1
|
Wen R, Huang R, Xu K, Yi X. Insights into the role of histone lysine demethylases in bone homeostasis and skeletal diseases: A review. Int J Biol Macromol 2025; 306:141807. [PMID: 40054804 DOI: 10.1016/j.ijbiomac.2025.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Histone lysine demethylases (KDMs), as important epigenetic regulators, are involved in various biological processes such as energy metabolism, apoptosis, and autophagy. Recent research shows that KDMs activate or silence downstream target genes by removing lysine residues from histone tails, and participate in the regulation of bone marrow mesenchymal stem cells (BM-MSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes and other skeletal cell development, differentiation and formation. Moreover, several members of the KDM family affect the occurrence and development of bone diseases such as osteoporosis (OP), osteoarthritis (OA), osteosarcoma (OS), by regulating target genes. Specific regulation mechanisms of KDMs suggest new strategies for bone disease treatment and prevention. Despite the unique function and importance of KDMs in the skeletal system, previous studies have never systematically summarized their specific role, molecular mechanism, and clinical treatment in bone physiology and pathology. Therefore, this review summarises the expression pattern, intracellular signal transduction, and mechanism of action of the KDM family in several bone physiological and pathological conditions, aiming to highlight the important role of KDMs in bone diseases and provide a reference for the future treatment of bone diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China; School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Di Nisio E, Manzini V, Licursi V, Negri R. To Erase or Not to Erase: Non-Canonical Catalytic Functions and Non-Catalytic Functions of Members of Histone Lysine Demethylase Families. Int J Mol Sci 2024; 25:6900. [PMID: 39000010 PMCID: PMC11241480 DOI: 10.3390/ijms25136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Histone lysine demethylases (KDMs) play an essential role in biological processes such as transcription regulation, RNA maturation, transposable element control, and genome damage sensing and repair. In most cases, their action requires catalytic activities, but non-catalytic functions have also been shown in some KDMs. Indeed, some strictly KDM-related proteins and some KDM isoforms do not act as histone demethylase but show other enzymatic activities or relevant non-enzymatic functions in different cell types. Moreover, many studies have reported on functions potentially supported by catalytically dead mutant KDMs. This is probably due to the versatility of the catalytical core, which can adapt to assume different molecular functions, and to the complex multi-domain structure of these proteins which encompasses functional modules for targeting histone modifications, promoting protein-protein interactions, or recognizing nucleic acid structural motifs. This rich modularity and the availability of multiple isoforms in the various classes produced variants with enzymatic functions aside from histone demethylation or variants with non-catalytical functions during the evolution. In this review we will catalog the proteins with null or questionable demethylase activity and predicted or validated inactive isoforms, summarizing what is known about their alternative functions. We will then go through some experimental evidence for the non-catalytical functions of active KDMs.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
| | - Valeria Manzini
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| |
Collapse
|
3
|
Cheng GP, Wang YF, Li YY, Guo SM, Li HG, Ji DM, Yi NH, Zhou LQ. Deficiency of nucleosome-destabilizing factor GLYR1 dampens spermatogenesis in mice. Mol Cell Endocrinol 2024; 586:112194. [PMID: 38395189 DOI: 10.1016/j.mce.2024.112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Aberrant sperm morphology hinders sperm motility and causes male subfertility. Spermatogenesis, a complex process in male germ cell development, necessitates precise regulation of numerous developmental genes. However, the regulatory pathways involved in this process remain partially understood. We have observed the widespread expression of Glyr1, the gene encoding a nucleosome-destabilizing factor, in mouse testicular cells. Our study demonstrates that mice experiencing Glyr1 depletion in spermatogenic cells exhibit subfertility characterized by a diminished count and motility of spermatozoa. Furthermore, the rate of sperm malformation significantly increases in the absence of Glyr1, with a predominant occurrence of head and neck malformation in spermatozoa within the cauda epididymis. Additionally, a reduction in spermatocyte numbers across different meiotic stages is observed, accompanied by diminished histone acetylation in spermatogenic cells upon Glyr1 depletion. Our findings underscore the crucial roles of Glyr1 in mouse spermiogenesis and unveil novel insights into the etiology of male reproductive diseases.
