Furthermore, the genome-wide occupancy profile of KYP indicated that KYP is enriched in the promoter regions of coding genes, and the binding of KYP is positively correlated with that of AS1 and HDA6. Together, these results indicate that Arabidopsis H3K9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to alter histone H3 acetylation and H3K9 dimethylation from KNAT1 and KNAT2 loci.
Collapse
Affiliation(s)
- Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
- RIKEN, Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yun-Ru Feng
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuan-Ting Hsin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yuan-Hsin Shih
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chung-Han Chang
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wenjian Zhong
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - You-Cheng Lai
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yingchao Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Keiko Sugimoto
- RIKEN, Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development. Nat Genet 2023; 55:130-143. [PMID: 36539615 DOI: 10.1038/s41588-022-01258-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
In mammals, DNA 5-hydroxymethylcytosine (5hmC) is involved in methylation reprogramming during early embryonic development. Yet, to what extent 5hmC participates in genome-wide methylation reprogramming remains largely unknown. Here, we characterize the 5hmC landscapes in mouse early embryos and germ cells with parental allele specificity. DNA hydroxymethylation was most strongly correlated with DNA demethylation as compared with de novo or maintenance methylation in zygotes, while 5hmC was targeted to particular de novo methylated sites in postimplantation epiblasts. Surprisingly, DNA replication was also required for 5hmC generation, especially in the female pronucleus. More strikingly, aberrant nuclear localization of Dnmt1/Uhrf1 in mouse zygotes due to maternal deficiency of Nlrp14 led to defects in DNA-replication-coupled passive demethylation and impaired 5hmC deposition, revealing the divergency between genome-wide 5-methylcytosine (5mC) maintenance and Tet-mediated oxidation. In summary, our work provides insights and a valuable resource for the study of epigenetic regulation in early embryo development.
Collapse
|
13
|
Ikeda S. Current status of genome-wide epigenetic profiling of mammalian preimplantation embryos. Reprod Med Biol 2023; 22:e12521. [PMID: 37351110 PMCID: PMC10283350 DOI: 10.1002/rmb2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Background Genome-wide information on epigenetic modifications in mammalian preimplantation embryos was an unexplored sanctuary of valuable research insights protected by the difficulty of its analysis. However, that is no longer the case, and many epigenome maps are now available for sightseeing there. Methods This review overviews the current status of genome-wide epigenetic profiling in terms of DNA methylome and histone modifications in mammalian preimplantation embryos. Main findings As the sensitivity of methods for analyzing epigenetic modifications increased, pioneering work began to explore the genome-wide epigenetic landscape in the mid-2010s, first for DNA methylation and then for histone modifications. Since then, a huge amount of data has accumulated, revealing typical epigenetic profiles in preimplantation development and, more recently, changes in response to environmental interventions. Conclusions These accumulating data may be used to improve the quality of preimplantation embryos, both in terms of their short-term developmental competence and their subsequent long-term health implications.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
14
|
Demond H, Hanna CW, Castillo-Fernandez J, Santos F, Papachristou EK, Segonds-Pichon A, Kishore K, Andrews S, D'Santos CS, Kelsey G. Multi-omics analyses demonstrate a critical role for EHMT1 methyltransferase in transcriptional repression during oogenesis. Genome Res 2023; 33:18-31. [PMID: 36690445 PMCID: PMC9977154 DOI: 10.1101/gr.277046.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
EHMT1 (also known as GLP) is a multifunctional protein, best known for its role as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with EHMT2 (also known as G9A). Here, we investigated the role of EHMT1 in the oocyte in comparison to EHMT2 using oocyte-specific conditional knockout mouse models (Ehmt2 cKO, Ehmt1 cKO, Ehmt1/2 cDKO), with ablation from the early phase of oocyte growth. Loss of EHMT1 in Ehmt1 cKO and Ehmt1/2 cDKO oocytes recapitulated meiotic defects observed in the Ehmt2 cKO; however, there was a significant impairment in oocyte maturation and developmental competence in Ehmt1 cKO and Ehmt1/2 cDKO oocytes beyond that observed in the Ehmt2 cKO. Consequently, loss of EHMT1 in oogenesis results, upon fertilization, in mid-gestation embryonic lethality. To identify H3K9 methylation and other meaningful biological changes in each mutant to explore the molecular functions of EHMT1 and EHMT2, we performed immunofluorescence imaging, multi-omics sequencing, and mass spectrometry (MS)-based proteome analyses in cKO oocytes. Although H3K9me1 was depleted only upon loss of EHMT1, H3K9me2 was decreased, and H3K9me2-enriched domains were eliminated equally upon loss of EHMT1 or EHMT2. Furthermore, there were more significant changes in the transcriptome, DNA methylome, and proteome in Ehmt1/2 cDKO than Ehmt2 cKO oocytes, with transcriptional derepression leading to increased protein abundance and local changes in genic DNA methylation in Ehmt1/2 cDKO oocytes. Together, our findings suggest that EHMT1 contributes to local transcriptional repression in the oocyte, partially independent of EHMT2, and is critical for oogenesis and oocyte developmental competence.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4810296, Temuco, Chile
| | - Courtney W. Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom;,Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | | | - Fátima Santos
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Evangelia K. Papachristou
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Anne Segonds-Pichon
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Clive S. D'Santos
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom;,Wellcome-MRC Institute of Metabolic Science–Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
15
|
Chen B, Deng M, Pan MH, Sun SC, Liu H. Regulation of paternal 5mC oxidation and H3K9me2 asymmetry by ERK1/2 in mouse zygotes. Cell Biosci 2022; 12:25. [PMID: 35255956 PMCID: PMC8900417 DOI: 10.1186/s13578-022-00758-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Extracellular-signal-regulated kinase (ERK) direct cell fate determination during the early development. The intricate interaction between the deposition of H3K9me2, de novo 5mC, and its oxides affects the remodeling of zygotic epigenetic modification. However, the role of fertilization-dependent ERK in the first cell cycle during zygotic reprogramming remains elusive. Methods In the present study, we used the small molecule inhibitor to construct the rapid ERK1/2 inactivation system in early zygotes in mice. The pronuclear H3K9me2 deposition assay and the pre-implantation embryonic development ability were assessed to investigate the effect of fertilization-dependent ERK1/2 on zygotic reprogramming and developmental potential. Immunofluorescence and RT-PCR were performed to measure the 5mC or its oxides and H3K9me2 deposition, and the expression of related genes. Results We reported that zygotic ERK1/2 inhibition impaired the development competence of pre-implantation embryos. Following the ERK1/2 inhibition, H3K9me2, as well as 5mC and its oxides, were all accumulated abnormally, and the excess accumulation of paternal H3K9me2 and 5mC resulted in reduced asymmetry between parental pronuclei. Furthermore, ERK1/2 inhibition triggered paternal pronuclear localization of the H3K9 methyltransferase G9a and Tet methylcytosine dioxygenase 3 (Tet3). Moreover, the excess localization of G9a antagonized the tight binding of Tet3 to paternal chromatin when ERK1/2 was inhibited. Conclusions In conclusion, we propose that zygotic H3K9me2 and 5mC are regulated by fertilization-dependent ERK1/2, which contributes to the development competence of pre-implantation embryos in mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00758-x.
