1
|
Abdul-Ridha A, de Zhang LA, Betrie AH, Deluigi M, Vaid TM, Whitehead A, Zhang Y, Davis B, Harris R, Simmonite H, Hubbard RE, Gooley PR, Plückthun A, Bathgate RA, Chalmers DK, Scott DJ. Identification of a Novel Subtype-Selective α 1B-Adrenoceptor Antagonist. ACS Chem Neurosci 2024; 15:671-684. [PMID: 38238043 PMCID: PMC10854767 DOI: 10.1021/acschemneuro.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.
Collapse
Affiliation(s)
- Alaa Abdul-Ridha
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lazarus A. de Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Mattia Deluigi
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tasneem M. Vaid
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice Whitehead
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yifan Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben Davis
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | - Richard Harris
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | | | - Roderick E. Hubbard
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Paul R. Gooley
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ross A.D. Bathgate
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniel J. Scott
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Actis Dato AB, Martinez VR, Velez Rueda JO, Portiansky EL, De Giusti V, Ferrer EG, Williams PAM. Improvement of the cardiovascular effect of methyldopa by complexation with Zn(II): Synthesis, characterization and mechanism of action. J Trace Elem Med Biol 2024; 81:127327. [PMID: 37890445 DOI: 10.1016/j.jtemb.2023.127327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND the antihypertensive drug α-methyldopa (MD) stands as one of the extensively used medications for managing hypertension during pregnancy. Zinc deprivation has been associated with many diseases. In this context, the synthesis of a Zn coordination complex [Zn(MD)(OH)(H2O)2]·H2O (ZnMD) provide a promising alternative pathway to improve the biological properties of MD. METHODS ZnMD was synthesized and physicochemically characterized. Fluorescence spectral studies were conducted to examine the binding of both, the ligand and the metal with bovine serum albumin (BSA). MD, ZnMD, and ZnCl2 were administered to spontaneous hypertensive rats (SHR) rats during 8 weeks and blood pressure and echocardiographic parameters were determined. Ex vivo assays were conducted to evaluate levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), and nitric oxide (NO). Cross-sectional area (CSA) and collagen levels of left ventricular cardiomyocytes were also assessed. Furthermore, the expression of NAD(P)H oxidase subunits (gp91phox and p47phox) and Superoxide Dismutase 1 (SOD1) was quantified through western blot analysis. RESULTS The complex exhibited a moderate affinity for binding with BSA showing a spontaneous interaction (indicated by negative ΔG values) and moderate affinity (determined by affinity constant values). The binding process involved the formation of Van der Waals forces and hydrogen bonds. Upon treatment with MD and ZnMD, a reduction in the systolic blood pressure in SHR was observed, being ZnMD more effective than MD (122 ± 8.1 mmHg and 145 ± 5.6 mmHg, at 8th week of treatment, respectively). The ZnMD treatment prevented myocardial hypertrophy, improved the heart function and reduced the cardiac fibrosis, as evidenced by parameters such as left ventricular mass, fractional shortening, and histological studies. In contrast, MD did not show noticeable differences in these parameters. ZnMD regulates negatively the oxidative damage by reducing levels of ROS and lipid peroxidation, as well as the cardiac NAD(P)H oxidase, and increasing SOD1 expression, while MD did not show significant effect. Moreover, cardiac nitric oxide levels were greater in the ZnMD therapy compared to MD treatment. CONCLUSION Both MD and ZnMD have the potential to be transported by albumin. Our findings provide important evidence suggesting that this complex could be a potential therapeutic drug for the treatment of hypertension and cardiac hypertrophy and dysfunction.
