1
|
Xu H, Chi Y, Yin C, Li C, Chen Y, Liu Z, Liu X, Xie H, Chen ZJ, Zhao H, Wu K, Zhao S, Xing D. Three-dimensional genome structures of single mammalian sperm. Nat Commun 2025; 16:3805. [PMID: 40268951 PMCID: PMC12019598 DOI: 10.1038/s41467-025-59055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
The three-dimensional (3D) organization of chromosomes is crucial for packaging a large mammalian genome into a confined nucleus and ensuring proper nuclear functions in somatic cells. However, the packaging of the much more condensed sperm genome is challenging to study with traditional imaging or sequencing approaches. In this study, we develop an enhanced chromosome conformation capture assay, and resolve the 3D whole-genome structures of single mammalian sperm. The reconstructed genome structures accurately delineate the species-specific nuclear morphologies for both human and mouse sperm. We discover that sperm genomes are divided into chromosomal territories and A/B compartments, similarly to somatic cells. However, neither human nor mouse sperm chromosomes contain topologically associating domains or chromatin loops. These results suggest that the fine-scale chromosomal organization of mammalian sperm fundamentally differs from that of somatic cells. The discoveries and methods established in this work will be valuable for future studies of sperm related infertility.
Collapse
Affiliation(s)
- Heming Xu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yi Chi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Changjian Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Cheng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Yujie Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zhiyuan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaowen Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Hao Xie
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| |
Collapse
|
2
|
Lima AC, Okhovat M, Stendahl AM, Yang R, VanCampen J, Nevonen KA, Herrera J, Li W, Harshman L, Fedorov LM, Vigh-Conrad KA, Ahituv N, Conrad DF, Carbone L. Deletion of an evolutionarily conserved TAD boundary impacts spermatogenesis in mice†. Biol Reprod 2025; 112:767-779. [PMID: 39903672 PMCID: PMC11996757 DOI: 10.1093/biolre/ioaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Spermatogenesis is a complex process that can be disrupted by genetic and epigenetic changes, potentially leading to male infertility. Recent research has rapidly increased the number of coding mutations causally linked to impaired spermatogenesis in humans and mice. However, the role of noncoding mutations remains largely unexplored. To evaluate the effects of noncoding mutations on spermatogenesis, we first identified an evolutionarily conserved topologically associated domain boundary near two genes with important roles in mammalian testis function: Dmrtb1 and Lrp8. We then used CRISPR-Cas9 to generate a mouse line where 26 kb of the boundary was removed including a strong and evolutionarily conserved CTCF binding site. ChIP-seq and Hi-C experiments confirmed the removal of the CTCF site and a resulting mild increase in the DNA-DNA interactions across the domain boundary. Mutant mice displayed significant changes in testis gene expression, a higher frequency of histological abnormalities, a drop of 47-52% in efficiency of meiosis, a 15-18% reduction in efficiency of spermatogenesis, and, consistently, a 12-28% decrease in daily sperm production compared to littermate controls. Despite these quantitative changes in testis function, mutant mice show no significant changes in fertility. This suggests that noncoding deletions affecting testis gene regulation may have smaller effects on fertility compared to coding mutations of the same genes. Our results demonstrate that disruption of a topologically associated domain boundary can have a negative impact on sperm production and highlight the importance of considering noncoding mutations in the analysis of patients with male infertility.
Collapse
Affiliation(s)
- Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Ran Yang
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Jake VanCampen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Jarod Herrera
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Weiyu Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, UCSF Box 0775, 1700 Fourth St Rm 216D, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 9414, USA
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, UCSF Box 0775, 1700 Fourth St Rm 216D, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 9414, USA
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Core Lab, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Katinka A Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, UCSF Box 0775, 1700 Fourth St Rm 216D, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 9414, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, 3222 SW Research Drive, Mail Code: L103, Portland, OR 97239, USA
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, 3222 SW Research Drive, Mail Code: L103, Portland, OR 97239, USA
| |
Collapse
|
3
|
Nishide G, Lim K, Kobayashi A, Qiu Y, Hazawa M, Ando T, Okada Y, Wong R. Spatiotemporal dynamics of protamine-DNA condensation revealed by high-speed atomic force microscopy. Nucleic Acids Res 2025; 53:gkaf152. [PMID: 40138714 PMCID: PMC11930356 DOI: 10.1093/nar/gkaf152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Protamines (PRMs) play a crucial role in sperm chromatin condensation, replacing histones to form nucleo-PRM structures, specifically PRM-DNA complexes. Despite their importance in reproduction, the detailed mechanisms underlying PRM-mediated DNA condensation have remained elusive. In this study, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the real-time binding dynamics of PRM to DNA under physiological conditions. Our HS-AFM observations reveal that PRM insertion initiating the formation of DNA coils. Further, we observed a heterogeneous spatial distribution of PRM-induced DNA looping. With continuous PRM addition, DNA progresses through a series of folding transitions, forming coiled-like structures that evolve into clockwise spirals, rod-shaped intermediates, and ultimately toroid-like nanostructures. Based on these real-time observations, we propose the CARD (Coil-Assembly-Rod-Doughnut) model to describe the stepwise process of toroid formation during DNA condensation. Our findings underscore the versatility of HS-AFM in capturing the spatiotemporal dynamics of PRM-DNA interactions and provide critical insights into the molecular mechanisms driving PRM-induced chromatin compaction. This study advances our understanding of sperm chromatin architecture and offers a framework for future research into chromatin organization, reproductive biology, and nucleic acid therapeutics.
Collapse
Affiliation(s)
- Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yujia Qiu
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
| | - Richard W Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
4
|
Kaiser VB, Semple CA. CTCF-anchored chromatin loop dynamics during human meiosis. BMC Biol 2025; 23:83. [PMID: 40114154 PMCID: PMC11927364 DOI: 10.1186/s12915-025-02181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND During meiosis, the mammalian genome is organised within chromatin loops, which facilitate synapsis, crossing over and chromosome segregation, setting the stage for recombination events and the generation of genetic diversity. Chromatin looping is thought to play a major role in the establishment of cross overs during prophase I of meiosis, in diploid early primary spermatocytes. However, chromatin conformation dynamics during human meiosis are difficult to study experimentally, due to the transience of each cell division and the difficulty of obtaining stage-resolved cell populations. Here, we employed a machine learning framework trained on single cell ATAC-seq and RNA-seq data to predict CTCF-anchored looping during spermatogenesis, including cell types at different stages of meiosis. RESULTS We find dramatic changes in genome-wide looping patterns throughout meiosis: compared to pre-and-post meiotic germline cell types, loops in meiotic early primary spermatocytes are more abundant, more variable between individual cells, and more evenly spread throughout the genome. In preparation for the first meiotic division, loops also include longer stretches of DNA, encompassing more than half of the total genome. These loop structures then influence the rate of recombination initiation and resolution as cross overs. In contrast, in later mature sperm stages, we find evidence of genome compaction, with loops being confined to the telomeric ends of the chromosomes. CONCLUSION Overall, we find that chromatin loops do not orchestrate the gene expression dynamics seen during spermatogenesis, but loops do play important roles in recombination, influencing the positions of DNA breakage and cross over events.
Collapse
Affiliation(s)
- Vera B Kaiser
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Colin A Semple
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
5
|
Brekke C, Gjuvsland AB, Berg P, Johnston SE. Independent genetic basis of meiotic crossover positioning and interference in domestic pigs. Sci Rep 2025; 15:9260. [PMID: 40102600 PMCID: PMC11920276 DOI: 10.1038/s41598-025-93003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Meiotic crossover patterning shows huge variation within and between chromosomes, individuals, and species, yet the molecular and evolutionary causes and consequences of this variation remain poorly understood. A key step is to understand the genetic architecture of the crossover rate, positioning, and interference to determine if these factors are governed by common or distinct genetic processes. Here, we investigate individual variation in autosomal crossover count, crossover position (measured as both intra-chromosomal shuffling and distance to telomere), and crossover interference in a large breeding population of domestic pigs (N = 82,474 gametes). We show that all traits are heritable in females at the gamete (h2 = 0.07-0.11) and individual mean levels (h2 = 0.08-0.41). In females, crossover count, and interference are strongly associated with RNF212, but crossover positioning is associated with SYCP2, MEI4, and PRDM9. Our results show that crossover positioning and rate/interference are driven by distinct genetic processes in female pigs and have the capacity to evolve independently.