Collapse
Affiliation(s)
- Gui-Ping Cheng
- Department of Women Health Care, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Fan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Gang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Ji
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| | - Nian-Hua Yi
- Department of Women Health Care, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li-Quan Zhou
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| |
Collapse
|
4
|
Kim HM, Liu Z. LSD2 Is an Epigenetic Player in Multiple Types of Cancer and Beyond. Biomolecules 2024; 14:553. [PMID: 38785960 PMCID: PMC11118440 DOI: 10.3390/biom14050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Histone demethylases, enzymes responsible for removing methyl groups from histone proteins, have emerged as critical players in regulating gene expression and chromatin dynamics, thereby influencing various cellular processes. LSD2 and LSD1 have attracted considerable interest among these demethylases because of their associations with cancer. However, while LSD1 has received significant attention, LSD2 has not been recognized to the same extent. In this study, we conduct a comprehensive comparison between LSD2 and LSD1, with a focus on exploring LSD2's implications. While both share structural similarities, LSD2 possesses unique features as well. Functionally, LSD2 shows diverse roles, particularly in cancer, with tissue-dependent roles. Additionally, LSD2 extends beyond histone demethylation, impacting DNA methylation, cancer cell reprogramming, E3 ubiquitin ligase activity and DNA damage repair pathways. This study underscores the distinct roles of LSD2, providing insights into their contributions to cancer and other cellular processes.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | |
Collapse
|
5
|
Chakraborty D, Mondal B, Thirumalai D. Brewing COFFEE: A Sequence-Specific Coarse-Grained Energy Function for Simulations of DNA-Protein Complexes. J Chem Theory Comput 2024; 20:1398-1413. [PMID: 38241144 DOI: 10.1021/acs.jctc.3c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
DNA-protein interactions are pervasive in a number of biophysical processes ranging from transcription and gene expression to chromosome folding. To describe the structural and dynamic properties underlying these processes accurately, it is important to create transferable computational models. Toward this end, we introduce Coarse-grained Force Field for Energy Estimation, COFFEE, a robust framework for simulating DNA-protein complexes. To brew COFFEE, we integrated the energy function in the self-organized polymer model with side-chains for proteins and the three interaction site model for DNA in a modular fashion, without recalibrating any of the parameters in the original force-fields. A unique feature of COFFEE is that it describes sequence-specific DNA-protein interactions using a statistical potential (SP) derived from a data set of high-resolution crystal structures. The only parameter in COFFEE is the strength (λDNAPRO) of the DNA-protein contact potential. For an optimal choice of λDNAPRO, the crystallographic B-factors for DNA-protein complexes with varying sizes and topologies are quantitatively reproduced. Without any further readjustments to the force-field parameters, COFFEE predicts scattering profiles that are in quantitative agreement with small-angle X-ray scattering experiments, as well as chemical shifts that are consistent with NMR. We also show that COFFEE accurately describes the salt-induced unraveling of nucleosomes. Strikingly, our nucleosome simulations explain the destabilization effect of ARG to LYS mutations, which do not alter the balance of electrostatic interactions but affect chemical interactions in subtle ways. The range of applications attests to the transferability of COFFEE, and we anticipate that it would be a promising framework for simulating DNA-protein complexes at the molecular length-scale.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
| | - Balaka Mondal
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
- Department of Physics, The University of Texas at Austin, 2515 Speedway, Austin 78712, Texas, United States
| |
Collapse
|
6
|
Marunde MR, Fuchs HA, Burg JM, Popova IK, Vaidya A, Hall NW, Weinzapfel EN, Meiners MJ, Watson R, Gillespie ZB, Taylor HF, Mukhsinova L, Onuoha UC, Howard SA, Novitzky K, McAnarney ET, Krajewski K, Cowles MW, Cheek MA, Sun ZW, Venters BJ, Keogh MC, Musselman CA. Nucleosome conformation dictates the histone code. eLife 2024; 13:e78866. [PMID: 38319148 PMCID: PMC10876215 DOI: 10.7554/elife.78866] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.