Collapse
|
16
|
Maruyama O, Li Y, Narita H, Toh H, Au Yeung WK, Sasaki H. CMIC: predicting DNA methylation inheritance of CpG islands with embedding vectors of variable-length k-mers. BMC Bioinformatics 2022; 23:371. [PMID: 36096737 PMCID: PMC9469632 DOI: 10.1186/s12859-022-04916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Epigenetic modifications established in mammalian gametes are largely reprogrammed during early development, however, are partly inherited by the embryo to support its development. In this study, we examine CpG island (CGI) sequences to predict whether a mouse blastocyst CGI inherits oocyte-derived DNA methylation from the maternal genome. Recurrent neural networks (RNNs), including that based on gated recurrent units (GRUs), have recently been employed for variable-length inputs in classification and regression analyses. One advantage of this strategy is the ability of RNNs to automatically learn latent features embedded in inputs by learning their model parameters. However, the available CGI dataset applied for the prediction of oocyte-derived DNA methylation inheritance are not large enough to train the neural networks. Results We propose a GRU-based model called CMIC (CGI Methylation Inheritance Classifier) to augment CGI sequence by converting it into variable-length k-mers, where the length k is randomly selected from the range \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{\min }$$\end{document}kmin to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{\max }$$\end{document}kmax, N times, which were then used as neural network input. N was set to 1000 in the default setting. In addition, we proposed a new embedding vector generator for k-mers called splitDNA2vec. The randomness of this procedure was higher than the previous work, dna2vec. Conclusions We found that CMIC can predict the inheritance of oocyte-derived DNA methylation at CGIs in the maternal genome of blastocysts with a high F-measure (0.93). We also show that the F-measure can be improved by increasing the parameter N, that is, the number of sequences of variable-length k-mers derived from a single CGI sequence. This implies the effectiveness of augmenting input data by converting a DNA sequence to N sequences of variable-length k-mers. This approach can be applied to different DNA sequence classification and regression analyses, particularly those involving a small amount of data. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04916-3.
Collapse
Affiliation(s)
| | - Yinuo Li
- Graduate School of Design, Kyushu University, Fukuoka, Japan
| | | | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
17
|
Wang J, Zhou C, Gao S, Song X, Yang X, Fan J, Ren S, Ma L, Zhao J, Cui M, Song K, Wang M, Li C, Zheng Y, Luo F, Miao K, Bai X, Hutchins AP, Li L, Chang G, Zhao XY. Single-cell multiomics sequencing reveals the reprogramming defects in embryos generated by round spermatid injection. SCIENCE ADVANCES 2022; 8:eabm3976. [PMID: 35947654 PMCID: PMC9365279 DOI: 10.1126/sciadv.abm3976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Round spermatid injection (ROSI) technique holds great promise for clinical treatment of a proportion of infertile men. However, the compromised developmental potential of ROSI embryos largely limits the clinical application, and the mechanisms are not fully understood. Here, we describe the transcriptome, chromatin accessibility, and DNA methylation landscapes of mouse ROSI embryos derived from early-stage round spermatids using a single-cell multiomics sequencing approach. By interrogating these data, we identify the reprogramming defects in ROSI embryos at the pronuclear stages, which are mainly associated with the misexpression of a cohort of minor zygotic genome activation genes. We screen a small compound, A366, that can significantly increase the developmental potential of ROSI embryos, in which A366 can partially overcome the reprogramming defects by amending the epigenetic and transcriptomic states. Collectively, our study uncovers the reprogramming defects in ROSI embryos for understanding the mechanisms underlying compromised developmental potential and offers an avenue for ROSI technique optimization.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Cai Zhou
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiaqi Fan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Ke Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Chaohui Li
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Kai Miao
- Center for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518060, P. R. China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong 510700, P. R. China
| |
Collapse
|
18
|
Yano S, Ishiuchi T, Abe S, Namekawa SH, Huang G, Ogawa Y, Sasaki H. Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes. Nat Commun 2022; 13:4440. [PMID: 35922445 PMCID: PMC9349174 DOI: 10.1038/s41467-022-32141-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Establishment of the DNA methylation landscape of mammalian oocytes, mediated by the DNMT3A-DNMT3L complex, is crucial for reproduction and development. In mouse oocytes, high levels of DNA methylation occur exclusively in the transcriptionally active regions, with moderate to low levels of methylation in other regions. Histone H3K36me3 mediates the high levels of methylation in the transcribed regions; however, it is unknown which histone mark guides the methylation in the other regions. Here, we show that, in mouse oocytes, H3K36me2 is highly enriched in the X chromosome and is broadly distributed across all autosomes. Upon H3K36me2 depletion, DNA methylation in moderately methylated regions is selectively affected, and a methylation pattern unique to the X chromosome is switched to an autosome-like pattern. Furthermore, we find that simultaneous depletion of H3K36me2 and H3K36me3 results in global hypomethylation, comparable to that of DNMT3A depletion. Therefore, the two histone marks jointly provide the chromatin platform essential for guiding DNMT3A-dependent DNA methylation in mouse oocytes.
Collapse
Affiliation(s)
- Seiichi Yano
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan. .,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan.