Collapse
Affiliation(s)
- Cathrine Brekke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, Ås, 1433, Norway.
| | - Arne B Gjuvsland
- Norsvin, Storhamargata 44, Hamar, 2317, Norway
- Geno, Storhamargata 44, Hamar, 2317, Norway
| | - Peer Berg
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, Ås, 1433, Norway
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
6
|
Kitamura Y, Takahashi K, Maezawa S, Munakata Y, Sakashita A, Katz SP, Kaplan N, Namekawa SH. CTCF-mediated 3D chromatin sets up the gene expression program in the male germline. Nat Struct Mol Biol 2025:10.1038/s41594-025-01482-z. [PMID: 40033153 DOI: 10.1038/s41594-025-01482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2025] [Indexed: 03/05/2025]
Abstract
Spermatogenesis is a unidirectional differentiation process that generates haploid sperm, but how the gene expression program that directs this process is established is largely unknown. Here we determine the high-resolution three-dimensional (3D) chromatin architecture of mouse male germ cells during spermatogenesis and show that CTCF-mediated 3D chromatin dictates the gene expression program required for spermatogenesis. In undifferentiated spermatogonia, CTCF-mediated chromatin interactions between meiosis-specific super-enhancers (SEs) and their target genes precede activation of these SEs on autosomes. These meiotic SEs recruit the master transcription factor A-MYB (MYBL1) in meiotic spermatocytes, which strengthens their 3D contacts and instructs a burst of meiotic gene expression. We also find that at the mitosis-to-meiosis transition, the germline-specific Polycomb protein SCML2 facilitates the resolution of chromatin loops that are specific to mitotic spermatogonia. Moreover, SCML2 and A-MYB help shape the unique 3D chromatin organization of sex chromosomes during meiotic sex chromosome inactivation. We propose that CTCF-mediated 3D chromatin organization regulates epigenetic priming that directs unidirectional differentiation, thereby determining the cellular identity of the male germline.
Collapse
Affiliation(s)
- Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Kazuki Takahashi
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shawna P Katz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Zhang X, Liu Y, Wang N. Dynamic changes in histone lysine lactylation during meiosis prophase I in mouse spermatogenesis. Proc Natl Acad Sci U S A 2025; 122:e2418693122. [PMID: 39928879 PMCID: PMC11848400 DOI: 10.1073/pnas.2418693122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/05/2025] [Indexed: 02/12/2025] Open
Abstract
Male germ cells, which are responsible for producing millions of genetically diverse sperm through meiosis in the testis, rely on lactate as their central energy metabolite. Recent study has revealed that lactate induces epigenetic modification in cells through histone lysine lactylation. Here, we report dynamic histone lactylation at histone H4-lysine 5 (K5), -K8, and -K12 during meiosis prophase I in mouse spermatogenesis. By profiling the genome-wide occupancy of histone H4-K8 lactylation (H4K8la), which peaks at zygotene, our data show that H4K8la mark is observed at the promoters of genes exhibiting active expression with Gene Ontology functions enriched for meiosis. Notably, our data also demonstrate that H4K8la is closely associated with recombination hotspots, where machinery involved in the processing DNA double-stranded breaks, such as SPO11, DMC1, RAD51, and RPA2, is engaged. In addition, H4K8la was also detected at the meiosis-specific cohesion sites (marked by RAD21L and REC8) flanking the recombination hotspots. Functionally, our data show that lactate induces upregulation of key meiotic genes through H4K8la modifications. Additionally, H4K8la shows colocalization and interaction with PRDM9 at recombination hotspots. Finally, our data show that HBO1, a lactyltransferase, is highly expressed in meiotic germ cells. In vitro lactylation assays reveal that HBO1 induces H4K8la, and pharmacological inhibition of HBO1 in mice reduces H4K8la levels and disrupts meiosis. Collectively, our findings suggest that histone lactylation serves as an epigenetic mechanism that is involved in meiotic gene expression and recombination in male germ cells during spermatogenesis.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS66160
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Yan Liu
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS66160
| | - Ning Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS66160
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
8
|
Yan M, Zhang XM, Yang Z, Jia M, Liao R, Li J. Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus. Nat Commun 2025; 16:1485. [PMID: 39929797 PMCID: PMC11811026 DOI: 10.1038/s41467-024-55582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025] Open
Abstract
Chromosomes are spatially organized and functionally folded into a specific macro-structure in the nucleus. Recently, we and others created haploid cells with chromosome fusions. However, there is still lack of an effective strategy for precisely investigating how the genome copes with fusions. Here, we developed a down-sampling method to convert the populational Hi-C dataset into single cell-like Khimaira Matrix (K-matrix). K-matrix preserves not only the most prominent functional genomic features but also cell-to-cell variations. K-matrix-originated genome 3D models display spatial approach of fused chromosomes and minor global structure alterations. Combined with a layered positional decomposition analysis, our models indicate slight re-adjustment of chromosome distributions accordingly with an increasing tendency following more fusions involved. Nevertheless, the radial distribution of the A/B compartment is not affected dramatically. By contrast, natural populations harboring Rb fusions display significant alterations of chromosome radial location. Overall, K-matrix-originated models enable visualization of chromosomal reorganization with high resolution.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaoyu Merlin Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Miao Jia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Rongyu Liao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Álvarez-González L, Ruiz-Herrera A. Evolution of 3D Chromatin Folding. Annu Rev Anim Biosci 2025; 13:49-71. [PMID: 39531399 DOI: 10.1146/annurev-animal-111523-102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Studies examining the evolution of genomes have focused mainly on sequence conservation. However, the inner working of a cell implies tightly regulated crosstalk between complex gene networks controlled by small dispersed regulatory elements of physically contacting DNA regions. How these different levels of chromatin organization crosstalk in different species underpins the potential for genome evolutionary plasticity. We review the evolution of chromatin organization across the Animal Tree of Life. We introduce general aspects of the mode and tempo of genome evolution to later explore the multiple layers of genome organization. We argue that both genome and chromosome size modulate patterns of chromatin folding and that chromatin interactions facilitate the formation of lineage-specific chromosomal reorganizations, especially in germ cells. Overall, analyzing the mechanistic forces involved in the maintenance of chromatin structure and function of the germ line is critical for understanding genome evolution, maintenance, and inheritance.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| |
Collapse
|
10
|
Coulée M, de la Iglesia A, Blanco M, Gobé C, Lapoujade C, Ialy-Radio C, Alvarez-Gonzalez L, Meurice G, Ruiz-Herrera A, Fouchet P, Cocquet J, El Khattabi L. Chromatin environment-dependent effects of DOT1L on gene expression in male germ cells. Commun Biol 2025; 8:138. [PMID: 39875559 PMCID: PMC11775102 DOI: 10.1038/s42003-024-07393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments. On the other hand, it activates the expression of genes enriched in H3K79me2 and located in H3K27me3-poor/H3K27ac-rich environments, predominantly X chromosome-linked genes, after meiosis I. This coincides with a significant increase in DOT1L expression at this stage and a genome-wide acquisition of H3K79me2, particularly on the sex chromosomes. Taken together, our results show that H3K79me2 positively correlates with male germ cell genetic program throughout spermatogenesis, with DOT1L predominantly inhibiting rather than activating gene expression. Interestingly, while DOT1L appears to directly regulate the (re)activation of X genes following meiotic sex chromosome inactivation, it also controls the timely expression of (autosomal) differentiation genes during spermatogenesis.