Collapse
Affiliation(s)
| | - Harrison A Fuchs
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel HillUnited States
| | | | | | | | | | | | - Catherine A Musselman
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
7
|
Raicu AM, Suresh M, Arnosti DN. A regulatory role for the unstructured C-terminal domain of the CtBP transcriptional corepressor. J Biol Chem 2024; 300:105490. [PMID: 38000659 PMCID: PMC10788531 DOI: 10.1016/j.jbc.2023.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The C-terminal binding protein (CtBP) is a transcriptional corepressor that plays critical roles in development, tumorigenesis, and cell fate. CtBP proteins are structurally similar to alpha hydroxyacid dehydrogenases and feature a prominent intrinsically disordered region in the C terminus. In the mammalian system, CtBP proteins lacking the C-terminal domain (CTD) are able to function as transcriptional regulators and oligomerize, putting into question the significance of this unstructured domain for gene regulation. Yet, the presence of an unstructured CTD of ∼100 residues, including some short motifs, is conserved across Bilateria, indicating the importance of maintaining this domain over evolutionary time. To uncover the significance of the CtBP CTD, we functionally tested naturally occurring Drosophila isoforms of CtBP that possess or lack the CTD, namely CtBP(L) and CtBP(S). We used the CRISPRi system to recruit dCas9-CtBP(L) and dCas9-CtBP(S) to endogenous promoters to directly compare their transcriptional impacts in vivo. Interestingly, CtBP(S) was able to significantly repress transcription of the Mpp6 promoter, while CtBP(L) was much weaker, suggesting that the long CTD may modulate CtBP's repression activity. In contrast, in cell culture, the isoforms behaved similarly on a transfected Mpp6 reporter gene. The context-specific differences in activity of these two developmentally regulated isoforms suggests that the CTD may help provide a spectrum of repression activity suitable for developmental programs.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Megha Suresh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
8
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
9
|
Raicu AM, Suresh M, Arnosti DN. A regulatory role for the unstructured C-terminal domain of the CtBP transcriptional corepressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541472. [PMID: 37292674 PMCID: PMC10245716 DOI: 10.1101/2023.05.19.541472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The C-terminal Binding Protein (CtBP) is a transcriptional corepressor that plays critical roles in development, tumorigenesis, and cell fate. CtBP proteins are structurally similar to alpha hydroxyacid dehydrogenases and feature a prominent intrinsically disordered region in the C-terminus. In the mammalian system, CtBP proteins lacking the C-terminal Domain (CTD) are able to function as transcriptional regulators and oligomerize, putting into question the significance of this unstructured domain for gene regulation. Yet, the presence of an unstructured CTD of ~100 residues, including some short motifs, is conserved across Bilateria, indicating the importance of maintaining this domain over evolutionary time. To uncover the significance of the CtBP CTD, we functionally tested naturally occurring Drosophila isoforms of CtBP that possess or lack the CTD, namely CtBP(L) and CtBP(S). We used the CRISPRi system to recruit dCas9-CtBP(L) and dCas9-CtBP(S) to endogenous promoters to directly compare their transcriptional impacts in vivo. Interestingly, CtBP(S) was able to significantly repress transcription of the Mpp6 promoter, while CtBP(L) was much weaker, suggesting that the long CTD may modulate CtBP's repression activity. In contrast, in cell culture, the isoforms behaved similarly on a transfected Mpp6 reporter gene. The context-specific differences in activity of these two developmentally-regulated isoforms suggests that the CTD may help provide a spectrum of repression activity suitable for developmental programs.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI
| | - Megha Suresh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| |
Collapse
|
10
|
Chakraborty D, Mondal B, Thirumalai D. Brewing COFFEE: A sequence-specific coarse-grained energy function for simulations of DNA-protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544064. [PMID: 37333386 PMCID: PMC10274755 DOI: 10.1101/2023.06.07.544064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
DNA-protein interactions are pervasive in a number of biophysical processes ranging from transcription, gene expression, to chromosome folding. To describe the structural and dynamic properties underlying these processes accurately, it is important to create transferable computational models. Toward this end, we introduce Coarse grained force field for energy estimation, COFFEE, a robust framework for simulating DNA-protein complexes. To brew COFFEE, we integrated the energy function in the Self-Organized Polymer model with Side Chains for proteins and the Three Interaction Site model for DNA in a modular fashion, without re-calibrating any of the parameters in the original force-fields. A unique feature of COFFEE is that it describes sequence-specific DNA-protein interactions using a statistical potential (SP) derived from a dataset of high-resolution crystal structures. The only parameter in COFFEE is the strength (λ D N A P R O ) of the DNA-protein contact potential. For an optimal choice of λ D N A P R O , the crystallographic B-factors for DNA-protein complexes, with varying sizes and topologies, are quantitatively reproduced. Without any further readjustments to the force-field parameters, COFFEE predicts the scattering profiles that are in quantitative agreement with SAXS experiments as well as chemical shifts that are consistent with NMR. We also show that COFFEE accurately describes the salt-induced unraveling of nucleosomes. Strikingly, our nucleosome simulations explain the destabilization effect of ARG to LYS mutations, which does not alter the balance of electrostatic interactions, but affects chemical interactions in subtle ways. The range of applications attests to the transferability of COFFEE, and we anticipate that it would be a promising framework for simulating DNA-protein complexes at the molecular length-scale.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Stop A5300, Austin TX 78712, USA
| | - Balaka Mondal
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Stop A5300, Austin TX 78712, USA
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Stop A5300, Austin TX 78712, USA
- Department of Physics, The University of Texas at Austin, 2515 Speedway,Austin TX 78712, USA
| |
Collapse
|
11
|
Caroli J, Mattevi A. The NPAC-LSD2 complex in nucleosome demethylation. Enzymes 2023; 53:97-111. [PMID: 37748839 DOI: 10.1016/bs.enz.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.