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Satoshi H Namekawa
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Gang Huang
- Department of Cell Systems & Anatomy and Department of Pathology & Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
19
|
Early Expression of Tet1 and Tet2 in Mouse Zygotes Altered DNA Methylation Status and Affected Embryonic Development. Int J Mol Sci 2022; 23:ijms23158495. [PMID: 35955629 PMCID: PMC9369288 DOI: 10.3390/ijms23158495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Ten-eleven translocation (Tet) dioxygenases can induce DNA demethylation by catalyzing 5-methylcytosine(5mC) to 5-hydroxymethylcytosine(5hmC), and play important roles during mammalian development. In mouse, Tet1 and Tet2 are not expressed in pronucleus-staged embryos and are not involved in the genomic demethylation of early zygotes. Here, we investigated the influence of Tet1 and Tet2 on methylation of parental genomes by ectopically expressing Tet1 and Tet2 in zygotes. Immunofluorescence staining showed a marked 5hmC increase in the maternal pronucleus after injection of Tet1 or Tet2 mRNA into zygotes. Whole-genome bisulfite sequencing further revealed that Tet2 greatly enhanced the global demethylation of both parental genomes, while Tet1 only promoted the paternal demethylation. Tet1 and Tet2 overexpression altered the DNA methylation across genomes, including various genic elements and germline-specific differently methylated regions. Tet2 exhibited overall stronger demethylation activity than Tet1. Either Tet1 or Tet2 overexpression impaired preimplantation embryonic development. These results demonstrated that early expression of Tet1 and Tet2 could substantially alter the zygotic methylation landscape and damage embryonic development. These findings provide new insights into understanding the function of Tet dioxygenases and the mechanism of DNA methylation in relation to embryogenesis.
Collapse
|
20
|
Meng TG, Lei WL, Lu X, Liu XY, Ma XS, Nie XQ, Zhao ZH, Li QN, Huang L, Hou Y, Ouyang YC, Li L, Tang TS, Schatten H, Xie W, Gao SR, Ou XH, Wang ZB, Sun QY. Maternal EHMT2 is essential for homologous chromosome segregation by regulating Cyclin B3 transcription in oocyte meiosis. Int J Biol Sci 2022; 18:4513-4531. [PMID: 35864958 PMCID: PMC9295060 DOI: 10.7150/ijbs.75298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
During oocyte growth, various epigenetic modifications are gradually established, accompanied by accumulation of large amounts of mRNAs and proteins. However, little is known about the relationship between epigenetic modifications and meiotic progression. Here, by using Gdf9-Cre to achieve oocyte-specific ablation of Ehmt2 (Euchromatic-Histone-Lysine-Methyltransferase 2) from the primordial follicle stage, we found that female mutant mice were infertile. Oocyte-specific knockout of Ehmt2 caused failure of homologous chromosome separation independent of persistently activated SAC during the first meiosis. Further studies revealed that lacking maternal Ehmt2 affected the transcriptional level of Ccnb3, while microinjection of exogenous Ccnb3 mRNA could partly rescue the failure of homologous chromosome segregation. Of particular importance was that EHMT2 regulated ccnb3 transcriptions by regulating CTCF binding near ccnb3 gene body in genome in oocytes. In addition, the mRNA level of Ccnb3 significantly decreased in the follicles microinjected with Ctcf siRNA. Therefore, our findings highlight the novel function of maternal EHMT2 on the metaphase I-to-anaphase I transition in mouse oocytes: regulating the transcription of Ccnb3.
Collapse
Affiliation(s)
- Tie-Gang Meng
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Yu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xue-Shan Ma
- The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Xiao-Qing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Nan Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Center for Clinical Medicine Research, The Affiliated Hospital of Southwest Medical University, Luzhou 6460000, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Wei Xie
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shao-Rong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Rong Y, Zhu YZ, Yu JL, Wu YW, Ji SY, Zhou Y, Jiang Y, Jin J, Fan HY, Shen L, Sha QQ. USP16-mediated histone H2A lysine-119 deubiquitination during oocyte maturation is a prerequisite for zygotic genome activation. Nucleic Acids Res 2022; 50:5599-5616. [PMID: 35640597 PMCID: PMC9178006 DOI: 10.1093/nar/gkac468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Maternal-to-zygotic transition (MZT) is the first and key step in the control of animal development and intimately related to changes in chromatin structure and histone modifications. H2AK119ub1, an important epigenetic modification in regulating chromatin configuration and function, is primarily catalyzed by PRC1 and contributes to resistance to transcriptional reprogramming in mouse embryos. In this study, the genome-wide dynamic distribution of H2AK119ub1 during MZT in mice was investigated using chromosome immunoprecipitation and sequencing. The results indicated that H2AK119ub1 accumulated in fully grown oocytes and was enriched at the TSSs of maternal genes, but was promptly declined after meiotic resumption at genome-wide including the TSSs of early zygotic genes, by a previously unidentified mechanism. Genetic evidences indicated that ubiquitin-specific peptidase 16 (USP16) is the major deubiquitinase for H2AK119ub1 in mouse oocytes. Conditional knockout of Usp16 in oocytes did not impair their survival, growth, or meiotic maturation. However, oocytes lacking USP16 have defects when undergoing zygotic genome activation or gaining developmental competence after fertilization, potentially associated with high levels of maternal H2AK119ub1 deposition on the zygotic genomes. Taken together, H2AK119ub1 level is declined during oocyte maturation by an USP16-dependent mechanism, which ensures zygotic genome reprogramming and transcriptional activation of essential early zygotic genes.
Collapse
Affiliation(s)
- Yan Rong
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jia-li Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yong Zhou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Jin
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| |
Collapse
|
22
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
23
|
Smith R, Susor A, Ming H, Tait J, Conti M, Jiang Z, Lin CJ. The H3.3 chaperone Hira complex orchestrates oocyte developmental competence. Development 2022; 149:dev200044. [PMID: 35112132 PMCID: PMC8959146 DOI: 10.1242/dev.200044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/16/2022] [Indexed: 11/20/2022]
Abstract
Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.
Collapse
Affiliation(s)
- Rowena Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Janet Tait
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chih-Jen Lin
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
24
|
Au Yeung WK, Sasaki H. Low Input Genome-Wide DNA Methylation Analysis with Minimal Library Amplification. Methods Mol Biol 2022; 2509:233-250. [PMID: 35796967 DOI: 10.1007/978-1-0716-2380-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whole genome bisulfite sequencing (WGBS) is a high-throughput DNA sequencing-based technique that is used to determine genome-wide DNA methylation patterns at base resolution. Library construction by post-bisulfite adaptor tagging (PBAT ) extends the application of WGBS to several hundred cells and minimizes the required number of library amplification cycles. We herein describe a PBAT protocol to prepare WGBS libraries from 200 cells and introduce the outline of a downstream bioinformatic analysis. The prepared library can typically generate 800 million sequencing reads, which is sufficient to cover the human and mouse genomes approximately 15 times, using the Illumina NovaSeq 6000 sequencing system.
