1
|
Ortega JA, Liang Z, Xu JK, Gottwein E. Retargeting target-directed microRNA-decay sites to highly expressed viral or cellular miRNAs. Nucleic Acids Res 2024; 52:14171-14183. [PMID: 39588775 DOI: 10.1093/nar/gkae1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
MicroRNAs (miRNAs) are pervasive regulators of gene expression, necessitating the development of tools to inhibit individual miRNAs for functional studies or therapeutic targeting. Specialized base-pairing configurations between a miRNA and an RNA target site can trigger the degradation of the targeting miRNA through target-directed miRNA decay (TDMD). Previous work has identified several natural sites that induce TDMD of specific miRNAs. We explored retargeting known TDMD sites for the inhibition of heterologous miRNAs, including several encoded by Kaposi's Sarcoma-associated herpesvirus (KSHV). We focused particularly on miR-K11, a viral mimic of the oncogenic miRNA miR-155. miRNA pairing architectures based on the TDMD site in the long non-coding RNA Cyrano outperformed other retargeted sites. Cyrano-like inhibitors were specific for viral miR-K11 over cellular miR-155 and vice versa. Lentiviral delivery of a Cyrano-like miR-K11 inhibitor into KSHV-transformed primary effusion lymphoma (PEL) cells impaired their viability, showing that miR-K11 promotes KSHV-dependent PEL cell survival. Surprisingly, inactivation of ZSWIM8, a key mediator of TDMD, did not substantially affect miRNA inhibition by retargeted Cyrano-based inhibitors in 293T or PEL cells. Together, our results demonstrate the feasibility of retargeting natural TDMD sites to highly expressed viral or cellular miRNAs and further define features of effective encoded miRNA inhibitors.
Collapse
Affiliation(s)
- Jesus A Ortega
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| | - Ziyan Liang
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| | - Junpeng Kenny Xu
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Gorbea C, Elhakiem A, Cazalla D. Shaping the host cell environment with viral noncoding RNAs. Semin Cell Dev Biol 2023; 146:20-30. [PMID: 36581481 PMCID: PMC10101873 DOI: 10.1016/j.semcdb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Abdalla Elhakiem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Kandeel M. Oncogenic Viruses-Encoded microRNAs and Their Role in the Progression of Cancer: Emerging Targets for Antiviral and Anticancer Therapies. Pharmaceuticals (Basel) 2023; 16:ph16040485. [PMID: 37111242 PMCID: PMC10146417 DOI: 10.3390/ph16040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Approximately 20% of all cases of human cancer are caused by viral infections. Although a great number of viruses are capable of causing a wide range of tumors in animals, only seven of these viruses have been linked to human malignancies and are presently classified as oncogenic viruses. These include the Epstein-Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), human herpesvirus 8 (HHV8), and human T-cell lymphotropic virus type 1 (HTLV-1). Some other viruses, such as the human immunodeficiency virus (HIV), are associated with highly oncogenic activities. It is possible that virally encoded microRNAs (miRNAs), which are ideal non-immunogenic tools for viruses, play a significant role in carcinogenic processes. Both virus-derived microRNAs (v-miRNAs) and host-derived microRNAs (host miRNAs) can influence the expression of various host-derived and virus-derived genes. The current literature review begins with an explanation of how viral infections might exert their oncogenic properties in human neoplasms, and then goes on to discuss the impact of diverse viral infections on the advancement of several types of malignancies via the expression of v-miRNAs. Finally, the role of new anti-oncoviral therapies that could target these neoplasms is discussed.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
5
|
Tuncer SB, Celik B, Akdeniz Odemis D, Kılıc Erciyas S, Sukruoglu Erdogan O, Avsar M, Kuru Turkcan G, Yazici H. miRNA Sequence Analysis in Patients With Kaposi's Sarcoma-Associated Herpesvirus. Pathol Oncol Res 2022; 28:1610055. [PMID: 35140551 PMCID: PMC8820206 DOI: 10.3389/pore.2022.1610055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) are the non-coding RNAs that can both attach to the untranslated and coding sections of target mRNAs, triggering destruction or post-transcriptional alteration. miRNAs regulate various cellular processes such as immune function, apoptosis, and tumorigenesis. About 35,000 miRNAs have been discovered in the human genome. The increasing evidence suggests that the dysregulation of human miRNAs may have a role in the etiology of some disorders including cancer. Only a small sub-set of human miRNAs has functionally been validated in the pathogenesis of oncogenic viruses such as Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV is the cause of various human malignancies including primary effusion lymphoma (PEL) and Kaposi’s sarcoma (KS), which are mainly seen in AIDS patients or other immunocompromised people. We aimed to identify the miRNAs in Kaposi’s sarcoma cases, with the comparison of KSHV seropositive and seronegative tumors with the controls and in each other in Turkish Kaposi’s sarcoma patients. We performed the miRNA-sequencing at genome level in the peripheral blood mononuclear cells of 16 Kaposi’s sarcoma patients, and in 8 healthy controls matched for age, gender, and ethnicity. A total of 642 miRNA molecules with different expression profiles were identified between the patients and the healthy controls. Currently, out of 642 miRNAs, 7 miRNAs (miR-92b-3p, miR-490-3p, miR-615-3p, miR-629-5p, miR-1908, miR-3180, miR-4433b-3p) which have not been described in the literature in the context of Kaposi’s sarcoma were addressed in the study for the first time and 9 novel miRNAs, not found previously in the database, have been detected in Kaposi’s sarcoma using the miRNA-sequencing technique. This study demonstrates the identification of differently expressed miRNAs which might be the new therapeutic targets for Kaposi’s sarcoma, that has limited treatment options and can be used in the etiology, diagnosis, and prognosis of this cancer.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Betul Celik
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seda Kılıc Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Mukaddes Avsar
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Istanbul, Turkey
| | - Gozde Kuru Turkcan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Turkey
| | - Hulya Yazici
- Department of Medical Biology and Genetics, Arel Medical Faculty, Istanbul Arel University, Istanbul, Turkey
| |
Collapse
|
6
|
The Emerging Role of Non-Coding RNAs in the Regulation of Virus Replication and Resultant Cellular Pathologies. Int J Mol Sci 2022; 23:ijms23020815. [PMID: 35055001 PMCID: PMC8775676 DOI: 10.3390/ijms23020815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs, particularly lncRNAs and miRNAs, have recently been shown to regulate different steps in viral infections and induction of immune responses against viruses. Expressions of several host and viral lncRNAs have been found to be altered during viral infection. These lncRNAs can exert antiviral function via inhibition of viral infection or stimulation of antiviral immune response. Some other lncRNAs can promote viral replication or suppress antiviral responses. The current review summarizes the interaction between ncRNAs and herpes simplex virus, cytomegalovirus, and Epstein–Barr infections. The data presented in this review helps identify viral-related regulators and proposes novel strategies for the prevention and treatment of viral infection.