Collapse
Affiliation(s)
- Jonatan Caroli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
12
|
Qin F, Li B, Wang H, Ma S, Li J, Liu S, Kong L, Zheng H, Zhu R, Han Y, Yang M, Li K, Ji X, Chen PR. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell 2023; 186:1066-1085.e36. [PMID: 36868209 DOI: 10.1016/j.cell.2023.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/01/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and β-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.
Collapse
Affiliation(s)
- Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Boyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Sihui Ma
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shanglin Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linghao Kong
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Huangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongfeng Zhu
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Han
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingdong Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
13
|
Raicu AM, Kadiyala D, Niblock M, Jain A, Yang Y, Bird KM, Bertholf K, Seenivasan A, Siddiq M, Arnosti DN. The Cynosure of CtBP: Evolution of a Bilaterian Transcriptional Corepressor. Mol Biol Evol 2023; 40:msad003. [PMID: 36625090 PMCID: PMC9907507 DOI: 10.1093/molbev/msad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Evolution of sequence-specific transcription factors clearly drives lineage-specific innovations, but less is known about how changes in the central transcriptional machinery may contribute to evolutionary transformations. In particular, transcriptional regulators are rich in intrinsically disordered regions that appear to be magnets for evolutionary innovation. The C-terminal Binding Protein (CtBP) is a transcriptional corepressor derived from an ancestral lineage of alpha hydroxyacid dehydrogenases; it is found in mammals and invertebrates, and features a core NAD-binding domain as well as an unstructured C-terminus (CTD) of unknown function. CtBP can act on promoters and enhancers to repress transcription through chromatin-linked mechanisms. Our comparative phylogenetic study shows that CtBP is a bilaterian innovation whose CTD of about 100 residues is present in almost all orthologs. CtBP CTDs contain conserved blocks of residues and retain a predicted disordered property, despite having variations in the primary sequence. Interestingly, the structure of the C-terminus has undergone radical transformation independently in certain lineages including flatworms and nematodes. Also contributing to CTD diversity is the production of myriad alternative RNA splicing products, including the production of "short" tailless forms of CtBP in Drosophila. Additional diversity stems from multiple gene duplications in vertebrates, where up to five CtBP orthologs have been observed. Vertebrate lineages show fewer major modifications in the unstructured CTD, possibly because gene regulatory constraints of the vertebrate body plan place specific constraints on this domain. Our study highlights the rich regulatory potential of this previously unstudied domain of a central transcriptional regulator.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - Dhruva Kadiyala
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Madeline Niblock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | | | - Yahui Yang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kalynn M Bird
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kayla Bertholf
- Biochemistry and Molecular Biology Program, College of Wooster
| | - Akshay Seenivasan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Mohammad Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - David N Arnosti
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Ugur FS, Kelly MJS, Fujimori DG. Chromatin Sensing by the Auxiliary Domains of KDM5C Regulates Its Demethylase Activity and Is Disrupted by X-linked Intellectual Disability Mutations. J Mol Biol 2023; 435:167913. [PMID: 36495919 PMCID: PMC10247153 DOI: 10.1016/j.jmb.2022.167913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie between the segments of the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an understanding of how XLID mutations affect KDM5C activity. Through in vitro binding and kinetic studies using nucleosomes, we find that while the ARID domain is required for efficient nucleosome demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. In addition, the unstructured linker region between the ARID and PHD1 domains interacts with PHD1 and is necessary for nucleosome binding. Our data suggests a model in which the PHD1 domain inhibits DNA recognition by KDM5C. This inhibitory effect is relieved by the H3 tail, enabling recognition of flanking DNA on the nucleosome. Importantly, we find that XLID mutations adjacent to the ARID and PHD1 domains break this regulation by enhancing DNA binding, resulting in the loss of specificity of substrate chromatin recognition and rendering demethylase activity lower in the presence of flanking DNA. Our findings suggest a model by which specific XLID mutations could alter chromatin recognition and enable euchromatin-specific dysregulation of demethylation by KDM5C.