Collapse
Affiliation(s)
- Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Borsuk E, Michalkiewicz J, Kubiak JZ, Kloc M. Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development. Results Probl Cell Differ 2022; 70:397-415. [PMID: 36348116 DOI: 10.1007/978-3-031-06573-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.
Collapse
Affiliation(s)
- Ewa Borsuk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Julia Michalkiewicz
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jacek Z Kubiak
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, UMR 6290, CNRS, Faculty of Medicine, University of Rennes, Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
26
|
Zeng TB, Pierce N, Liao J, Singh P, Lau K, Zhou W, Szabó PE. EHMT2 suppresses the variation of transcriptional switches in the mouse embryo. PLoS Genet 2021; 17:e1009908. [PMID: 34793451 PMCID: PMC8601470 DOI: 10.1371/journal.pgen.1009908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
EHMT2 is the main euchromatic H3K9 methyltransferase. Embryos with zygotic, or maternal mutation in the Ehmt2 gene exhibit variable developmental delay. To understand how EHMT2 prevents variable developmental delay we performed RNA sequencing of mutant and somite stage-matched normal embryos at 8.5–9.5 days of gestation. Using four-way comparisons between delayed and normal embryos we clarified what it takes to be normal and what it takes to develop. We identified differentially expressed genes, for example Hox genes that simply reflected the difference in developmental progression of wild type and the delayed mutant uterus-mate embryos. By comparing wild type and zygotic mutant embryos along the same developmental window we detected a role of EHMT2 in suppressing variation in the transcriptional switches. We identified transcription changes where precise switching during development occurred only in the normal but not in the mutant embryo. At the 6-somite stage, gastrulation-specific genes were not precisely switched off in the Ehmt2−/− zygotic mutant embryos, while genes involved in organ growth, connective tissue development, striated muscle development, muscle differentiation, and cartilage development were not precisely switched on. The Ehmt2mat−/+ maternal mutant embryos displayed high transcriptional variation consistent with their variable survival. Variable derepression of transcripts occurred dominantly in the maternally inherited allele. Transcription was normal in the parental haploinsufficient wild type embryos despite their delay, consistent with their good prospects. Global profiling of transposable elements revealed EHMT2 targeted DNA methylation and suppression at LTR repeats, mostly ERVKs. In Ehmt2−/− embryos, transcription over very long distances initiated from such misregulated ‘driver’ ERVK repeats, encompassing a multitude of misexpressed ‘passenger’ repeats. In summary, EHMT2 reduced transcriptional variation of developmental switch genes and developmentally switching repeat elements at the six-somite stage embryos. These findings establish EHMT2 as a suppressor of transcriptional and developmental variation at the transition between gastrulation and organ specification. Developmental variation is the property of normal development, and its regulation is poorly understood. Variable developmental delay is found in embryos that carry mutations of epigenetic modifiers, suggesting a role of chromatin in controlling developmental delay and its variable nature. We analyzed a genetic series of mutations and found that EHMT2 suppresses variation of developmental delay and also suppresses the variation of transcriptional switches at the transition between gastrulation and organ specification.
Collapse
Affiliation(s)
- Tie-Bo Zeng
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas Pierce
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Ji Liao
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Purnima Singh
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, California, United States of America
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Wanding Zhou
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bilmez Y, Talibova G, Ozturk S. Dynamic changes of histone methylation in mammalian oocytes and early embryos. Histochem Cell Biol 2021; 157:7-25. [PMID: 34599660 DOI: 10.1007/s00418-021-02036-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Histone methylation is a key epigenetic mechanism and plays a major role in regulating gene expression during oocyte maturation and early embryogenesis. This mechanism can be briefly defined as the process by which methyl groups are transferred to lysine and arginine residues of histone tails extending from nucleosomes. While methylation of the lysine residues is catalyzed by histone lysine methyltransferases (KMTs), protein arginine methyltransferases (PRMTs) add methyl groups to the arginine residues. When necessary, the added methyl groups can be reversibly removed by histone demethylases (HDMs) by a process called histone demethylation. The spatiotemporal regulation of methylation and demethylation in histones contributes to modulating the expression of genes required for proper oocyte maturation and early embryonic development. In this review, we comprehensively evaluate and discuss the functional importance of dynamic histone methylation in mammalian oocytes and early embryos, regulated by KMTs, PRMTs, and HDMs.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
28
|
Zeng TB, Pierce N, Liao J, Szabó PE. H3K9 methyltransferase EHMT2/G9a controls ERVK-driven noncanonical imprinted genes. Epigenomics 2021; 13:1299-1314. [PMID: 34519223 DOI: 10.2217/epi-2021-0168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Paternal allele-specific expression of noncanonical imprinted genes in the extraembryonic lineages depends on an H3K27me3-based imprint in the oocyte, which is not a lasting mark. We hypothesized that EHMT2, the main euchromatic H3K9 dimethyltransferase, also has a role in controlling noncanonical imprinting. Methods: We carried out allele-specific total RNA-seq analysis in the ectoplacental cone of somite-matched 8.5 days post coitum embryos using reciprocal mouse crosses. Results: We found that the maternal allele of noncanonical imprinted genes was derepressed from its ERVK promoter in the Ehmt2-/- ectoplacental cone. In Ehmt2-/- embryos, loss of DNA methylation accompanied biallelic derepression of the ERVK promoters. Canonical imprinting and imprinted X chromosome inactivation were generally undisturbed. Conclusion: EHMT2 is essential for repressing the maternal allele in noncanonical imprinting.
