1
|
Kondo H, Zaborszky L. Basal Forebrain Projections to the Retrosplenial and Cingulate Cortex in Rats. J Comp Neurol 2025; 533:e70027. [PMID: 39924777 PMCID: PMC11808200 DOI: 10.1002/cne.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
The basal forebrain (BF) plays a crucial role in modulating cortical activation through its widespread projections across the cortical mantle. Previous anatomical studies have demonstrated that each cortical region receives a specific projection from the BF. In this study, we examined BF cholinergic and non-cholinergic projections to the retrosplenial cortex (RSC) and anterior cingulate cortex (ACC) using two retrograde tracers, Fast Blue (FB) and Fluoro-Gold (FG), in combination with choline acetyltransferase (ChAT) immunostaining in rats. The RSC and ACC receive cholinergic and non-cholinergic projections mainly from the medial part of the horizontal limb of the diagonal band (HDB) and the vertical limb of the diagonal band (VDB). The main difference of BF projections to the RSC, ACC, and prelimbic cortex (PL) is that the ACC and PL receive projections from the rostral half of the medial globus pallidus (GP), whereas the RSC receives stronger non-cholinergic projections from the VDB and medial septum (MS). As the injection site shifts from rostral (PL) to caudal (RSC) through the ACC, the strong GP and weak MS/VDB projections of non-cholinergic neurons are reversed. Cholinergic projection neurons make up a similar proportion of the total projection neurons in both ACC (37%) and RSC (33%) injections. Double retrograde tracer injections in the RSC and ACC revealed a small number of double-labeled projection neurons in the MS/VDB and HDB. These findings indicate that the ACC and RSC receive both spatially overlapping and differential projections from the BF, with the cholinergic and non-cholinergic projections varying between BF subregions and different rostrocaudal cortical regions.
Collapse
Affiliation(s)
- Hideki Kondo
- Center for Molecular and Behavioral NeuroscienceRutgers, the State University of New JerseyNewarkNew JerseyUSA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral NeuroscienceRutgers, the State University of New JerseyNewarkNew JerseyUSA
| |
Collapse
|
2
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Balcerek E, Włodkowska U, Czajkowski R. FOS mapping reveals two complementary circuits for spatial navigation in mouse. Sci Rep 2024; 14:21252. [PMID: 39261637 PMCID: PMC11391074 DOI: 10.1038/s41598-024-72272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we show that during continuous navigation in a dynamic external environment, mice are capable of developing a foraging strategy based exclusively on changing distal (allothetic) information and that this process may involve two alternative components of the spatial memory circuit: the hippocampus and retrosplenial cortex. To this end, we designed a novel custom apparatus and implemented a behavioral protocol based on the figure-8-maze paradigm with two goal locations associated with distinct contexts. We assessed whether mice are able to learn to retrieve a sequence of rewards guided exclusively by the changing context. We found out that training mice in the apparatus leads to change in strategy from the internal tendency to alternate into navigation based exclusively on visual information. This effect could be achieved using two different training protocols: prolonged alternation training, or a flexible protocol with unpredictable turn succession. Based on the c-FOS mapping we also provide evidence of opposing levels of engagement of hippocampus and retrosplenial cortex after training of mice in these two different regimens. This supports the hypothesis of the existence of parallel circuits guiding spatial navigation, one based on the well-described hippocampal representation, and another, RSC-dependent.
Collapse
Affiliation(s)
- Edyta Balcerek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Włodkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Rafał Czajkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
4
|
Cruz AS, Cruz S, Remondes M. Effects of optogenetic silencing the anterior cingulate cortex in a delayed non-match to trajectory task. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae002. [PMID: 38595941 PMCID: PMC10939314 DOI: 10.1093/oons/kvae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Working memory is a fundamental cognitive ability, allowing us to keep information in memory for the time needed to perform a given task. A complex neural circuit fulfills these functions, among which is the anterior cingulate cortex (CG). Functionally and anatomically connected to the medial prefrontal, retrosplenial, midcingulate and hippocampus, as well as motor cortices, CG has been implicated in retrieving appropriate information when needed to select and control appropriate behavior. The role of cingulate cortex in working memory-guided behaviors remains unclear due to the lack of studies reversibly interfering with its activity during specific epochs of working memory. We used eNpHR3.0 to silence cingulate neurons while animals perform a standard delayed non-match to trajectory task, and found that, while not causing an absolute impairment in working memory, silencing cingulate neurons during retrieval decreases the mean performance if compared to silencing during encoding. Such retrieval-associated changes are accompanied by longer delays observed when light is delivered to control animals, when compared to eNpHR3.0+ ones, consistent with an adaptive recruitment of additional cognitive resources.