Collapse
Affiliation(s)
- Agustin B Actis Dato
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Valeria R Martinez
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| | - Jorge O Velez Rueda
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900 La Plata, Argentina
| | - Verónica De Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Raza A, Mohsin S, Saeed F, Ali SA, Chotani MA. Inhibiting Intracellular α 2C-Adrenoceptor Surface Translocation Using Decoy Peptides: Identification of an Essential Role of the C-Terminus in Receptor Trafficking. Int J Mol Sci 2023; 24:17558. [PMID: 38139390 PMCID: PMC10744278 DOI: 10.3390/ijms242417558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The G protein-coupled α2-adrenoceptor subtype C (abbreviated α2C-AR) has been implicated in peripheral vascular conditions and diseases such as cold feet-hands, Raynaud's phenomenon, and scleroderma, contributing to morbidity and mortality. Microvascular α2C-adrenoceptors are expressed in specialized smooth muscle cells and mediate constriction under physiological conditions and the occlusion of blood supply involving vasospastic episodes and tissue damage under pathological conditions. A crucial step for receptor biological activity is the cell surface trafficking of intracellular receptors, triggered by cAMP-Epac-Rap1A GTPase signaling, which involves protein-protein association with the actin-binding protein filamin-2, mediated by critical amino acid residues in the last 14 amino acids of the receptor carboxyl (C)-terminus. This study assessed the role of the C-terminus in Rap1A GTPase coupled receptor trafficking by domain-swapping studies using recombinant tagged receptors in transient co-transfections and compared with wild-type receptors using immunofluorescence microscopy. We further tested the biological relevance of the α2C-AR C-terminus, when introduced as competitor peptides, to selectively inhibit intracellular α2C-AR surface translocation in transfected as well as in microvascular smooth muscle cells expressing endogenous receptors. These studies contribute to establishing proof of principle to target intracellular α2C-adrenoceptors to reduce biological activity, which in clinical conditions can be a target for therapy.
Collapse
Affiliation(s)
- Aisha Raza
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.R.); (S.M.); (F.S.)
| | - Saima Mohsin
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.R.); (S.M.); (F.S.)
| | - Fasiha Saeed
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.R.); (S.M.); (F.S.)
| | - Syed Abid Ali
- Husein Ebrahim Jamal (H.E.J.) Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Maqsood A. Chotani
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.R.); (S.M.); (F.S.)
| |
Collapse
|
5
|
Baumann C, Chiang W, Valsecchi R, Jurt S, Deluigi M, Schuster M, Rosengren KJ, Plückthun A, Zerbe O. Side-chain dynamics of the α 1B -adrenergic receptor determined by NMR via methyl relaxation. Protein Sci 2023; 32:e4801. [PMID: 37805830 PMCID: PMC10593183 DOI: 10.1002/pro.4801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
G protein-coupled receptors (GPCRs) are medically important membrane proteins that sample inactive, intermediate, and active conformational states characterized by relatively slow interconversions (~μs-ms). On a faster timescale (~ps-ns), the conformational landscape of GPCRs is governed by the rapid dynamics of amino acid side chains. Such dynamics are essential for protein functions such as ligand recognition and allostery. Unfortunately, technical challenges have almost entirely precluded the study of side-chain dynamics for GPCRs. Here, we investigate the rapid side-chain dynamics of a thermostabilized α1B -adrenergic receptor (α1B -AR) as probed by methyl relaxation. We determined order parameters for Ile, Leu, and Val methyl groups in the presence of inverse agonists that bind orthosterically (prazosin, tamsulosin) or allosterically (conopeptide ρ-TIA). Despite the differences in the ligands, the receptor's overall side-chain dynamics are very similar, including those of the apo form. However, ρ-TIA increases the flexibility of Ile1764×56 and possibly of Ile2145×49 , adjacent to Pro2155×50 of the highly conserved P5×50 I3×40 F6×44 motif crucial for receptor activation, suggesting differences in the mechanisms for orthosteric and allosteric receptor inactivation. Overall, increased Ile side-chain rigidity was found for residues closer to the center of the membrane bilayer, correlating with denser packing and lower protein surface exposure. In contrast to two microbial membrane proteins, in α1B -AR Leu exhibited higher flexibility than Ile side chains on average, correlating with the presence of Leu in less densely packed areas and with higher protein-surface exposure than Ile. Our findings demonstrate the feasibility of studying receptor-wide side-chain dynamics in GPCRs to gain functional insights.