Collapse
Affiliation(s)
- Tie-Bo Zeng
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nicholas Pierce
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ji Liao
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
29
|
Cao Y, Tang L, Du K, Paraiso K, Sun Q, Liu Z, Ye X, Fang Y, Yuan F, Chen H, Chen Y, Wang X, Yu C, Blitz IL, Wang PH, Huang L, Cheng H, Lu X, Cho KW, Seldin M, Fang Z, Yang Q. Anterograde regulation of mitochondrial genes and FGF21 signaling by hepatic LSD1. JCI Insight 2021; 6:e147692. [PMID: 34314389 PMCID: PMC8492328 DOI: 10.1172/jci.insight.147692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial biogenesis and function are controlled by anterograde regulatory pathways involving more than 1000 nuclear-encoded proteins. Transcriptional networks controlling the nuclear-encoded mitochondrial genes remain to be fully elucidated. Here, we show that histone demethylase LSD1 KO from adult mouse liver (LSD1-LKO) reduces the expression of one-third of all nuclear-encoded mitochondrial genes and decreases mitochondrial biogenesis and function. LSD1-modulated histone methylation epigenetically regulates nuclear-encoded mitochondrial genes. Furthermore, LSD1 regulates gene expression and protein methylation of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), which controls the final step of NAD+ synthesis and limits NAD+ availability in the nucleus. Lsd1 KO reduces NAD+-dependent SIRT1 and SIRT7 deacetylase activity, leading to hyperacetylation and hypofunctioning of GABPβ and PGC-1α, the major transcriptional factor/cofactor for nuclear-encoded mitochondrial genes. Despite the reduced mitochondrial function in the liver, LSD1-LKO mice are protected from diet-induced hepatic steatosis and glucose intolerance, partially due to induction of hepatokine FGF21. Thus, LSD1 orchestrates a core regulatory network involving epigenetic modifications and NAD+ synthesis to control mitochondrial function and hepatokine production.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Lingyi Tang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kang Du
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Kitt Paraiso
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Qiushi Sun
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.,Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Xiaolong Ye
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Yuan Fang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Fang Yuan
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Hank Chen
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Yumay Chen
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Xiaorong Wang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Clinton Yu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Ira L. Blitz
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Ping H. Wang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Lan Huang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Haibo Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Ken W.Y. Cho
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Marcus Seldin
- Department of Biological Chemistry, UCI, Irvine, California, USA
| | - Zhuyuan Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| |
Collapse
|
30
|
Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nat Cell Biol 2021; 23:1002-1012. [PMID: 34489571 DOI: 10.1038/s41556-021-00745-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Many animals have a conserved adaptive genome defence system known as the Piwi-interacting RNA (piRNA) pathway, which is essential for germ cell development and function. Disruption of individual mouse Piwi genes results in male but not female sterility, leading to the assumption that PIWI genes play little or no role in mammalian oocytes. Here, we report the generation of PIWI-defective golden hamsters, which have defects in the production of functional oocytes. The mechanisms involved vary among the hamster PIWI genes, whereby the lack of PIWIL1 has a major impact on gene expression, including hamster-specific young transposon de-silencing, whereas PIWIL3 deficiency has little impact on gene expression in oocytes, although DNA methylation was reduced to some extent in PIWIL3-deficient oocytes. Our findings serve as the foundation for developing useful models to study the piRNA pathway in mammalian oocytes, including humans.
Collapse
|
31
|
Zhao ZH, Schatten H, Sun QY. High-throughput sequencing reveals landscapes of female germ cell development. Mol Hum Reprod 2021; 26:738-747. [PMID: 32866227 DOI: 10.1093/molehr/gaaa059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
Female germ cell development is a highly complex process that includes meiosis initiation, oocyte growth recruitment, oocyte meiosis retardation and resumption and final meiotic maturation. A series of coordinated molecular signaling factors ensure successful oogenesis. The recent rapid development of high-throughput sequencing technologies allows for the dynamic omics in female germ cells, which is essential for further understanding the regulatory mechanisms of molecular events comprehensively. In this review, we summarize the current literature of multi-omics sequenced by epigenome-, transcriptome- and proteome-associated technologies, which provide valuable information for understanding the regulation of key events during female germ cell development.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
32
|
Raas MWD, Zijlmans DW, Vermeulen M, Marks H. There is another: H3K27me3-mediated genomic imprinting. Trends Genet 2021; 38:82-96. [PMID: 34304914 DOI: 10.1016/j.tig.2021.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022]
Abstract
DNA methylation has long been considered the primary epigenetic mediator of genomic imprinting in mammals. Recent epigenetic profiling during early mouse development revealed the presence of domains of trimethylation of lysine 27 on histone H3 (H3K27me3) and chromatin compaction specifically at the maternally derived allele, independent of DNA methylation. Within these domains, genes are exclusively expressed from the paternally derived allele. This novel mechanism of noncanonical imprinting plays a key role in the development of mouse extraembryonic tissues and in the regulation of imprinted X-chromosome inactivation, highlighting the importance of parentally inherited epigenetic histone modifications. Here, we discuss the mechanisms underlying H3K27me3-mediated noncanonical imprinting in perspective of the dynamic chromatin landscape during early mouse development and explore evolutionary origins of noncanonical imprinting.
Collapse
Affiliation(s)
- Maximilian W D Raas
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands
| | - Dick W Zijlmans
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
33
|
Szanto A, Aguilar R, Kesner B, Blum R, Wang D, Cifuentes-Rojas C, Del Rosario BC, Kis-Toth K, Lee JT. A disproportionate impact of G9a methyltransferase deficiency on the X chromosome. Genes Dev 2021; 35:1035-1054. [PMID: 34168040 PMCID: PMC8247598 DOI: 10.1101/gad.337592.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2021] [Indexed: 01/05/2023]
Abstract
In this study from Szanto et al., the authors investigated the role of G9a, a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2) that plays key roles in transcriptional silencing of developmentally regulated genes, in X-chromosome inactivation (XCI). They found a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome, and show RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a–RNA interaction is essential for XCI. G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis. Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI.
Collapse
Affiliation(s)
- Attila Szanto
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine Cifuentes-Rojas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian C Del Rosario
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katalin Kis-Toth
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Au Yeung WK, Maruyama O, Sasaki H. A convolutional neural network-based regression model to infer the epigenetic crosstalk responsible for CG methylation patterns. BMC Bioinformatics 2021; 22:341. [PMID: 34162326 PMCID: PMC8220828 DOI: 10.1186/s12859-021-04272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Background Epigenetic modifications, including CG methylation (a major form of DNA methylation) and histone modifications, interact with each other to shape their genomic distribution patterns. However, the entire picture of the epigenetic crosstalk regulating the CG methylation pattern is unknown especially in cells that are available only in a limited number, such as mammalian oocytes. Most machine learning approaches developed so far aim at finding DNA sequences responsible for the CG methylation patterns and were not tailored for studying the epigenetic crosstalk.