Collapse
Affiliation(s)
- Fatima S Ugur
- Chemistry and Chemical Biology Graduate Program, 600 16th St., San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, 600 16th St., San Francisco, CA 94158, USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, 600 16th St., San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Pharmaceutical Chemistry, 600 16th St., San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, 600 16th St., San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, 600 16th St., San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Song Y, Wang S, Yu B. Structural and Functional Landscape of FAD-Dependent Histone Lysine Demethylases for New Drug Discovery. J Med Chem 2023; 66:71-94. [PMID: 36537915 DOI: 10.1021/acs.jmedchem.2c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules targeting the flavin adenine dinucleotide (FAD)-dependent histone lysine demethylase LSD family have displayed therapeutic promise against various diseases. Nine clinical candidates targeting the classic demethylase-dependent functions of the LSD family are currently being investigated for treating cancers, neurodegenerative diseases, etc. Moreover, targeting noncatalytic functions of LSDs also represents an emerging strategy for treating human diseases. In this Perspective, we provide full structural and functional landscape of the LSD family and action modes of different types of LSD inhibitors including natural products, peptides, and synthetic compounds, aiming to reveal new druggable space for the design of new LSD inhibitors. Particularly, we first classify these inhibitors into three types based on their unique binding modes. Additionally, the strategies targeting the demethylase-independent functions of LSDs are also briefly discussed. This Perspective may benefit the discovery of new LSD inhibitors for probing LSD biology and/or treating human diseases.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Niwa H, Watanabe C, Sato S, Harada T, Watanabe H, Tabusa R, Fukasawa S, Shiobara A, Hashimoto T, Ohno O, Nakamura K, Tsuganezawa K, Tanaka A, Shirouzu M, Honma T, Matsuno K, Umehara T. Structure–Activity Relationship and In Silico Evaluation of cis- and trans-PCPA-Derived Inhibitors of LSD1 and LSD2. ACS Med Chem Lett 2022; 13:1485-1492. [PMID: 36105323 PMCID: PMC9465824 DOI: 10.1021/acsmedchemlett.2c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
![]()
trans-2-Phenylcycloproylamine (trans-PCPA) has been used as the scaffold to develop covalent-binding
inhibitors against lysine-specific demethylase 1 (LSD1/KDM1A), a therapeutic
target for several cancers. However, the effects of different structural
moieties on the inhibitory activity, selectivity, and reactivity of
these derivatives, including the cis isomers, against
LSD1 and its paralogue LSD2/KDM1B are not fully understood. Here we
synthesized 65 cis- and trans-PCPA
derivatives and evaluated their inhibitory activity against LSD1 and
LSD2. One of the derivatives, 7c (cis-4-Br-2,5-F2-PCPA; S1024), inhibited LSD1
and LSD2 with Ki values of 0.094 μM
and 8.4 μM, respectively, and increased the level of dimethylated
histone H3 at K4 in CCRF-CEM cells. A machine learning-based regression
model (Q2 = 0.61) to predict LSD1-inhibitory
activity was also constructed and showed a good prediction accuracy
(R2 = 0.81) for 12 test-set compounds,
including 7c. The present methodology would be useful
when designing covalent-binding inhibitors for other enzymes.