Collapse
Affiliation(s)
| | - Wan‐Chin Chiang
- Department of ChemistryUniversity of ZurichZurichSwitzerland
| | | | - Simon Jurt
- Department of ChemistryUniversity of ZurichZurichSwitzerland
| | - Mattia Deluigi
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | | | | | | | - Oliver Zerbe
- Department of ChemistryUniversity of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Toyoda Y, Zhu A, Kong F, Shan S, Zhao J, Wang N, Sun X, Zhang L, Yan C, Kobilka BK, Liu X. Structural basis of α 1A-adrenergic receptor activation and recognition by an extracellular nanobody. Nat Commun 2023; 14:3655. [PMID: 37339967 DOI: 10.1038/s41467-023-39310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.
Collapse
Affiliation(s)
- Yosuke Toyoda
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sisi Shan
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhao
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Nan Wang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Linqi Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Xiangyu Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Fragola NR, Brems BM, Mukherjee M, Cui M, Booth RG. Conformationally Selective 2-Aminotetralin Ligands Targeting the alpha2A- and alpha2C-Adrenergic Receptors. ACS Chem Neurosci 2023; 14:1884-1895. [PMID: 37104867 PMCID: PMC10628895 DOI: 10.1021/acschemneuro.3c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Many important physiological processes are mediated by alpha2A- and alpha2C-adrenergic receptors (α2Rs), a subtype of class A G protein-coupled receptors (GPCRs). However, α2R signaling is poorly understood, and there are few approved medications targeting these receptors. Drug discovery aimed at α2Rs is complicated by the high degree of binding pocket homology between α2AR and α2CR, which confounds ligand-mediated selective activation or inactivation of signaling associated with a particular subtype. Meanwhile, α2R signaling is complex and it is reported that activating α2AR is beneficial in many clinical contexts, while activating α2CR signaling may be detrimental to these positive effects. Here, we report on a novel 5-substituted-2-aminotetralin (5-SAT) chemotype that, depending on substitution, has diverse pharmacological activities at α2Rs. Certain lead 5-SAT analogues act as partial agonists at α2ARs, while functioning as inverse agonists at α2CRs, a novel pharmacological profile. Leads demonstrate high potency (e.g., EC50 < 2 nM) at the α2AR and α2CRs regarding Gαi-mediated inhibition of adenylyl cyclase and production of cyclic adenosine monophosphate (cAMP). To help understand the molecular basis of 5-SAT α2R multifaceted functional activity, α2AR and α2CR molecular models were built from the crystal structures and 1 μs molecular dynamics (MD) simulations and molecular docking experiments were performed for a lead 5-SAT with α2AR agonist and α2CR inverse agonist activity, i.e., (2S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT), in comparison to the FDA-approved (for opioid withdrawal symptoms) α2AR/α2CR agonist lofexidine. Results reveal several interactions between FPT and α2AR and α2CR amino acids that may impact the functional activity. The computational data in conjunction with experimental in vitro affinity and function results provide information to understand ligand stabilization of functionally distinct GPCR conformations regarding α2AR and α2CRs.