Results We built a machine learning model named epiNet to predict CG methylation patterns based on other epigenetic features, such as histone modifications, but not DNA sequence. Using epiNet, we identified biologically relevant epigenetic crosstalk between histone H3K36me3, H3K4me3, and CG methylation in mouse oocytes. This model also predicted the altered CG methylation pattern of mutant oocytes having perturbed histone modification, was applicable to cross-species prediction of the CG methylation pattern of human oocytes, and identified the epigenetic crosstalk potentially important in other cell types. Conclusions Our findings provide insight into the epigenetic crosstalk regulating the CG methylation pattern in mammalian oocytes and other cells. The use of epiNet should help to design or complement biological experiments in epigenetics studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04272-8.
Collapse
Affiliation(s)
- Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Osamu Maruyama
- Faculty of Design, Kyushu University, Fukuoka, 815-0032, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
Kibe K, Shirane K, Ohishi H, Uemura S, Toh H, Sasaki H. The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes. PLoS Genet 2021; 17:e1009570. [PMID: 34048432 PMCID: PMC8162659 DOI: 10.1371/journal.pgen.1009570] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
DNA methylation at CG sites is important for gene regulation and embryonic development. In mouse oocytes, de novo CG methylation requires preceding transcription-coupled histone mark H3K36me3 and is mediated by a DNA methyltransferase DNMT3A. DNMT3A has a PWWP domain, which recognizes H3K36me2/3, and heterozygous mutations in this domain, including D329A substitution, cause aberrant CG hypermethylation of regions marked by H3K27me3 in somatic cells, leading to a dwarfism phenotype. We herein demonstrate that D329A homozygous mice show greater CG hypermethylation and severer dwarfism. In oocytes, D329A substitution did not affect CG methylation of H3K36me2/3-marked regions, including maternally methylated imprinting control regions; rather, it caused aberrant hypermethylation in regions lacking H3K36me2/3, including H3K27me3-marked regions. Thus, the role of the PWWP domain in CG methylation seems similar in somatic cells and oocytes; however, there were cell-type-specific differences in affected regions. The major satellite repeat was also hypermethylated in mutant oocytes. Contrary to the CA hypomethylation in somatic cells, the mutation caused hypermethylation at CH sites, including CA sites. Surprisingly, oocytes expressing only the mutated protein could support embryonic and postnatal development. Our study reveals that the DNMT3A PWWP domain is important for suppressing aberrant CG hypermethylation in both somatic cells and oocytes but that D329A mutation has little impact on the developmental potential of oocytes.
Collapse
Affiliation(s)
- Kanako Kibe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenjiro Shirane
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
36
|
Wilson C, Giono LE, Rozés-Salvador V, Fiszbein A, Kornblihtt AR, Cáceres A. The Histone Methyltransferase G9a Controls Axon Growth by Targeting the RhoA Signaling Pathway. Cell Rep 2021; 31:107639. [PMID: 32402271 DOI: 10.1016/j.celrep.2020.107639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/18/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
The generation of axonal and dendritic domains is critical for brain circuitry assembly and physiology. Negative players, such as the RhoA-Rho coiled-coil-associated protein kinase (ROCK) signaling pathway, restrain axon development and polarization. Surprisingly, the genetic control of neuronal polarity has remained largely unexplored. Here, we report that, in primary cultured neurons, expression of the histone methyltransferase G9a and nuclear translocation of its major splicing isoform (G9a/E10+) peak at the time of axon formation. RNAi suppression of G9a/E10+ or pharmacological blockade of G9a constrains neuronal migration, axon initiation, and the establishment of neuronal polarity in situ and in vitro. Inhibition of G9a function upregulates RhoA-ROCK activity by increasing the expression of Lfc, a guanine nucleotide exchange factor (GEF) for RhoA. Together, these results identify G9a as a player in neuronal polarization.
Collapse
Affiliation(s)
- Carlos Wilson
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Friuli 2786, 5016 Córdoba, Argentina
| | - Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Ana Fiszbein
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alfredo Cáceres
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Friuli 2786, 5016 Córdoba, Argentina.
| |
Collapse
|
37
|
Zhang B, Kim MY, Elliot G, Zhou Y, Zhao G, Li D, Lowdon RF, Gormley M, Kapidzic M, Robinson JF, McMaster MT, Hong C, Mazor T, Hamilton E, Sears RL, Pehrsson EC, Marra MA, Jones SJM, Bilenky M, Hirst M, Wang T, Costello JF, Fisher SJ. Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. Dev Cell 2021; 56:1238-1252.e5. [PMID: 33891899 DOI: 10.1016/j.devcel.2021.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
The human placenta and its specialized cytotrophoblasts rapidly develop, have a compressed lifespan, govern pregnancy outcomes, and program the offspring's health. Understanding the molecular underpinnings of these behaviors informs development and disease. Profiling the extraembryonic epigenome and transcriptome during the 2nd and 3rd trimesters revealed H3K9 trimethylation overlapping deeply DNA hypomethylated domains with reduced gene expression and compartment-specific patterns that illuminated their functions. Cytotrophoblast DNA methylation increased, and several key histone modifications decreased across the genome as pregnancy advanced. Cytotrophoblasts from severe preeclampsia had substantially increased H3K27 acetylation globally and at genes that are normally downregulated at term but upregulated in this syndrome. In addition, some cases had an immature pattern of H3K27ac peaks, and others showed evidence of accelerated aging, suggesting subtype-specific alterations in severe preeclampsia. Thus, the cytotrophoblast epigenome dramatically reprograms during pregnancy, placental disease is associated with failures in this process, and H3K27 hyperacetylation is a feature of severe preeclampsia.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA; Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - M Yvonne Kim
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - GiNell Elliot
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Yan Zhou
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Guangfeng Zhao
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Daofeng Li
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Rebecca F Lowdon
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Matthew Gormley
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mirhan Kapidzic
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Joshua F Robinson
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Michael T McMaster
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94122, USA
| | - Chibo Hong
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Tali Mazor
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Emily Hamilton
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Renee L Sears
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Erica C Pehrsson
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Marco A Marra
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Steven J M Jones
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Misha Bilenky
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Martin Hirst
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Ting Wang
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA.