Collapse
Affiliation(s)
- Hideaki Niwa
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chiduru Watanabe
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toshiyuki Harada
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hisami Watanabe
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Tabusa
- Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Shunsuke Fukasawa
- Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Ayane Shiobara
- Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Tomoko Hashimoto
- Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Osamu Ohno
- Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Kana Nakamura
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Tsuganezawa
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Tanaka
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kenji Matsuno
- Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
- Department of Pharmacy, Faculty of Pharmacy, Yasuda Women’s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
17
|
Gonzalez-Teran B, Pittman M, Felix F, Thomas R, Richmond-Buccola D, Hüttenhain R, Choudhary K, Moroni E, Costa MW, Huang Y, Padmanabhan A, Alexanian M, Lee CY, Maven BEJ, Samse-Knapp K, Morton SU, McGregor M, Gifford CA, Seidman JG, Seidman CE, Gelb BD, Colombo G, Conklin BR, Black BL, Bruneau BG, Krogan NJ, Pollard KS, Srivastava D. Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell 2022; 185:794-814.e30. [PMID: 35182466 PMCID: PMC8923057 DOI: 10.1016/j.cell.2022.01.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023]
Abstract
Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.
Collapse
Affiliation(s)
- Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Maureen Pittman
- Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Franco Felix
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Desmond Richmond-Buccola
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | | | | | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Clara Youngna Lee
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Sarah U Morton
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Structures of chromatin modulators in complex with nucleosome. Curr Opin Chem Biol 2021; 63:105-114. [PMID: 33823458 DOI: 10.1016/j.cbpa.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
The chromatin structure is dynamically regulated by many different modulators that post-translationally modify histones, replace canonical histones with histone variants, and unwind nucleosomal DNA, thereby modulating the accessibility of nucleosomal DNA and facilitating downstream DNA-templated nuclear processes. To understand how these modulators change the chromatin structure, it is essential to determine the 3D structures of chromatin modulators in complex with nucleosome. Here, we review the very recent progress in structural studies of some selected chromatin modulators in complex with nucleosome, including those of histone demethylases LSD1/2, some pioneer transcription factors, and the PWWP domain-containing protein LEDGF.
Collapse
|
19
|
Yu S, Li J, Ji G, Ng ZL, Siew J, Lo WN, Ye Y, Chew YY, Long YC, Zhang W, Guccione E, Loh YH, Jiang ZH, Yang H, Wu Q. Npac Is a Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:110-128. [PMID: 33676077 PMCID: PMC9510873 DOI: 10.1016/j.gpb.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 07/16/2020] [Accepted: 08/15/2020] [Indexed: 12/31/2022]
Abstract
Chromatin modification contributes to pluripotency maintenance in embryonic stem cells (ESCs). However, the related mechanisms remain obscure. Here, we show that Npac, a “reader” of histone H3 lysine 36 trimethylation (H3K36me3), is required to maintain mouse ESC (mESC) pluripotency since knockdown of Npac causes mESC differentiation. Depletion of Npac in mouse embryonic fibroblasts (MEFs) inhibits reprogramming efficiency. Furthermore, our chromatin immunoprecipitation followed by sequencing (ChIP-seq) results of Npac reveal that Npac co-localizes with histone H3K36me3 in gene bodies of actively transcribed genes in mESCs. Interestingly, we find that Npac interacts with positive transcription elongation factor b (p-TEFb), Ser2-phosphorylated RNA Pol II (RNA Pol II Ser2P), and Ser5-phosphorylated RNA Pol II (RNA Pol II Ser5P). Furthermore, depletion of Npac disrupts transcriptional elongation of the pluripotency genes Nanog and Rif1. Taken together, we propose that Npac is essential for the transcriptional elongation of pluripotency genes by recruiting p-TEFb and interacting with RNA Pol II Ser2P and Ser5P.
Collapse
Affiliation(s)
- Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| | - Guanxu Ji
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Zhen Long Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jiamin Siew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wan Ning Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ying Ye
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yuan Yuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zhi-Hong Jiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore.
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China.