Collapse
Affiliation(s)
- Ana S Cruz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Sara Cruz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel Remondes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
- Faculdade de Medicina Veterinária Universidade Lusófona, Lisbon 1749-024, Portugal
| |
Collapse
|
5
|
Ferreira-Fernandes E, Laranjo M, Reis T, Canijo B, Ferreira PA, Martins P, Vilarinho J, Tavakoli M, Kunicki C, Peça J. In vivo recordings in freely behaving mice using independent silicon probes targeting multiple brain regions. Front Neural Circuits 2023; 17:1293620. [PMID: 38186631 PMCID: PMC10771849 DOI: 10.3389/fncir.2023.1293620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
In vivo recordings in freely behaving animals are crucial to understand the neuronal circuit basis of behavior. Although current multi-channel silicon probes provide unparalleled sampling density, the study of interacting neuronal populations requires the implantation of multiple probes across different regions of the brain. Ideally, these probes should be independently adjustable, to maximize the yield, and recoverable, to mitigate costs. In this work, we describe the implementation of a miniaturized 3D-printed headgear system for chronic in vivo recordings in mice using independently movable silicon probes targeting multiple brain regions. We successfully demonstrated the performance of the headgear by simultaneously recording the neuronal activity in the prelimbic cortex and dorsal hippocampus. The system proved to be sturdy, ensuring high-quality stable recordings and permitted reuse of the silicon probes, with no observable interference in mouse innate behaviors.
Collapse
Affiliation(s)
- Emanuel Ferreira-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Mariana Laranjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Tiago Reis
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Bárbara Canijo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro A. Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro Martins
- Department of Architecture, University of Coimbra, Coimbra, Portugal
| | - João Vilarinho
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Carolina Kunicki
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Coimbra, Portugal
| | - João Peça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Feliciano-Ramos PA, Galazo M, Penagos H, Wilson M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learn Mem 2023; 30:221-236. [PMID: 37758288 PMCID: PMC10547389 DOI: 10.1101/lm.053834.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Episodic memories are thought to be stabilized through the coordination of cortico-hippocampal activity during sleep. However, the timing and mechanism of this coordination remain unknown. To investigate this, we studied the relationship between hippocampal reactivation and slow-wave sleep up and down states of the retrosplenial cortex (RTC) and prefrontal cortex (PFC). We found that hippocampal reactivations are strongly correlated with specific cortical states. Reactivation occurred during sustained cortical Up states or during the transition from up to down state. Interestingly, the most prevalent interaction with memory reactivation in the hippocampus occurred during sustained up states of the PFC and RTC, while hippocampal reactivation and cortical up-to-down state transition in the RTC showed the strongest coordination. Reactivation usually occurred within 150-200 msec of a cortical Up state onset, indicating that a buildup of excitation during cortical Up state activity influences the probability of memory reactivation in CA1. Conversely, CA1 reactivation occurred 30-50 msec before the onset of a cortical down state, suggesting that memory reactivation affects down state initiation in the RTC and PFC, but the effect in the RTC was more robust. Our findings provide evidence that supports and highlights the complexity of bidirectional communication between cortical regions and the hippocampus during sleep.
Collapse
Affiliation(s)
- Pedro A Feliciano-Ramos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria Galazo
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Wirtshafter HS, Disterhoft JF. Place cells are nonrandomly clustered by field location in CA1 hippocampus. Hippocampus 2023; 33:65-84. [PMID: 36519700 PMCID: PMC9877199 DOI: 10.1002/hipo.23489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
A challenge in both modern and historic neuroscience has been achieving an understanding of neuron circuits, and determining the computational and organizational principles that underlie these circuits. Deeper understanding of the organization of brain circuits and cell types, including in the hippocampus, is required for advances in behavioral and cognitive neuroscience, as well as for understanding principles governing brain development and evolution. In this manuscript, we pioneer a new method to analyze the spatial clustering of active neurons in the hippocampus. We use calcium imaging and a rewarded navigation task to record from 100 s of place cells in the CA1 of freely moving rats. We then use statistical techniques developed for and in widespread use in geographic mapping studies, global Moran's I, and local Moran's I to demonstrate that cells that code for similar spatial locations tend to form small spatial clusters. We present evidence that this clustering is not the result of artifacts from calcium imaging, and show that these clusters are primarily formed by cells that have place fields around previously rewarded locations. We go on to show that, although cells with similar place fields tend to form clusters, there is no obvious topographic mapping of environmental location onto the hippocampus, such as seen in the visual cortex. Insights into hippocampal organization, as in this study, can elucidate mechanisms underlying motivational behaviors, spatial navigation, and memory formation.