| | - Joseph F Costello
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA.
| | - Susan J Fisher
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94122, USA.
| |
Collapse
|
38
|
Stäubli A, Peters AHFM. Mechanisms of maternal intergenerational epigenetic inheritance. Curr Opin Genet Dev 2021; 67:151-162. [DOI: 10.1016/j.gde.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
|
39
|
H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat Genet 2021; 53:539-550. [PMID: 33821003 DOI: 10.1038/s41588-021-00820-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/17/2021] [Indexed: 02/01/2023]
Abstract
Parental epigenomes are established during gametogenesis. While they are largely reset after fertilization, broad domains of Polycomb repressive complex 2 (PRC2)-mediated formation of lysine 27-trimethylated histone H3 (H3K27me3) are inherited from oocytes in mice. How maternal H3K27me3 is established and inherited by embryos remains elusive. Here, we show that PRC1-mediated formation of lysine 119-monoubiquititinated histone H2A (H2AK119ub1) confers maternally heritable H3K27me3. Temporal profiling of H2AK119ub1 dynamics revealed that atypically broad H2AK119ub1 domains are established, along with H3K27me3, during oocyte growth. From the two-cell stage, H2AK119ub1 is progressively deposited at typical Polycomb targets and precedes H3K27me3. Reduction of H2AK119ub1 by depletion of Polycomb group ring finger 1 (PCGF1) and PCGF6-essential components of variant PRC1 (vPRC1)-leads to H3K27me3 loss at a subset of genes in oocytes. The gene-selective H3K27me3 deficiency is irreversibly inherited by embryos, causing loss of maternal H3K27me3-dependent imprinting, embryonic sublethality and placental enlargement at term. Collectively, our study unveils preceding dynamics of H2AK119ub1 over H3K27me3 at the maternal-to-zygotic transition, and identifies PCGF1/6-vPRC1 as an essential player in maternal epigenetic inheritance.
Collapse
|
40
|
Xia W, Xie W. Rebooting the Epigenomes during Mammalian Early Embryogenesis. Stem Cell Reports 2020; 15:1158-1175. [PMID: 33035464 PMCID: PMC7724468 DOI: 10.1016/j.stemcr.2020.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Upon fertilization, terminally differentiated gametes are transformed to a totipotent zygote, which gives rise to an embryo. How parental epigenetic memories are inherited and reprogrammed to accommodate parental-to-zygotic transition remains a fundamental question in developmental biology, epigenetics, and stem cell biology. With the rapid advancement of ultra-sensitive or single-cell epigenome analysis methods, unusual principles of epigenetic reprogramming begin to be unveiled. Emerging data reveal that in many species, the parental epigenome undergoes dramatic reprogramming followed by subsequent re-establishment of the embryo epigenome, leading to epigenetic "rebooting." Here, we discuss recent progress in understanding epigenetic reprogramming and their functions during mammalian early development. We also highlight the conserved and species-specific principles underlying diverse regulation of the epigenome in early embryos during evolution.
Collapse
Affiliation(s)
- Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
41
|
Lysine demethylase 7a regulates murine anterior-posterior development by modulating the transcription of Hox gene cluster. Commun Biol 2020; 3:725. [PMID: 33257809 PMCID: PMC7704666 DOI: 10.1038/s42003-020-01456-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Temporal and spatial colinear expression of the Hox genes determines the specification of positional identities during vertebrate development. Post-translational modifications of histones contribute to transcriptional regulation. Lysine demethylase 7A (Kdm7a) demethylates lysine 9 or 27 di-methylation of histone H3 (H3K9me2, H3K27me2) and participates in the transcriptional activation of developmental genes. However, the role of Kdm7a during mouse embryonic development remains to be elucidated. Herein, we show that Kdm7a−/− mouse exhibits an anterior homeotic transformation of the axial skeleton, including an increased number of presacral elements. Importantly, posterior Hox genes (caudally from Hox9) are specifically downregulated in the Kdm7a−/− embryo, which correlates with increased levels of H3K9me2, not H3K27me2. These observations suggest that Kdm7a controls the transcription of posterior Hox genes, likely via its demethylating activity, and thereby regulating the murine anterior-posterior development. Such epigenetic regulatory mechanisms may be harnessed for proper control of coordinate body patterning in vertebrates. Higashijima et al show that mice lacking the Kdm7a demethylase exhibits anterior homeotic transformation of the axial skeleton and downregulation of posterior Hox gene transcription and these changes are associated with increased H3K9me2 at posterior Hox loci. These findings provide insights into the epigenetic control of Hox-mediated patterning in embryogenesis.
Collapse
|
42
|
Abstract
A battery of chromatin modifying enzymes play essential roles in remodeling the epigenome in the zygote and cleavage stage embryos, when the maternal genome is the sole contributor. Here we identify an exemption. DOT1L methylates lysine 79 in the globular domain of histone H3 (H3K79). Dot1l is an essential gene, as homozygous null mutant mouse embryos exhibit multiple developmental abnormalities and die before 11.5 days of gestation. To test if maternally deposited DOT1L is required for embryo development, we carried out a conditional Dot1l knockout in growing oocytes using the Zona pellucida 3-Cre (Zp3-Cre) transgenic mice. We found that the resulting maternal mutant Dot1lmat−/+ offspring displayed normal development and fertility, suggesting that the expression of the paternally inherited copy of Dot1l in the embryo is sufficient to support development. In addition, Dot1l maternal deletion did not affect the parental allele-specific expression of imprinted genes, indicating that DOT1L is not needed for imprint establishment in the oocyte or imprint protection in the zygote. In summary, uniquely and as opposed to other histone methyltransferases and histone marks, maternal DOT1L deposition and H3K79 methylation in the zygote and in the preimplantation stage embryo is dispensable for mouse development.