Collapse
|
7
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Macveigh-Fierro D, Rodriguez W, Miles J, Muller M. Stealing the Show: KSHV Hijacks Host RNA Regulatory Pathways to Promote Infection. Viruses 2020; 12:E1024. [PMID: 32937781 PMCID: PMC7551087 DOI: 10.3390/v12091024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces life-long infections and has evolved many ways to exert extensive control over its host's transcriptional and post-transcriptional machinery to gain better access to resources and dampened immune sensing. The hallmark of this takeover is how KSHV reshapes RNA fate both to control expression of its own gene but also that of its host. From the nucleus to the cytoplasm, control of RNA expression, localization, and decay is a process that is carefully tuned by a multitude of factors and that can adapt or react to rapid changes in the environment. Intriguingly, it appears that KSHV has found ways to co-opt each of these pathways for its own benefit. Here we provide a comprehensive review of recent work in this area and in particular recent advances on the post-transcriptional modifications front. Overall, this review highlights the myriad of ways KSHV uses to control RNA fate and gathers novel insights gained from the past decade of research at the interface of RNA biology and the field of KSHV research.
Collapse
Affiliation(s)
| | | | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (D.M.-F.); (W.R.); (J.M.)
| |
Collapse
|
9
|
Gallo A, Bulati M, Miceli V, Amodio N, Conaldi PG. Non-Coding RNAs: Strategy for Viruses' Offensive. Noncoding RNA 2020; 6:38. [PMID: 32927786 PMCID: PMC7549346 DOI: 10.3390/ncrna6030038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The awareness of viruses as a constant threat for human public health is a matter of fact and in this resides the need of understanding the mechanisms they use to trick the host. Viral non-coding RNAs are gaining much value and interest for the potential impact played in host gene regulation, acting as fine tuners of host cellular defense mechanisms. The implicit importance of v-ncRNAs resides first in the limited genomes size of viruses carrying only strictly necessary genomic sequences. The other crucial and appealing characteristic of v-ncRNAs is the non-immunogenicity, making them the perfect expedient to be used in the never-ending virus-host war. In this review, we wish to examine how DNA and RNA viruses have evolved a common strategy and which the crucial host pathways are targeted through v-ncRNAs in order to grant and facilitate their life cycle.
Collapse
Affiliation(s)
- Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
- UPMC Italy (University of Pittsburgh Medical Center Italy), Discesa dei Giudici 4, 90133 Palermo, Italy
| |
Collapse
|
10
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
11
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|
12
|
Murmann AE, Bartom ET, Schipma MJ, Vilker J, Chen S, Peter ME. 6mer Seed Toxicity in Viral microRNAs. iScience 2019; 23:100737. [PMID: 31838022 PMCID: PMC7033618 DOI: 10.1016/j.isci.2019.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short double-stranded noncoding RNAs (19-23 nucleotides) that regulate gene expression by suppressing mRNAs through RNA interference. Targeting is determined by the seed sequence (position 2-7/8) of the mature miRNA. A minimal G-rich seed of just six nucleotides is highly toxic to cells by targeting genes essential for cell survival. A screen of 215 miRNAs encoded by 17 human pathogenic viruses (v-miRNAs) now suggests that a number of v-miRNAs can kill cells through a G-rich 6mer sequence embedded in their seed. Specifically, we demonstrate that miR-K12-6-5p, an oncoviral mimic of the tumor suppressive miR-15/16 family encoded by human Kaposi sarcoma-associated herpes virus, harbors a noncanonical toxic 6mer seed (position 3-8) and that v-miRNAs are more likely than cellular miRNAs to utilize a noncanonical 6mer seed. Our data suggest that during evolution viruses evolved to use 6mer seed toxicity to kill cells. Tumor suppressive miR-15/16-5p with a toxic 6mer seed targets survival genes kshv-miR-K12-6-5p, a paralog of hsa-miR-15/16-5p carries an offset toxic 6mer seed A screen of 215 viral miRNAs identifies miRNAs that contain a toxic 6mer seed Many human viral miRNAs have the capacity to kill through 6mer seed toxicity
Collapse
Affiliation(s)
- Andrea E Murmann
- Division Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jacob Vilker
- Division Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Siquan Chen
- Cellular Screening Center, Institute for Genomics & Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Marcus E Peter
- Division Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|