Collapse
Affiliation(s)
- Manon Coulée
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | | | - Mélina Blanco
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Clara Gobé
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Clémentine Lapoujade
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Côme Ialy-Radio
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Lucia Alvarez-Gonzalez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Pierre Fouchet
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Julie Cocquet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
| | - Laïla El Khattabi
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
- Sorbonne Université, APHP Hôpital Pitié-Salpêtrière, Paris Brain Institute-ICM, INSERM U1127, CNRS, UMR 7225, Paris, France.
| |
Collapse
|
11
|
Pujol G, Marín-Gual L, González-Rodelas L, Álvarez-González L, Chauvigné F, Cerdà J, Teles M, Roher N, Ruiz-Herrera A. Short-term polystyrene nanoplastic exposure alters zebrafish male and female germline and reproductive outcomes, unveiling pollutant-impacted molecular pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136529. [PMID: 39556913 DOI: 10.1016/j.jhazmat.2024.136529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics pollution is a rising environmental concern whose impacts on biodiversity and human health are far from being understood. This is particularly salient in aquatic ecosystems, where the majority of species depend on external fertilization for reproduction. Here we evaluated the effects of a short-term exposure to engineered polystyrene nanoplastics (NPs) in the zebrafish germline to further explore their impact on reproduction. To this end, zebrafish (Danio rerio) were exposed to 5 mg/L of 45 nm polystyrene (PS)-NPs via water for 96 h. We show that, in males, nanoplastics induced testicular histological alterations with abnormal sperm clustering and chromatin compaction, resulting in viable spermatozoa but with reduced motility. Moreover, in females we observed an alteration in oocyte stages frequencies during oogenesis, possibly reflecting alterations in oocyte growth. RNA-sequencing analysis in male testis links nanoplastic induced alterations in the expression of genes involved in chromatin structure, meiosis and DNA double-strand break formation and repair progression, and gametes recognition. Flow cytometry analysis revealed that the observed effects in males were directly due to nanoplastics penetrating the testicular barrier and being internalized within germline cells. Overall, our results demonstrate that acute exposure to NPs can compromise reproductive fitness, underscoring the environmental and health impacts of NPs pollution.
Collapse
Affiliation(s)
- Gala Pujol
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - François Chauvigné
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
| | - Joan Cerdà
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
| | - Mariana Teles
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Nerea Roher
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
12
|
Elango K, Kekäläinen J. Putting Nose into Reproduction: Influence of Nasal and Reproductive Odourant Signaling on Male Reproduction. Mol Reprod Dev 2025; 92:e70010. [PMID: 39834068 DOI: 10.1002/mrd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Odourant receptors (ORs) are not restricted only to the nose, but also occur in many other organs and tissues, including the reproductive system. In fact, ORs are the most heavily expressed in testis than in any other extra-nasal tissue. Accumulating evidence suggests that olfactory and reproductive systems are both structurally and functionally linked and that these interconnections can influence various aspects of reproduction. In this article, we first review our current understanding of these interconnections and then collate accumulated evidence on the presence of ORs in the male reproductive system and sperm cells. We then investigate the potential role of female reproductive tract odourants in sperm chemotaxis and selection. Finally, since the existing evidence especially for sperm odor sensing capability and its physiological function are controversial, we also review potential reasons for the controversy and propose some ways to resolve the debate. Collectively, we conclude that reproductive odourant signaling may play an important, although currently largely unclear role in many key processes directly related to male fertility. However, since we lack holistic understanding of the functional significance of ORs and odor sensing pathways of the male reproductive system, more empirical research is warranted.
Collapse
Affiliation(s)
- Kamaraj Elango
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
13
|
Bondarieva A, Tachibana K. Genome folding and zygotic genome activation in mammalian preimplantation embryos. Curr Opin Genet Dev 2024; 89:102268. [PMID: 39383545 DOI: 10.1016/j.gde.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
The totipotent one-cell embryo, or zygote, gives rise to all germ layers and extraembryonic tissues that culminate in the development of a new organism. A zygote is produced at fertilisation by the fusion of differentiated germ cells, egg and sperm. The chromatin of parental genomes is reprogrammed and spatially reorganised in the early embryo. The 3D chromatin organisation is established de novo after fertilisation by a cohesin-dependent mechanism of loop extrusion that forms chromatin loops and topologically associating domains (TADs). Strengthening of TAD insulation is concomitant with the transcriptional 'awakening' of the embryo known as zygotic genome activation (ZGA). Whether and how these processes are causally linked remains poorly understood. In this review, we discuss recent findings of 3D chromatin organisation in mammalian gametes and embryos and how these are potentially related to ZGA.
Collapse
Affiliation(s)
- Anastasiia Bondarieva
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany.
| |
Collapse
|
14
|
Liu P, Nadeef S, Serag MF, Paytuví-Gallart A, Abadi M, Della Valle F, Radío S, Roda X, Dilmé Capó J, Adroub S, Hosny El Said N, Fallatah B, Celii M, Messa GM, Wang M, Li M, Tognini P, Aguilar-Arnal L, Habuchi S, Masri S, Sassone-Corsi P, Orlando V. PRC2-EZH1 contributes to circadian gene expression by orchestrating chromatin states and RNA polymerase II complex stability. EMBO J 2024; 43:6052-6075. [PMID: 39433902 PMCID: PMC11612306 DOI: 10.1038/s44318-024-00267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.
Collapse
Affiliation(s)
- Peng Liu
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maged F Serag
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Maram Abadi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Institute of Science, San Diego, CA, 92121, USA
| | - Santiago Radío
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Xènia Roda
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Jaïr Dilmé Capó
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nadine Hosny El Said
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mirko Celii
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gian Marco Messa
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Paola Tognini
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, 56126, Italy
| | - Lorena Aguilar-Arnal
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Mexico City, 04510, Mexico
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Selma Masri
- University of California Irvine, Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, Irvine, CA, 92697, USA
| | - Paolo Sassone-Corsi
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
15
|
Santos JL, Parra MT, Arévalo S, Guajardo-Grence A, Page J, Suja JÁ, García de la Vega C, Viera A. B Chromosome Transcriptional Inactivation in the Spermatogenesis of the Grasshopper Eyprepocnemis plorans. Genes (Basel) 2024; 15:1512. [PMID: 39766780 PMCID: PMC11675390 DOI: 10.3390/genes15121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES We analyzed the relationship between synapsis, recombination, and transcription during the spermatogenesis of the grasshopper Eyprepocnemis plorans carrying B chromosomes (type B1). METHODS The progression of synapsis was interpreted according to the dynamics of the cohesin subunit SMC3 axes. DNA double-strand breaks were revealed by RAD51 immunolabeling, while transcriptional activity was determined by the presence of RNA polymerase II phosphorylated at serine 2 (pRNApol II) immunolabeling. The two repressive epigenetic modifications, histone H3 methylated at lysine 9 (H3K9me3) and histone H2AX phosphorylated at serine 139 (γ-H2AX), were employed to reveal transcriptional inactivity. RESULTS During prophase I, spermatocytes with one B1 chromosome showed overall transcription except in the regions occupied by both the X and the B1 chromosomes. This transcriptional inactivity was accompanied by the accumulation of repressive epigenetic modifications. When two B1 chromosomes were present, they could appear as a fully synapsed monochiasmatic bivalent, showing intense H3K9me3 labeling and absence of pRNApol II, while γ-H2AX labeling was similar to that shown by the autosomes. CONCLUSIONS According to our results, B1 transcriptional inactivation was triggered in spermatogonia, long before the beginning of meiosis, and was accompanied by H3K9me3 heterochromatinization that was maintained throughout spermatogenesis. Moreover, when two B1 were present, the transcriptional inactivation did not preclude synapsis and recombination achievement by these chromosomes.