| |
Collapse
|
20
|
Zhang M, Lei M, Qin S, Dong A, Yang A, Li Y, Loppnau P, Hughes TR, Min J, Liu Y. Crystal structure of the BRPF2 PWWP domain in complex with DNA reveals a different binding mode than the HDGF family of PWWP domains. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194688. [PMID: 33556623 DOI: 10.1016/j.bbagrm.2021.194688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
The PWWP domain was first identified in the HDGF protein family and named after the conserved Proline-Tryptophan-Tryptophan-Proline motif in WHSC1. The PWWP domain-containing proteins play important roles in different biological processes, such as DNA replication, transcription, DNA repair, pre-mRNA processing by recognizing methylated histone and dsDNA simultaneously. Recently, how the HDGF family of PWWP domains recognize histone H3K36me3-modified nucleosome has been reported. In order to better understand the interactions between the PWWP domain and dsDNA, we carried out family-wide characterization of dsDNA binding abilities of human PWWP domains. Our binding assays confirmed that PWWP domains bind to dsDNA without sequence selectivity. Our crystal structure of the BRPF2 PWWP domain in complex with a 12-mer dsDNA reveals that the PWWP domain interacts with dsDNA by binding to its major groove, instead of the minor groove observed in the HDGF family of PWWP domains. Our study indicates that PWWP domains could bind to dsDNA in different modes.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Su Qin
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Ghoneim M, Fuchs HA, Musselman CA. Histone Tail Conformations: A Fuzzy Affair with DNA. Trends Biochem Sci 2021; 46:564-578. [PMID: 33551235 DOI: 10.1016/j.tibs.2020.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
The core histone tails are critical in chromatin structure and signaling. Studies over the past several decades have provided a wealth of information on the histone tails and their interaction with chromatin factors. However, the conformation of the histone tails in a chromatin relevant context has remained elusive. Only recently has enough evidence emerged to start to build a structural model of the tails in the context of nucleosomes and nucleosome arrays. Here, we review these studies and propose that the histone tails adopt a high-affinity fuzzy complex with DNA, characterized by robust but dynamic association. Furthermore, we discuss how these DNA-bound conformational ensembles promote distinct chromatin structure and signaling, and that their fuzzy nature is important in transitioning between functional states.
Collapse
Affiliation(s)
- Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Harrison A Fuchs
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Gaullier G, Roberts G, Muthurajan UM, Bowerman S, Rudolph J, Mahadevan J, Jha A, Rae PS, Luger K. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. PLoS One 2020; 15:e0240932. [PMID: 33141820 PMCID: PMC7608914 DOI: 10.1371/journal.pone.0240932] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.
Collapse
Affiliation(s)
- Guillaume Gaullier
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Uma M. Muthurajan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Asmita Jha
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Purushka S. Rae
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
23
|
Sundaram R, Vasudevan D. Structural Basis of Nucleosome Recognition and Modulation. Bioessays 2020; 42:e1900234. [DOI: 10.1002/bies.201900234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
- Manipal Academy of Higher Education Manipal 576104 India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
| |
Collapse
|
24
|
Kim SA, Zhu J, Yennawar N, Eek P, Tan S. Crystal Structure of the LSD1/CoREST Histone Demethylase Bound to Its Nucleosome Substrate. Mol Cell 2020; 78:903-914.e4. [PMID: 32396821 DOI: 10.1016/j.molcel.2020.04.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
LSD1 (lysine specific demethylase; also known as KDM1A), the first histone demethylase discovered, regulates cell-fate determination and is overexpressed in multiple cancers. LSD1 demethylates histone H3 Lys4, an epigenetic mark for active genes, but requires the CoREST repressor to act on nucleosome substrates. To understand how an accessory subunit (CoREST) enables a chromatin enzyme (LSD1) to function on a nucleosome and not just histones, we have determined the crystal structure of the LSD1/CoREST complex bound to a 191-bp nucleosome. We find that the LSD1 catalytic domain binds extranucleosomal DNA and is unexpectedly positioned 100 Å away from the nucleosome core. CoREST makes critical contacts with both histone and DNA components of the nucleosome, explaining its essential function in demethylating nucleosome substrates. Our studies also show that the LSD1(K661A) frequently used as a catalytically inactive mutant in vivo (based on in vitro peptide studies) actually retains substantial H3K4 demethylase activity on nucleosome substrates.