Collapse
Affiliation(s)
- Nicholas R. Fragola
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Brittany M. Brems
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Munmun Mukherjee
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Meng Cui
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Raymond G. Booth
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Biggane JP, Xu K, Goldenstein BL, Davis KL, Luger EJ, Davis BA, Jurgens CWD, Perez DM, Porter JE, Doze VA. Pharmacological characterization of the α 2A-adrenergic receptor inhibiting rat hippocampal CA3 epileptiform activity: comparison of ligand efficacy and potency. J Recept Signal Transduct Res 2022; 42:580-587. [PMID: 35984443 DOI: 10.1080/10799893.2022.2110896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism underlying the antiepileptic actions of norepinephrine (NE) is unclear with conflicting results. Our objectives are to conclusively delineate the specific adrenergic receptor (AR) involved in attenuating hippocampal CA3 epileptiform activity and assess compounds for lead drug development. We utilized the picrotoxin model of seizure generation in rat brain slices using electrophysiological recordings. Epinephrine (EPI) reduced epileptiform burst frequency in a concentration-dependent manner. To identify the specific receptor involved in this response, the equilibrium dissociation constants were determined for a panel of ligands and compared with established binding values for α1, α2, and other receptor subtypes. Correlation and slope of unity were found for the α2A-AR, but not other receptors. Effects of different chemical classes of α-AR agonists at inhibiting epileptiform activity by potency (pEC50) and relative efficacy (RE) were determined. Compared with NE (pEC50, 6.20; RE, 100%), dexmedetomidine, an imidazoline (pEC50, 8.59; RE, 67.1%), and guanabenz, a guanidine (pEC50, 7.94; RE, 37.9%), exhibited the highest potency (pEC50). In contrast, the catecholamines, EPI (pEC50, 6.95; RE, 120%) and α-methyl-NE (pEC50, 6.38; RE, 116%) were the most efficacious. These findings confirm that CA3 epileptiform activity is mediated solely by α2A-ARs without activation of other receptor systems. These findings suggest a pharmacotherapeutic target for treating epilepsy and highlight the need for selective and efficacious α2A-AR agonists that can cross the blood-brain barrier.
Collapse
Affiliation(s)
- Joseph P Biggane
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Ke Xu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Brianna L Goldenstein
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kylie L Davis
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Elizabeth J Luger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Bethany A Davis
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Chris W D Jurgens
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Dianne M Perez
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Van A Doze
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
9
|
Peng X, Yang L, Liu Z, Lou S, Mei S, Li M, Chen Z, Zhang H. Structural basis for recognition of antihistamine drug by human histamine receptor. Nat Commun 2022; 13:6105. [PMID: 36243875 PMCID: PMC9569329 DOI: 10.1038/s41467-022-33880-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
The histamine receptors belong to the G protein-coupled receptor (GPCR) superfamily, and play important roles in the regulation of histamine and other neurotransmitters in the central nervous system, as potential targets for the treatment of neurologic and psychiatric disorders. Here we report the crystal structure of human histamine receptor H3R bound to an antagonist PF-03654746 at 2.6 Å resolution. Combined with the computational and functional assays, our structure reveals binding modes of the antagonist and allosteric cholesterol. Molecular dynamic simulations and molecular docking of different antihistamines further elucidate the conserved ligand-binding modes. These findings are therefore expected to facilitate the structure-based design of novel antihistamines.
Collapse
Affiliation(s)
- Xueqian Peng
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Linlin Yang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Zixuan Liu
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Siyi Lou
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Shiliu Mei
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Meiling Li
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Zhong Chen
- grid.268505.c0000 0000 8744 8924Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang China
| | - Haitao Zhang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XThe Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| |
Collapse
|
10
|