Collapse
Affiliation(s)
- Juan Luis Santos
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María Teresa Parra
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Sara Arévalo
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Andrea Guajardo-Grence
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Jesús Page
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - José Ángel Suja
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Carlos García de la Vega
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Alberto Viera
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| |
Collapse
|
16
|
Farooq MA, Gao S, Hassan MA, Huang Z, Rasheed A, Hearne S, Prasanna B, Li X, Li H. Artificial intelligence in plant breeding. Trends Genet 2024; 40:891-908. [PMID: 39117482 DOI: 10.1016/j.tig.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scientific domains including plant breeding. We explore the wider potential of AI tools in various facets of breeding, including data collection, unlocking genetic diversity within genebanks, and bridging the genotype-phenotype gap to facilitate crop breeding. This will enable the development of crop cultivars tailored to the projected future environments. Moreover, AI tools also hold promise for refining crop traits by improving the precision of gene-editing systems and predicting the potential effects of gene variants on plant phenotypes. Leveraging AI-enabled precision breeding can augment the efficiency of breeding programs and holds promise for optimizing cropping systems at the grassroots level. This entails identifying optimal inter-cropping and crop-rotation models to enhance agricultural sustainability and productivity in the field.
Collapse
Affiliation(s)
- Muhammad Amjad Farooq
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Muhammad Adeel Hassan
- Adaptive Cropping Systems Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sarah Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico
| | - Boddupalli Prasanna
- CIMMYT, International Centre for Research in Agroforestry (ICRAF) House, Nairobi 00100, Kenya
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China.
| |
Collapse
|
17
|
Milton AM, Marín-Gual L, Lister NC, McIntyre KL, Grady PGS, Laird MK, Bond DM, Hore TA, O’Neill RJ, Pask AJ, Renfree MB, Ruiz-Herrera A, Waters PD. Imprinted X chromosome inactivation in marsupials: The paternal X arrives at the egg with a silent DNA methylation profile. Proc Natl Acad Sci U S A 2024; 121:e2412185121. [PMID: 39190362 PMCID: PMC11388282 DOI: 10.1073/pnas.2412185121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
X chromosome inactivation (XCI) is an epigenetic process that results in the transcriptional silencing of one X chromosome in the somatic cells of females. This phenomenon is common to both eutherian and marsupial mammals, but there are fundamental differences. In eutherians, the X chosen for silencing is random. DNA methylation on the eutherian inactive X is high at transcription start sites (TSSs) and their flanking regions, resulting in universally high DNA methylation. This contrasts XCI in marsupials where the paternally derived X is always silenced, and in which DNA methylation is low at TSSs and flanking regions. Here, we examined the DNA methylation status of the tammar wallaby X chromosome during spermatogenesis to determine the DNA methylation profile of the paternal X prior to and at fertilization. Whole genome enzymatic methylation sequencing was carried out on enriched flow-sorted populations of premeiotic, meiotic, and postmeiotic cells. We observed that the X displayed a pattern of DNA methylation from spermatogonia to mature sperm that reflected the inactive X in female somatic tissue. Therefore, the paternal X chromosome arrives at the egg with a DNA methylation profile that reflects the transcriptionally silent X in adult female somatic tissue. We present this epigenetic signature as a candidate for the long sought-after imprint for paternal XCI in marsupials.
Collapse
Affiliation(s)
- Ashley M. Milton
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW2052, Australia
| | - Laia Marín-Gual
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
| | - Nicholas C. Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW2052, Australia
| | - Kim L. McIntyre
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW2052, Australia
| | - Patrick G. S. Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT06269
| | - Melanie K. Laird
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | - Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT06269
| | - Andrew J. Pask
- School of BioSciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
18
|
Lima AC, Okhovat M, Stendahl AM, VanCampen J, Nevonen KA, Herrera J, Li W, Harshman L, Yang R, Fedorov LM, Vigh-Conrad KA, Ahituv N, Conrad DF, Carbone L. Deletion of an evolutionarily conserved TAD boundary compromises spermatogenesis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602428. [PMID: 39026739 PMCID: PMC11257473 DOI: 10.1101/2024.07.08.602428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Spermatogenesis is a complex process that can be disrupted by genetic and epigenetic changes, potentially leading to male infertility. Recent research has rapidly increased the number of protein coding mutations causally linked to impaired spermatogenesis in humans and mice. However, the role of non-coding mutations remains largely unexplored. As a case study to evaluate the effects of non-coding mutations on spermatogenesis, we first identified an evolutionarily conserved topologically associated domain (TAD) boundary near two genes with important roles in mammalian testis function: Dmrtb1 and Lrp8 . We then used CRISPR-Cas9 to generate a mouse line where 26kb of the boundary was removed including a strong and evolutionarily conserved CTCF binding site. ChIP-seq and Hi-C experiments confirmed the removal of the CTCF site and a resulting increase in the DNA-DNA interactions across the domain boundary. Mutant mice displayed significant changes in testis gene expression, abnormal testis histology, a 35% drop in the estimated efficiency of spermatogenesis and a 28% decrease in daily sperm production compared to littermate controls. Despite these quantitative changes in testis function, mutant mice show no significant changes in fertility. This suggests that non-coding deletions affecting testis gene regulation may have smaller effects on fertility compared to coding mutations of the same genes. Our results demonstrate that disruption of a TAD boundary can have a negative impact on sperm production and highlight the importance of considering non-coding mutations in the analysis of patients with male infertility.
Collapse
|
19
|
Cao Z, Wolynes PG. Motorized chain models of the ideal chromosome. Proc Natl Acad Sci U S A 2024; 121:e2407077121. [PMID: 38954553 PMCID: PMC11252987 DOI: 10.1073/pnas.2407077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
An array of motor proteins consumes chemical energy in setting up the architectures of chromosomes. Here, we explore how the structure of ideal polymer chains is influenced by two classes of motors. The first class which we call "swimming motors" acts to propel the chromatin fiber through three-dimensional space. They represent a caricature of motors such as RNA polymerases. Previously, they have often been described by adding a persistent flow onto Brownian diffusion of the chain. The second class of motors, which we call "grappling motors" caricatures the loop extrusion processes in which segments of chromatin fibers some distance apart are brought together. We analyze these models using a self-consistent variational phonon approximation to a many-body Master equation incorporating motor activities. We show that whether the swimming motors lead to contraction or expansion depends on the susceptibility of the motors, that is, how their activity depends on the forces they must exert. Grappling motors in contrast to swimming motors lead to long-ranged correlations that resemble those first suggested for fractal globules and that are consistent with the effective interactions inferred by energy landscape analyses of Hi-C data on the interphase chromosome.
Collapse
Affiliation(s)
- Zhiyu Cao
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Physics, Rice University, Houston, TX77005
| |
Collapse
|
20
|
Kitamura Y, Namekawa SH. Epigenetic priming in the male germline. Curr Opin Genet Dev 2024; 86:102190. [PMID: 38608568 PMCID: PMC11162906 DOI: 10.1016/j.gde.2024.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Epigenetic priming presets chromatin states that allow the rapid induction of gene expression programs in response to differentiation cues. In the germline, it provides the blueprint for sexually dimorphic unidirectional differentiation. In this review, we focus on epigenetic priming in the mammalian male germline and discuss how cellular memories are regulated and inherited to the next generation. During spermatogenesis, epigenetic priming predetermines cellular memories that ensure the lifelong maintenance of spermatogonial stem cells and their subsequent commitment to meiosis and to the production of haploid sperm. The paternal chromatin state is also essential for the recovery of totipotency after fertilization and contributes to paternal epigenetic inheritance. Thus, epigenetic priming establishes stable but reversible chromatin states during spermatogenesis and enables epigenetic inheritance and reprogramming in the next generation.