Collapse
|
43
|
Ishiuchi T, Abe S, Inoue K, Yeung WKA, Miki Y, Ogura A, Sasaki H. Reprogramming of the histone H3.3 landscape in the early mouse embryo. Nat Struct Mol Biol 2020; 28:38-49. [PMID: 33169018 DOI: 10.1038/s41594-020-00521-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic reprogramming of the zygote involves dynamic incorporation of histone variant H3.3. However, the genome-wide distribution and dynamics of H3.3 during early development remain unknown. Here, we delineate the H3.3 landscapes in mouse oocytes and early embryos. We unexpectedly identify a non-canonical H3.3 pattern in mature oocytes and zygotes, in which local enrichment of H3.3 at active chromatin is suppressed and H3.3 is relatively evenly distributed across the genome. Interestingly, although the non-canonical H3.3 pattern forms gradually during oogenesis, it quickly switches to a canonical pattern at the two-cell stage in a transcription-independent and replication-dependent manner. We find that incorporation of H3.1/H3.2 mediated by chromatin assembly factor CAF-1 is a key process for the de novo establishment of the canonical pattern. Our data suggest that the presence of the non-canonical pattern and its timely transition toward a canonical pattern support the developmental program of early embryos.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuka Miki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
44
|
Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Nat Commun 2020; 11:5417. [PMID: 33110091 PMCID: PMC7591512 DOI: 10.1038/s41467-020-19279-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
Collapse
|
45
|
Radiation-induced H3K9 methylation on E-cadherin promoter mediated by ROS/Snail axis : Role of G9a signaling during lung epithelial-mesenchymal transition. Toxicol In Vitro 2020; 70:105037. [PMID: 33148527 DOI: 10.1016/j.tiv.2020.105037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Lung cancer patients who have undergone radiotherapy developed severe complications such as pneumonitis and fibrosis. Upon irradiation, epithelial cells acquire mesenchymal phenotype via a process called epithelial to mesenchymal transition (EMT), which plays a vital role in organ fibrosis. Several mechanisms have been studied on EMT, however, the correlation between radiation-induced EMT and epigenetic changes are not well known. In the present study, we investigated the role of histone methyltransferase G9a on radiation-induced EMT signaling. There was an increase in total global histone methylation level in irradiated epithelial cells. Western blot analysis on irradiated cells showed an increased expression of H3K9me2/3. The pre-treatment of G9a inhibitor enhanced E-cadherin expression and decreased the mesenchymal markers like N-cadherin, vimentin in the radiated group. Surprisingly, radiation-induced ROS generation and pERK1/2 levels were also inhibited by G9a inhibitor BIX01294, which is showing its antioxidant potential. The ChIP-qPCR analysis on the E-cadherin promoter suggested that G9a and Snail might have formed complex to enrich suppressive marker H3K9me2/3. On the whole, our present study suggested that 1] ROS could modify H3K9 methylation via G9a and promote radiation-induced lung EMT in Beas2B and A549 cells 2] E-cadherin promoter enrichment with heterochromatin mark H3K9me2 expression upon irradiation could be modified by regulating G9a methyltransferase.
Collapse
|
46
|
Jiang Q, Ang JYJ, Lee AY, Cao Q, Li KY, Yip KY, Leung DCY. G9a Plays Distinct Roles in Maintaining DNA Methylation, Retrotransposon Silencing, and Chromatin Looping. Cell Rep 2020; 33:108315. [PMID: 33113380 DOI: 10.1016/j.celrep.2020.108315] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
G9a is a lysine methyltransferase that regulates epigenetic modifications, transcription, and genome organization. However, whether these properties are dependent on one another or represent distinct functions of G9a remains unclear. In this study, we observe widespread DNA methylation loss in G9a depleted and catalytic mutant embryonic stem cells. Furthermore, we define how G9a regulates chromatin accessibility, epigenetic modifications, and transcriptional silencing in both catalytic-dependent and -independent manners. Reactivated retrotransposons provide alternative promoters and splice sites leading to the upregulation of neighboring genes and the production of chimeric transcripts. Moreover, while topologically associated domains and compartment A/B definitions are largely unaffected, the loss of G9a leads to altered chromatin states, aberrant CTCF and cohesin binding, and differential chromatin looping, especially at retrotransposons. Taken together, our findings reveal how G9a regulates the epigenome, transcriptome, and higher-order chromatin structures in distinct mechanisms.
Collapse
Affiliation(s)
- Qinghong Jiang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Julie Y J Ang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ah Young Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelly Y Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny C Y Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
47
|
Abstract
Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying molecular mechanisms remain elusive. For the past few years, unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development, taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies. The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals, including DNA methylation, histone modifications, chromatin accessibility and 3D chromatin organization.
Collapse
|
48
|
Bogolyubova I, Bogolyubov D. Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells 2020; 9:cells9061497. [PMID: 32575486 PMCID: PMC7348780 DOI: 10.3390/cells9061497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded "nucleolus", which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.
Collapse
|
49
|
The role and mechanisms of DNA methylation in the oocyte. Essays Biochem 2020; 63:691-705. [PMID: 31782490 PMCID: PMC6923320 DOI: 10.1042/ebc20190043] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Epigenetic information in the mammalian oocyte has the potential to be transmitted to the next generation and influence gene expression; this occurs naturally in the case of imprinted genes. Therefore, it is important to understand how epigenetic information is patterned during oocyte development and growth. Here, we review the current state of knowledge of de novo DNA methylation mechanisms in the oocyte: how a distinctive gene-body methylation pattern is created, and the extent to which the DNA methylation machinery reads chromatin states. Recent epigenomic studies building on advances in ultra-low input chromatin profiling methods, coupled with genetic studies, have started to allow a detailed interrogation of the interplay between DNA methylation establishment and chromatin states; however, a full mechanistic description awaits.
Collapse
|
50
|
Abstract
The mammalian genome experiences profound setting and resetting of epigenetic patterns during the life-course. This is understood best for DNA methylation: the specification of germ cells, gametogenesis, and early embryo development are characterised by phases of widespread erasure and rewriting of methylation. While mitigating against intergenerational transmission of epigenetic information, these processes must also ensure correct genomic imprinting that depends on faithful and long-term memory of gamete-derived methylation states in the next generation. This underscores the importance of understanding the mechanisms of methylation programming in the germline.
De novo methylation in the oocyte is of particular interest because of its intimate association with transcription, which results in a bimodal methylome unique amongst mammalian cells. Moreover, this methylation landscape is entirely set up in a non-dividing cell, making the oocyte a fascinating model system in which to explore mechanistic determinants of methylation. Here, we summarise current knowledge on the oocyte DNA methylome and how it is established, focussing on recent insights from knockout models in the mouse that explore the interplay between methylation and chromatin states. We also highlight some remaining paradoxes and enigmas, in particular the involvement of non-nuclear factors for correct
de novo methylation.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|