Pérez Piñero C, Rivero EM, Gargiulo L, Rodríguez MS, Bruque CD, Bruzzone A, Lüthy IA. Adrenergic receptors in breast cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:37-63. [PMID: 36357079 DOI: 10.1016/bs.pmbts.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most diagnosed malignancy in women worldwide and in the majority of the countries. Breast cancers are classified on the expression of estrogen and progesterone receptor expression and overexpression of human epidermal growth factor receptor 2 (HER2) as luminal, HER2+ and triple negative breast cancer. The intrinsic molecular subtypes match this classification. Cancer diagnosis and treatment cause distress. In both acute and chronic stress, the secreted catecholamines adrenaline and noradrenaline trigger the "fight-or-flight" response. This chapter focuses on the actions of the β2 and α2 adrenergic receptors in several models of breast cancer. The actions of these receptors depend on the model used to investigate them. The β2-adrenergic receptors seem to exert a dual action. They can directly act on the epithelial cells inhibiting cell proliferation and migration/invasion and indirectly upon the immune microenvironment. The proportion of β2 receptors in each compartment could, therefore, lean the scale to an inhibition or to an exacerbation of tumor growth, invasion and metastasis. All the work points to a beneficial or neutral action of β-blockers on breast cancer. With respect to α2-adrenergic receptors, the investigation performed by our group suggest that the α2B and the α2C receptors are linked to enhanced cell proliferation and tumor growth acting through both the epithelial and the stromal (fibroblastic) compartments while α2A could be beneficial for patients. Some adrenergic compounds could be repurposed for breast cancer treatment due to their very low side effects and very well-known pharmacology.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | | | - Lucía Gargiulo
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - Carlos David Bruque
- Genética Molecular Humana y Bioinformática, Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas Bahía Blanca INIBIBB -CONICET, Buenos Aires, Argentina
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Xu J, Cao S, Hübner H, Weikert D, Chen G, Lu Q, Yuan D, Gmeiner P, Liu Z, Du Y. Structural insights into ligand recognition, activation, and signaling of the α 2A adrenergic receptor. SCIENCE ADVANCES 2022; 8:eabj5347. [PMID: 35245122 PMCID: PMC8896805 DOI: 10.1126/sciadv.abj5347] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The α2A adrenergic receptor (α2AAR) is a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that mediates important physiological functions in response to the endogenous neurotransmitters norepinephrine and epinephrine, as well as numerous chemically distinct drugs. However, the molecular mechanisms of drug actions remain poorly understood. Here, we report the cryo-electron microscopy structures of the human α2AAR-GoA complex bound to norepinephrine and three imidazoline derivatives (brimonidine, dexmedetomidine, and oxymetazoline). Together with mutagenesis and functional data, these structures provide important insights into the molecular basis of ligand recognition, activation, and signaling at the α2AAR. Further structural analyses uncover different molecular determinants between α2AAR and βARs for recognition of norepinephrine and key regions that determine the G protein coupling selectivity. Overall, our studies provide a framework for understanding the signal transduction of the adrenergic system at the atomic level, which will facilitate rational structure-based discovery of safer and more effective medications for α2AAR.
Collapse
Affiliation(s)
- Jun Xu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Sheng Cao
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Dorothée Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qiuyuan Lu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Daopeng Yuan
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
- Corresponding author. (D.Y.); (P.G.); (Z.L.); (Y.D.)
| |
Collapse
|
12
|
Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PRE, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, Plückthun A. Crystal structure of the α 1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun 2022; 13:382. [PMID: 35046410 PMCID: PMC8770593 DOI: 10.1038/s41467-021-27911-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
α-adrenergic receptors (αARs) are G protein-coupled receptors that regulate vital functions of the cardiovascular and nervous systems. The therapeutic potential of αARs, however, is largely unexploited and hampered by the scarcity of subtype-selective ligands. Moreover, several aminergic drugs either show off-target binding to αARs or fail to interact with the desired subtype. Here, we report the crystal structure of human α1BAR bound to the inverse agonist (+)-cyclazosin, enabled by the fusion to a DARPin crystallization chaperone. The α1BAR structure allows the identification of two unique secondary binding pockets. By structural comparison of α1BAR with α2ARs, and by constructing α1BAR-α2CAR chimeras, we identify residues 3.29 and 6.55 as key determinants of ligand selectivity. Our findings provide a basis for discovery of α1BAR-selective ligands and may guide the optimization of aminergic drugs to prevent off-target binding to αARs, or to elicit a selective interaction with the desired subtype. This study reports the X-ray structure of the α1B-adrenergic G protein-coupled receptor bound to an inverse agonist, and unveils key determinants of subtype-selective ligand binding that may help the design of aminergic drugs with fewer side-effects.