Collapse
Affiliation(s)
- Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Biot M, Toth A, Brun C, Guichard L, de Massy B, Grey C. Principles of chromosome organization for meiotic recombination. Mol Cell 2024; 84:1826-1841.e5. [PMID: 38657614 DOI: 10.1016/j.molcel.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
In meiotic cells, chromosomes are organized as chromatin loop arrays anchored to a protein axis. This organization is essential to regulate meiotic recombination, from DNA double-strand break (DSB) formation to their repair. In mammals, it is unknown how chromatin loops are organized along the genome and how proteins participating in DSB formation are tethered to the chromosome axes. Here, we identify three categories of axis-associated genomic sites: PRDM9 binding sites, where DSBs form; binding sites of the insulator protein CTCF; and H3K4me3-enriched sites. We demonstrate that PRDM9 promotes the recruitment of MEI4 and IHO1, two proteins essential for DSB formation. In turn, IHO1 anchors DSB sites to the axis components HORMAD1 and SYCP3. We discovered that IHO1, HORMAD1, and SYCP3 are associated at the DSB ends during DSB repair. Our results highlight how interactions of proteins with specific genomic elements shape the meiotic chromosome organization for recombination.
Collapse
Affiliation(s)
- Mathilde Biot
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Attila Toth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Dresden, Germany
| | - Christine Brun
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Leon Guichard
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Bernard de Massy
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Corinne Grey
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
22
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
23
|
Fujiwara Y, Hada M, Fukuda Y, Koga C, Inoue E, Okada Y. Isolation of stage-specific spermatogenic cells by dynamic histone incorporation and removal in spermatogenesis. Cytometry A 2024; 105:297-307. [PMID: 38087848 DOI: 10.1002/cyto.a.24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 04/19/2024]
Abstract
Due to the lack of an efficient in vitro spermatogenesis system, studies on mammalian spermatogenesis require the isolation of specific germ cell populations for further analyses. BSA gradient and elutriation have been used for several decades to purify testicular germ cells; more recently, flow cytometric cell sorting has become popular. Although each method has its advantages and disadvantages and is used depending on the purpose of the experiment, reliance on flow cytometric cell sorting is expected to be more prevalent because fewer cells can be managed. However, the currently used flow cytometric cell sorting method for testicular germ cells relies on karyotypic differences via DNA staining. Thus, it remains challenging to separate post-meiotic haploid cells (spermatids) according to their differentiation stage despite significant variations in morphology and chromatin state. In this study, we developed a method for finely separating testicular germ cells using VC mice carrying fluorescently tagged histones. This method enables the separation of spermatogonia, spermatocytes, and spermatids based on the intensity of histone fluorescence and cell size. Combined with a DNA staining dye, this method separates spermatids after elongation according to each spermiogenic stage. Although the necessity for a specific transgenic mouse line is less versatile, this method is expected to be helpful for the isolation of testicular germ cell populations because it is highly reproducible and independent of complex cell sorter settings and staining conditions.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masashi Hada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Fukuda
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Chizuko Koga
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Erina Inoue
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Okada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Cheng G, Pratto F, Brick K, Li X, Alleva B, Huang M, Lam G, Camerini-Otero RD. High resolution maps of chromatin reorganization through mouse meiosis reveal novel features of the 3D meiotic structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586627. [PMID: 38903112 PMCID: PMC11188084 DOI: 10.1101/2024.03.25.586627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
When germ cells transition from the mitotic cycle into meiotic prophase I (MPI), chromosomes condense into an array of chromatin loops that are required to promote homolog pairing and genetic recombination. To identify the changes in chromosomal conformation, we isolated nuclei on a trajectory from spermatogonia to the end of MPI. At each stage along this trajectory, we built genomic interaction maps with the highest temporal and spatial resolution to date. The changes in chromatin folding coincided with a concurrent decline in mitotic cohesion and a rise in meiotic cohesin complexes. We found that the stereotypical large-scale A and B compartmentalization was lost during meiotic prophase I alongside the loss of topological associating domains (TADs). Still, local subcompartments were detected and maintained throughout meiosis. The enhanced Micro-C resolution revealed that, despite the loss of TADs, higher frequency contact sites between two loci were detectable during meiotic prophase I coinciding with CTCF bound sites. The pattern of interactions around these CTCF sites with their neighboring loci showed that CTCF sites were often anchoring the meiotic loops. Additionally, the localization of CTCF to the meiotic axes indicated that these anchors were at the base of loops. Strikingly, even in the face of the dramatic reconfiguration of interphase chromatin into a condensed loop-array, the interactions between regulatory elements remained well preserved. This establishes a potential mechanism for how the meiotic chromatin maintains active transcription within a highly structured genome. In summary, the high temporal and spatial resolution of these data revealed previously unappreciated aspects of mammalian meiotic chromatin organization.
Collapse
Affiliation(s)
- Gang Cheng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Florencia Pratto
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Brick
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Xin Li
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Alleva
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Mini Huang
- Present address: Sun Yat-Sen University, School of Medicine, Shen Zhen, China
| | - Gabriel Lam
- Present address: RNA Regulation Section, NIA, National Institutes of Health, Baltimore, MD, USA
| | | |
Collapse
|
25
|
Noguchi Y, Onodera Y, Miyamoto T, Maruoka M, Kosako H, Suzuki J. In vivo CRISPR screening directly targeting testicular cells. CELL GENOMICS 2024; 4:100510. [PMID: 38447574 PMCID: PMC10943590 DOI: 10.1016/j.xgen.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
CRISPR-Cas9 short guide RNA (sgRNA) library screening is a powerful approach to understand the molecular mechanisms of biological phenomena. However, its in vivo application is currently limited. Here, we developed our previously established in vitro revival screening method into an in vivo one to identify factors involved in spermatogenesis integrity by utilizing sperm capacitation as an indicator. By introducing an sgRNA library into testicular cells, we successfully pinpointed the retinal degeneration 3 (Rd3) gene as a significant factor in spermatogenesis. Single-cell RNA sequencing (scRNA-seq) analysis highlighted the high expression of Rd3 in round spermatids, and proteomics analysis indicated that Rd3 interacts with mitochondria. To search for cell-type-specific signaling pathways based on scRNA-seq and proteomics analyses, we developed a computational tool, Hub-Explorer. Through this, we discovered that Rd3 modulates oxidative stress by regulating mitochondrial distribution upon ciliogenesis induction. Collectively, our screening system provides a valuable in vivo approach to decipher molecular mechanisms in biological processes.
Collapse
Affiliation(s)
- Yuki Noguchi
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun Suzuki
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
26
|
Hof-Michel S, Cigoja L, Huhn S, Bökel C. Rel governs loser elimination during stem cell competition in the Drosophila testis. Eur J Cell Biol 2024; 103:151375. [PMID: 37995529 DOI: 10.1016/j.ejcb.2023.151375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
In the Drosophila testis, a group of stromal cells termed hub provides multiple niche signals for the surrounding germline and somatic stem cells. Stem cells of both populations compete for physical retention in the niche, and clones unable to transduce any one niche signal are rapidly eliminated from the stem cell pool by differentiation. We have mapped the transcriptomes of isolated somatic cyst stem cells and differentiated cyst cells, and found that the stem cells but not their differentiated progeny exhibit the signature of an innate immune response including the NF-κB transcription factor Relish (Rel). Related signalling pathways had previously implicated in cell competition in larval epithelia, prompting the question of whether NF-κB signalling was, despite the clear differences between the two competition scenarios, also involved in stem cell competition in the testis. Here we show i) that in the testis Rel is dispensable for stemness, ii) that loss of Rel or the upstream receptor Toll suppresses loser elimination following a variety of different triggers used to induce loser fate, and iii) that clonal Rel activation is sufficient for the displacement of neutral or winner cells from the niche, even if these cells otherwise retain stem cell properties.