Collapse
Affiliation(s)
- Sang-Ah Kim
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiang Zhu
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Priit Eek
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
25
|
Tararina MA, Allen KN. Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. J Mol Biol 2020; 432:3269-3288. [PMID: 32198115 DOI: 10.1016/j.jmb.2020.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
The flavin-dependent amine oxidase (FAO) superfamily consists of over 9000 nonredundant sequences represented in all domains of life. Of the thousands of members identified, only 214 have been functionally annotated to date, and 40 unique structures are represented in the Protein Data Bank. The few functionally characterized members share a catalytic mechanism involving the oxidation of an amine substrate through transfer of a hydride to the FAD cofactor, with differences observed in substrate specificities. Previous studies have focused on comparing a subset of superfamily members. Here, we present a comprehensive analysis of the FAO superfamily based on reaction mechanism and substrate recognition. Using a dataset of 9192 sequences, a sequence similarity network, and subsequently, a genome neighborhood network were constructed, organizing the superfamily into eight subgroups that accord with substrate type. Likewise, through phylogenetic analysis, the evolutionary relationship of subgroups was determined, delineating the divergence between enzymes based on organism, substrate, and mechanism. In addition, using sequences and atomic coordinates of 22 structures from the Protein Data Bank to perform sequence and structural alignments, active-site elements were identified, showing divergence from the canonical aromatic-cage residues to accommodate large substrates. These specificity determinants are held in a structural framework comprising a core domain catalyzing the oxidation of amines with an auxiliary domain for substrate recognition. Overall, analysis of the FAO superfamily reveals a modular fold with cofactor and substrate-binding domains allowing for diversity of recognition via insertion/deletions. This flexibility allows facile evolution of new activities, as shown by reinvention of function between subfamilies.
Collapse
Affiliation(s)
- Margarita A Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Karen N Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
26
|
|
27
|
Structure of H3K36-methylated nucleosome-PWWP complex reveals multivalent cross-gyre binding. Nat Struct Mol Biol 2019; 27:8-13. [PMID: 31819277 PMCID: PMC6955156 DOI: 10.1038/s41594-019-0345-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023]
Abstract
Recognition of histone-modified nucleosomes by specific reader domains underlies the regulation of chromatin-associated processes. Whereas structural studies revealed how reader domains bind modified histone peptides, it is unclear how reader domains interact with modified nucleosomes. Here we report the cryo-electron microscopy (cryo-EM) structure of the PWWP reader domain of human transcriptional coactivator LEDGF in complex with a H3K36-methylated nucleosome at 3.2 Å resolution. The structure reveals multivalent binding of the reader domain to the methylated histone tail and to both gyres of nucleosomal DNA, explaining the known cooperative interactions. The observed cross-gyre binding may contribute to nucleosome integrity during transcription. The structure also explains how human PWWP domain-containing proteins are recruited to H3K36-methylated regions of the genome for transcription, histone acetylation and methylation, and for DNA methylation and repair.
Collapse
|
28
|
Montefiori M, Pilotto S, Marabelli C, Moroni E, Ferraro M, Serapian SA, Mattevi A, Colombo G. Impact of Mutations on NPAC Structural Dynamics: Mechanistic Insights from MD Simulations. J Chem Inf Model 2019; 59:3927-3937. [PMID: 31408337 DOI: 10.1021/acs.jcim.9b00588] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NPAC is a cytokine-like nuclear factor involved in chromatin modification and regulation of gene expression. In humans, the C-terminal domain of NPAC has the conserved structure of the β-hydroxyacid dehydrogenases (β-HAD) protein superfamily, which forms a stable tetrameric core scaffold for demethylase enzymes and organizes multiple sites for chromatin interactions. In spite of the close structural resemblance to other β-HAD family members, the human NPAC dehydrogenase domain lacks a highly conserved catalytic lysine, substituted by a methionine. The reintroduction of the catalytic lysine by M437 K mutation results in a significant decrease of stability of the tetramer. Here, we have computationally investigated the molecular determinants of the functional differences between methionine and lysine-containing NPAC proteins. We find that the single mutation can determine strong consequences in terms of dynamics, stability, and ultimately ability to assemble in supramolecular complexes: the higher stability and lower flexibility of the methionine variant structurally preorganizes the monomer for tetramerization, whereas lysine increases flexibility and favors conformations that, while catalytically active, are not optimal for tetrameric assembly. We combine structure-dynamics analysis to an evolutionary study of NPAC sequences, showing that the methionine mutation occurs in a specifically flexible region of the lysine-containing protein, flanked by two domains that concentrate most of the stabilizing interactions. In our model, such separation of stability nuclei and flexible regions appears to favor the functional innovability of the protein.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 9 , 27100 Pavia , Italy
| | - Chiara Marabelli
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 9 , 27100 Pavia , Italy
| | | | | | - Stefano A Serapian
- University of Pavia , Department of Chemistry , V.le Taramelli 12 , 27100 Pavia , Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 9 , 27100 Pavia , Italy
| | - Giorgio Colombo
- ICRM-CNR , Via Mario Bianco 9 , 20131 Milano , Italy.,University of Pavia , Department of Chemistry , V.le Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|