Collapse
Affiliation(s)
- Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Riley R Cridge
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lazarus A de Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alexander Klipp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stefanie A Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
13
|
Presynaptic Release-Regulating Alpha2 Autoreceptors: Potential Molecular Target for Ellagic Acid Nutraceutical Properties. Antioxidants (Basel) 2021; 10:antiox10111759. [PMID: 34829630 PMCID: PMC8614955 DOI: 10.3390/antiox10111759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Polyphenol ellagic acid (EA) possesses antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and cardio protection activities, making it an interesting multi-targeting profile. EA also controls the central nervous system (CNS), since it was proven to reduce the immobility time of mice in both the forced swimming and the tail-suspension tests, with an efficiency comparable to that of classic antidepressants. Interestingly, the anti-depressant-like effect was almost nulled by the concomitant administration of selective antagonists of the noradrenergic receptors, suggesting the involvement of these cellular targets in the central effects elicited by EA and its derivatives. By in silico and in vitro studies, we discuss how EA engages with human α2A-ARs and α2C-AR catalytic pockets, comparing EA behaviour with that of known agonists and antagonists. Structurally, the hydrophobic residues surrounding the α2A-AR pocket confer specificity on the intermolecular interactions and hence lead to favourable binding of EA in the α2A-AR, with respect to α2C-AR. Moreover, EA seems to better accommodate within α2A-ARs into the TM5 area, close to S200 and S204, which play a crucial role for activation of aminergic GPCRs such as the α2-AR, highlighting its promising role as a partial agonist. Consistently, EA mimics clonidine in inhibiting noradrenaline exocytosis from hippocampal nerve endings in a yohimbine-sensitive fashion that confirms the engagement of naïve α2-ARs in the EA-mediated effect.
Collapse
|
14
|
Wu Y, Zeng L, Zhao S. Ligands of Adrenergic Receptors: A Structural Point of View. Biomolecules 2021; 11:936. [PMID: 34202543 PMCID: PMC8301793 DOI: 10.3390/biom11070936] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 01/14/2023] Open
Abstract
Adrenergic receptors are G protein-coupled receptors for epinephrine and norepinephrine. They are targets of many drugs for various conditions, including treatment of hypertension, hypotension, and asthma. Adrenergic receptors are intensively studied in structural biology, displayed for binding poses of different types of ligands. Here, we summarized molecular mechanisms of ligand recognition and receptor activation exhibited by structure. We also reviewed recent advances in structure-based ligand discovery against adrenergic receptors.
Collapse
Affiliation(s)
- Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (Y.W.); (L.Z.)
| | - Liting Zeng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (Y.W.); (L.Z.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (Y.W.); (L.Z.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys J 2021; 120:1592-1604. [PMID: 33640379 DOI: 10.1016/j.bpj.2021.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is an integral component of mammalian membranes. It has been shown to modulate membrane fluidity and dynamics and alter integral membrane protein function. However, understanding the molecular mechanisms of how cholesterol impacts protein function is complicated by limited and conflicting structural data. Because of the nature of the crystallization and cryo-EM structure determination, it is difficult to distinguish between specific and biologically relevant interactions and a nonspecific association. The only widely recognized search algorithm for cholesterol-integral-membrane-protein interaction sites is sequence based, i.e., searching for the so-called "Cholesterol Recognition/interaction Amino acid Consensus" motif. Although these motifs are present in numerous integral membrane proteins, there is inconclusive evidence to support their necessity or sufficiency for cholesterol binding. Here, we leverage the increasing number of experimental cholesterol-integral-membrane-protein structures to systematically analyze putative interaction sites based on their spatial arrangement and evolutionary conservation. This analysis creates three-dimensional representations of general cholesterol interaction sites that form clusters across multiple integral membrane protein classes. We also classify cholesterol-integral-membrane-protein interaction sites as either likely-specific or nonspecific. Information gleaned from our characterization will eventually enable a structure-based approach to predict and design cholesterol-integral-membrane-protein interaction sites.
Collapse
Affiliation(s)
- Brennica Marlow
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bian Li
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| |
Collapse
|