Collapse
Affiliation(s)
- Silvana Hof-Michel
- Dept. of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Ljubinka Cigoja
- Dept. of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Sabina Huhn
- Dept. of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Christian Bökel
- Core Facility Confocal and Multiphoton Microscopy, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
27
|
Yin Q, Yang CH, Strelkova OS, Wu J, Sun Y, Gopalan S, Yang L, Dekker J, Fazzio TG, Li XZ, Gibcus J, Rando OJ. Revisiting chromatin packaging in mouse sperm. Genome Res 2023; 33:2079-2093. [PMID: 38129076 PMCID: PMC10760523 DOI: 10.1101/gr.277845.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Mammalian sperm show an unusual and heavily compacted genomic packaging state. In addition to its role in organizing the compact and hydrodynamic sperm head, it has been proposed that sperm chromatin architecture helps to program gene expression in the early embryo. Scores of genome-wide surveys in sperm have reported patterns of chromatin accessibility, nucleosome localization, histone modification, and chromosome folding. Here, we revisit these studies in light of recent reports that sperm obtained from the mouse epididymis are contaminated with low levels of cell-free chromatin. In the absence of proper sperm lysis, we readily recapitulate multiple prominent genome-wide surveys of sperm chromatin, suggesting that these profiles primarily reflect contaminating cell-free chromatin. Removal of cell-free DNA, and appropriate lysis conditions, are together required to reveal a sperm chromatin state distinct from most previous reports. Using ATAC-seq to explore relatively accessible genomic loci, we identify a landscape of open loci associated with early development and transcriptional control. Histone modification and chromosome folding profiles also strongly support the hypothesis that prior studies suffer from contamination, but technical challenges associated with reliably preserving the architecture of the compacted sperm head prevent us from confidently assaying true localization patterns for these epigenetic marks. Together, our studies show that our knowledge of chromosome packaging in mammalian sperm remains largely incomplete, and motivate future efforts to more accurately characterize genome organization in mature sperm.
Collapse
Affiliation(s)
- Qiangzong Yin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Chih-Hsiang Yang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Olga S Strelkova
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Jingyi Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yu Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Sneha Gopalan
- Department of Molecular Cellular and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
- Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Thomas G Fazzio
- Department of Molecular Cellular and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Johan Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
28
|
Jessberger G, Várnai C, Stocsits RR, Tang W, Stary G, Peters JM. Cohesin and CTCF do not assemble TADs in Xenopus sperm and male pronuclei. Genome Res 2023; 33:2094-2107. [PMID: 38129077 PMCID: PMC10760524 DOI: 10.1101/gr.277865.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Paternal genomes are compacted during spermiogenesis and decompacted following fertilization. These processes are fundamental for inheritance but incompletely understood. We analyzed these processes in the frog Xenopus laevis, whose sperm can be assembled into functional pronuclei in egg extracts in vitro. In such extracts, cohesin extrudes DNA into loops, but in vivo cohesin only assembles topologically associating domains (TADs) at the mid-blastula transition (MBT). Why cohesin assembles TADs only at this stage is unknown. We first analyzed genome architecture in frog sperm and compared it to human and mouse. Our results indicate that sperm genome organization is conserved between frogs and humans and occurs without formation of TADs. TADs can be detected in mouse sperm samples, as reported, but these structures might originate from somatic chromatin contaminations. We therefore discuss the possibility that the absence of TADs might be a general feature of vertebrate sperm. To analyze sperm genome remodeling upon fertilization, we reconstituted male pronuclei in Xenopus egg extracts. In pronuclei, chromatin compartmentalization increases, but cohesin does not accumulate at CTCF sites and assemble TADs. However, if pronuclei are formed in the presence of exogenous CTCF, CTCF binds to its consensus sites, and cohesin accumulates at these and forms short-range chromatin loops, which are preferentially anchored at CTCF's N terminus. These results indicate that TADs are only assembled at MBT because before this stage CTCF sites are not occupied and cohesin only forms short-range chromatin loops.
Collapse
Affiliation(s)
- Gregor Jessberger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
29
|
He J, Yan A, Chen B, Huang J, Kee K. 3D genome remodeling and homologous pairing during meiotic prophase of mouse oogenesis and spermatogenesis. Dev Cell 2023; 58:3009-3027.e6. [PMID: 37963468 DOI: 10.1016/j.devcel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
During meiosis, the chromatin and transcriptome undergo prominent switches. Although recent studies have explored the genome reorganization during spermatogenesis, the chromatin remodeling in oogenesis and characteristics of homologous pairing remain largely elusive. We comprehensively compared chromatin structures and transcriptomes at successive substages of meiotic prophase in both female and male mice using low-input high-through chromosome conformation capture (Hi-C) and RNA sequencing (RNA-seq). Compartments and topologically associating domains (TADs) gradually disappeared and slowly recovered in both sexes. We found that homologs adopted different sex-conserved pairing strategies prior to and after the leptotene-to-zygotene transition, changing from long interspersed nuclear element (LINE)-enriched compartments B to short interspersed nuclear element (SINE)-enriched compartments A. We complemented marker genes and predicted the sex-specific meiotic sterile genes for each substage. This study provides valuable insights into the similarities and distinctions between sexes in chromosome architecture, homologous pairing, and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Jing He
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - An Yan
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bo Chen
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jiahui Huang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
Kitamura Y, Takahashi K, Maezawa S, Munakata Y, Sakashita A, Kaplan N, Namekawa SH. CTCF-mediated 3D chromatin predetermines the gene expression program in the male germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569508. [PMID: 38076840 PMCID: PMC10705413 DOI: 10.1101/2023.11.30.569508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Spermatogenesis is a unidirectional differentiation process that generates haploid sperm, but how the gene expression program that directs this process is established is largely unknown. Here we determine the high-resolution 3D chromatin architecture of male germ cells during spermatogenesis and show that CTCF-mediated 3D chromatin predetermines the gene expression program required for spermatogenesis. In undifferentiated spermatogonia, CTCF-mediated chromatin contacts on autosomes pre-establish meiosis-specific super-enhancers (SE). These meiotic SE recruit the master transcription factor A-MYB in meiotic spermatocytes, which strengthens their 3D contacts and instructs a burst of meiotic gene expression. We also find that at the mitosis-to-meiosis transition, the germline-specific Polycomb protein SCML2 resolves chromatin loops that are specific to mitotic spermatogonia. Moreover, SCML2 and A-MYB establish the unique 3D chromatin organization of sex chromosomes during meiotic sex chromosome inactivation. We propose that CTCF-mediated 3D chromatin organization enforces epigenetic priming that directs unidirectional differentiation, thereby determining the cellular identity of the male germline.
Collapse
Affiliation(s)
- Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Kazuki Takahashi
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, 281-8510, Japan
| | - Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582 Japan
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
31
|
Jehangir M, Ahmad SF, Singchat W, Panthum T, Thong T, Aramsirirujiwet P, Lisachov A, Muangmai N, Han K, Koga A, Duengkae P, Srikulnath K. Hi-C sequencing unravels dynamic three-dimensional chromatin interactions in muntjac lineage: insights from chromosome fusions in Fea's muntjac genome. Chromosome Res 2023; 31:34. [PMID: 38017297 DOI: 10.1007/s10577-023-09744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Eukaryotes have varying numbers and structures of characteristic chromosomes across lineages or species. The evolutionary trajectory of species may have been affected by spontaneous genome rearrangements. Chromosome fusion drastically alters karyotypes. However, the mechanisms and consequences of chromosome fusions, particularly in muntjac species, are poorly understood. Recent research-based advancements in three-dimensional (3D) genomics, particularly high-throughput chromatin conformation capture (Hi-C) sequencing, have allowed for the identification of chromosome fusions and provided mechanistic insights into three muntjac species: Muntiacus muntjak, M. reevesi, and M. crinifrons. This study aimed to uncover potential genome rearrangement patterns in the threatened species Fea's muntjac (Muntiacus feae), which have not been previously examined for such characteristics. Deep Hi-C sequencing (31.42 × coverage) was performed to reveal the 3D chromatin architecture of the Fea's muntjac genome. Patterns of repeated chromosome fusions that were potentially mediated by high-abundance transposable elements were identified. Comparative Hi-C maps demonstrated linkage homology between the sex chromosomes in Fea's muntjac and autosomes in M. reevesi, indicating that fusions may have played a crucial role in the evolution of the sex chromosomes of the lineage. The species-level dynamics of topologically associated domains (TADs) suggest that TAD organization could be altered by differential chromosome interactions owing to repeated chromosome fusions. However, research on the effect of TADs on muntjac genome evolution is insufficient. This study generated Hi-C data for the Fea's muntjac, providing a genomic resource for future investigations of the evolutionary patterns of chromatin conformation at the chromosomal level.
Collapse
Affiliation(s)
- Maryam Jehangir
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Pakpoom Aramsirirujiwet
- Deparment of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, 10900, Thailand
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan, 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan, 31116, Korea
| | - Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
32
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
33
|
Hehmeyer J, Spitz F, Marlow H. Shifting landscapes: the role of 3D genomic organizations in gene regulatory strategies. Curr Opin Genet Dev 2023; 81:102064. [PMID: 37390583 PMCID: PMC10547022 DOI: 10.1016/j.gde.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
3D genome folding enables the physical storage of chromosomes into the compact volume of a cell's nucleus, allows for the accurate segregation of chromatin to daughter cells, and has been shown to be tightly coupled to the way in which genetic information is converted into transcriptional programs [1-3]. Importantly, this link between chromatin architecture and gene regulation is a selectable feature in which modifications to chromatin organization accompany, or perhaps even drive the establishment of new regulatory strategies with enduring impacts on animal body plan complexity. Here, we discuss the nature of different 3D genome folding systems found across the tree of life, with particular emphasis on metazoans, and the relative influence of these systems on gene regulation. We suggest how the properties of these folding systems have influenced regulatory strategies employed by different lineages and may have catalyzed the partitioning and specialization of genetic programs that enabled multicellularity and organ-grade body plan complexity.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - François Spitz
- Department of Human Genetics, The University of Chicago, USA
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
34
|
Orsi GA, Tortora MMC, Horard B, Baas D, Kleman JP, Bucevičius J, Lukinavičius G, Jost D, Loppin B. Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis. Nat Commun 2023; 14:4187. [PMID: 37443316 PMCID: PMC10345107 DOI: 10.1038/s41467-023-39908-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of the emerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as ~25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal-like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.
Collapse
Affiliation(s)
- Guillermo A Orsi
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38000, Grenoble, France.
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Dominique Baas
- Laboratoire MeLiS, CNRS UMR 52684, Inserm U 1314, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, UMR5075, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
35
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
36
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
37
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
38
|
Wang S, Luo Z, Liu W, Hu T, Zhao Z, Rosenfeld MG, Song X. The 3D genome and its impacts on human health and disease. LIFE MEDICINE 2023; 2:lnad012. [PMID: 39872109 PMCID: PMC11749360 DOI: 10.1093/lifemedi/lnad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 01/29/2025]
Abstract
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.
Collapse
Affiliation(s)
- Siqi Wang
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhengyu Luo
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiguang Liu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tengfei Hu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
39
|
Alexander AK, Rice EJ, Lujic J, Simon LE, Tanis S, Barshad G, Zhu L, Lama J, Cohen PE, Danko CG. A-MYB and BRDT-dependent RNA Polymerase II pause release orchestrates transcriptional regulation in mammalian meiosis. Nat Commun 2023; 14:1753. [PMID: 36990976 PMCID: PMC10060231 DOI: 10.1038/s41467-023-37408-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
During meiotic prophase I, spermatocytes must balance transcriptional activation with homologous recombination and chromosome synapsis, biological processes requiring extensive changes to chromatin state. We explored the interplay between chromatin accessibility and transcription through prophase I of mammalian meiosis by measuring genome-wide patterns of chromatin accessibility, nascent transcription, and processed mRNA. We find that Pol II is loaded on chromatin and maintained in a paused state early during prophase I. In later stages, paused Pol II is released in a coordinated transcriptional burst mediated by the transcription factors A-MYB and BRDT, resulting in ~3-fold increase in transcription. Transcriptional activity is temporally and spatially segregated from key steps of meiotic recombination: double strand breaks show evidence of chromatin accessibility earlier during prophase I and at distinct loci from those undergoing transcriptional activation, despite shared chromatin marks. Our findings reveal mechanisms underlying chromatin specialization in either transcription or recombination in meiotic cells.
Collapse
Affiliation(s)
- Adriana K Alexander
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jelena Lujic
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leah E Simon
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Stephanie Tanis
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Lina Zhu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jyoti Lama
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, USA.
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
40
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
41
|
Siebert-Kuss LM, Krenz H, Tekath T, Wöste M, Di Persio S, Terwort N, Wyrwoll MJ, Cremers JF, Wistuba J, Dugas M, Kliesch S, Schlatt S, Tüttelmann F, Gromoll J, Neuhaus N, Laurentino S. Transcriptome analyses in infertile men reveal germ cell-specific expression and splicing patterns. Life Sci Alliance 2023; 6:6/2/e202201633. [PMID: 36446526 PMCID: PMC9713473 DOI: 10.26508/lsa.202201633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The process of spermatogenesis-when germ cells differentiate into sperm-is tightly regulated, and misregulation in gene expression is likely to be involved in the physiopathology of male infertility. The testis is one of the most transcriptionally rich tissues; nevertheless, the specific gene expression changes occurring during spermatogenesis are not fully understood. To better understand gene expression during spermatogenesis, we generated germ cell-specific whole transcriptome profiles by systematically comparing testicular transcriptomes from tissues in which spermatogenesis is arrested at successive steps of germ cell differentiation. In these comparisons, we found thousands of differentially expressed genes between successive germ cell types of infertility patients. We demonstrate our analyses' potential to identify novel highly germ cell-specific markers (TSPY4 and LUZP4 for spermatogonia; HMGB4 for round spermatids) and identified putatively misregulated genes in male infertility (RWDD2A, CCDC183, CNNM1, SERF1B). Apart from these, we found thousands of genes showing germ cell-specific isoforms (including SOX15, SPATA4, SYCP3, MKI67). Our approach and dataset can help elucidate genetic and transcriptional causes for male infertility.
Collapse
Affiliation(s)
- Lara M Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Henrike Krenz
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Nicole Terwort
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jann-Frederik Cremers
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany.,Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| |
Collapse
|
42
|
Waters PD, Graves JAM, Whiteley SL, Georges A, Ruiz-Herrera A. Three dimensions of thermolabile sex determination. Bioessays 2023; 45:e2200123. [PMID: 36529688 DOI: 10.1002/bies.202200123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The molecular mechanism of temperature-dependent sex determination (TSD) is a long-standing mystery. How is the thermal signal sensed, captured and transduced to regulate key sex genes? Although there is compelling evidence for pathways via which cells capture the temperature signal, there is no known mechanism by which cells transduce those thermal signals to affect gene expression. Here we propose a novel hypothesis we call 3D-TSD (the three dimensions of thermolabile sex determination). We postulate that the genome has capacity to remodel in response to temperature by changing 3D chromatin conformation, perhaps via temperature-sensitive transcriptional condensates. This could rewire enhancer-promoter interactions to alter the expression of key sex-determining genes. This hypothesis can accommodate monogenic or multigenic thermolabile sex-determining systems, and could be combined with upstream thermal sensing and transduction to the epigenome to commit gonadal fate.
Collapse
Affiliation(s)
- Paul D Waters
- Faculty of Science, School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW, Australia
| | - Jennifer A Marshall Graves
- Department of Environment and Genetics, La Trobe University, Bundoora, Australia.,Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Sarah L Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
43
|
Kariti H, Feld T, Kaplan N. Hypothesis-driven probabilistic modelling enables a principled perspective of genomic compartments. Nucleic Acids Res 2023; 51:1103-1119. [PMID: 36629266 PMCID: PMC9943678 DOI: 10.1093/nar/gkac1258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
The Hi-C method has revolutionized the study of genome organization, yet interpretation of Hi-C interaction frequency maps remains a major challenge. Genomic compartments are a checkered Hi-C interaction pattern suggested to represent the partitioning of the genome into two self-interacting states associated with active and inactive chromatin. Based on a few elementary mechanistic assumptions, we derive a generative probabilistic model of genomic compartments, called deGeco. Testing our model, we find it can explain observed Hi-C interaction maps in a highly robust manner, allowing accurate inference of interaction probability maps from extremely sparse data without any training of parameters. Taking advantage of the interpretability of the model parameters, we then test hypotheses regarding the nature of genomic compartments. We find clear evidence of multiple states, and that these states self-interact with different affinities. We also find that the interaction rules of chromatin states differ considerably within and between chromosomes. Inspecting the molecular underpinnings of a four-state model, we show that a simple classifier can use histone marks to predict the underlying states with 87% accuracy. Finally, we observe instances of mixed-state loci and analyze these loci in single-cell Hi-C maps, finding that mixing of states occurs mainly at the cell level.
Collapse
Affiliation(s)
- Hagai Kariti
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tal Feld
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel,Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Noam Kaplan
- To whom correspondence should be addressed. Tel: +972 4 8295293;
| |
Collapse
|
44
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Satouh Y, Sato K. Reorganization, specialization, and degradation of oocyte maternal components for early development. Reprod Med Biol 2023; 22:e12505. [PMID: 36726596 PMCID: PMC9884333 DOI: 10.1002/rmb2.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| |
Collapse
|
46
|
Ling X, Liu X, Jiang S, Fan L, Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:42. [PMID: 36539553 PMCID: PMC9768101 DOI: 10.1186/s13619-022-00145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Cell fate transition is a fascinating process involving complex dynamics of three-dimensional (3D) chromatin organization and phase separation, which play an essential role in cell fate decision by regulating gene expression. Phase separation is increasingly being considered a driving force of chromatin folding. In this review, we have summarized the dynamic features of 3D chromatin and phase separation during physiological and pathological cell fate transitions and systematically analyzed recent evidence of phase separation facilitating the chromatin structure. In addition, we discuss current advances in understanding how phase separation contributes to physical and functional enhancer-promoter contacts. We highlight the functional roles of 3D chromatin organization and phase separation in cell fate transitions, and more explorations are required to study the regulatory relationship between 3D chromatin organization and phase separation. 3D chromatin organization (shown by Hi-C contact map) and phase separation are highly dynamic and play functional roles during early embryonic development, cell differentiation, somatic reprogramming, cell transdifferentiation and pathogenetic process. Phase separation can regulate 3D chromatin organization directly, but whether 3D chromatin organization regulates phase separation remains unclear.
Collapse
Affiliation(s)
- Xiaoru Ling
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xinyi Liu
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Shaoshuai Jiang
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Fan
- grid.258164.c0000 0004 1790 3548Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong China
| | - Junjun Ding
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.13291.380000 0001 0807 1581West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
47
|
Álvarez-González L, Arias-Sardá C, Montes-Espuña L, Marín-Gual L, Vara C, Lister NC, Cuartero Y, Garcia F, Deakin J, Renfree MB, Robinson TJ, Martí-Renom MA, Waters PD, Farré M, Ruiz-Herrera A. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals. Cell Rep 2022; 41:111839. [PMID: 36543130 DOI: 10.1016/j.celrep.2022.111839] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Laia Montes-Espuña
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yasmina Cuartero
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Francisca Garcia
- Servei de Cultius Cel.lulars-SCAC, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Janine Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - Marilyn B Renfree
- School of Biosciences, The University of Melbourne, Victoria, VIC 3010, Australia
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Marc A Martí-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
48
|
Marín-Gual L, González-Rodelas L, M. Garcias M, Kratochvíl L, Valenzuela N, Georges A, Waters PD, Ruiz-Herrera A. Meiotic chromosome dynamics and double strand break formation in reptiles. Front Cell Dev Biol 2022; 10:1009776. [PMID: 36313577 PMCID: PMC9597255 DOI: 10.3389/fcell.2022.1009776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.
Collapse
Affiliation(s)
- Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria M. Garcias
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Aurora Ruiz-Herrera,
| |
Collapse
|
49
|
Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line. Proc Natl Acad Sci U S A 2022; 119:e2204071119. [PMID: 36179046 PMCID: PMC9549395 DOI: 10.1073/pnas.2204071119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This work originated from mining of cancer genome data and proceeded to analyze the effects of ectopic expression of meiotic cohesins in mitotic cells in culture. In the process, apart from conclusively answering the question on mechanisms for RAD21L toxicity and its underrepresentation in tumor transcriptomes, we found an association of meiotic cohesin binding with BORIS/CTCFL sites in the normal testis. We also elucidated the patterns and outcomes of meiotic cohesin binding to chromosomes in model cell lines. Furthermore, we uncovered that RAD21L-based meiotic cohesin possesses a self-contained chromosome restructuring activity able to trigger sustainable but imperfect mitotic arrest leading to chromosomal instability. The discovered epigenomic and genetic mechanisms can be relevant to chromosome instability in cancer. Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1. While the induction of the REC8 complex resulted in a mild mitotic phenotype, the expression of the RAD21L complex produced an arrested but viable cell pool, thus providing a source of DNA damage, mitotic chromosome missegregation, sporadic polyteny, and altered gene expression. We also found that genomic binding profiles of ectopically expressed meiotic cohesin complexes were reminiscent of their corresponding specific binding patterns in testis. Furthermore, meiotic cohesins were found to localize to the same sites as BORIS/CTCFL, rather than CTCF sites normally associated with the somatic cohesin complex. These findings highlight the existence of a germline epigenomic memory that is conserved in cells that normally do not express meiotic genes. Our results reveal a mechanism of action by unduly expressed meiotic cohesins that potentially links them to aneuploidy and chromosomal mutations in affected cells.
Collapse
|
50
|
Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C. Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 2022; 114:110450. [PMID: 35995261 DOI: 10.1016/j.ygeno.2022.110450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
DNA methylation is one of the key epigenetic regulatory mechanisms in development and spermatogenesis. However, the dynamic regulatory mechanisms of genome-wide DNA methylation during testicular development remain largely unknown. Herein, we generated a single-base resolution DNA methylome and transcriptome atlas of precocious porcine testicular tissues across three developmental stages (1, 75, and 150 days old). The results showed that the dynamic methylation patterns were directly related to the expression of the DNMT3A gene. Conjoint analysis revealed a negative regulatory pattern between promoter methylation and the positive regulation of 3'-untranslated region (3'UTR) methylation. Mechanistically, the decrease in promoter methylation affected the upregulation of meiosis-related genes, such as HORMAD1, SPO11, and SYCE1. Demethylation in the 3'UTR induced the downregulation of the INHBA gene and knockdown of INHBA inhibited cell proliferation by reducing the synthesis of activin A. These findings contribute to exploring the regulatory mechanisms of DNA methylation in testicular development.
Collapse
Affiliation(s)
- Yang Anqi
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yan Saina
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Chen Chujie
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yin Yanfei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Tang Xiangwei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ma Jiajia
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiang Jiaojiao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ran Maoliang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| | - Chen Bin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|