Collapse
Affiliation(s)
- Hannah S. Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| | - John F. Disterhoft
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| |
Collapse
|
8
|
Park SA, Miller DS, Boorman ED. Inferences on a multidimensional social hierarchy use a grid-like code. Nat Neurosci 2021; 24:1292-1301. [PMID: 34465915 PMCID: PMC8759596 DOI: 10.1038/s41593-021-00916-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Generalizing experiences to guide decision-making in novel situations is a hallmark of flexible behavior. Cognitive maps of an environment or task can theoretically afford such flexibility, but direct evidence has proven elusive. In this study, we found that discretely sampled abstract relationships between entities in an unseen two-dimensional social hierarchy are reconstructed into a unitary two-dimensional cognitive map in the hippocampus and entorhinal cortex. We further show that humans use a grid-like code in entorhinal cortex and medial prefrontal cortex for inferred direct trajectories between entities in the reconstructed abstract space during discrete decisions. These grid-like representations in the entorhinal cortex are associated with decision value computations in the medial prefrontal cortex and temporoparietal junction. Collectively, these findings show that grid-like representations are used by the human brain to infer novel solutions, even in abstract and discrete problems, and suggest a general mechanism underpinning flexible decision-making and generalization.
Collapse
Affiliation(s)
| | - Douglas S. Miller
- Center for Mind and Brain, University of California, Davis, USA,Center for Neuroscience, University of California, Davis, USA
| | - Erie D. Boorman
- Center for Mind and Brain, University of California, Davis, USA,Department of Psychology, University of California, Davis, USA
| |
Collapse
|
9
|
Beerens S, Vroman R, Webster JF, Wozny C. Probing subicular inputs to the medial prefrontal cortex. iScience 2021; 24:102856. [PMID: 34381980 PMCID: PMC8333156 DOI: 10.1016/j.isci.2021.102856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/14/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
The hippocampal formation is anatomically and functionally divided into a dorsal and a ventral part, being involved in processing cognitive tasks and emotional stimuli, respectively. The ventral subiculum as part of the hippocampal formation projects to the medial prefrontal cortex (mPFC), but only very little is known about connections arising from the dorsal SUB (dSUB). Here, we investigate the dSUB to mPFC connectivity in acute brain slices using electrophysiology and optogenetics. We show that the anterior cingulate cortex (ACC) is the main target of dorsal subicular projections to the mPFC, with no preference between excitatory or inhibitory neurons. In addition to superficial neurons in the ACC, the prelimbic and infralimbic PFC are also targeted by subicular fibers. Thus, these novel region- and layer-specific connections between the dSUB and the prefrontal cortices challenge existing anatomical data and refine the hippocampocortical wiring diagram.
Collapse
Affiliation(s)
- Sanne Beerens
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rozan Vroman
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jack F. Webster
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Christian Wozny
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- MSH Medical School Hamburg, Faculty of Medicine, Medical University, Hamburg, Germany
| |
Collapse
|
10
|
Transection of the Superior Sagittal Sinus Enables Bilateral Access to the Rodent Midline Brain Structures. eNeuro 2021; 8:ENEURO.0146-21.2021. [PMID: 34210659 PMCID: PMC8281263 DOI: 10.1523/eneuro.0146-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Stereotaxic access to brain areas underneath the superior sagittal sinus (SSS) is notoriously challenging. As a major drainage vessel, covering the whole extension of the sagittal fissure, the SSS impedes direct bilateral access to underlying regions for recording and stimulation probes, drug-delivery cannulas, and injection devices. We now describe a new method for transection and retraction of the SSS in rats, that allows the accurate placement of microinjection devices, or chronic electrode probes, while avoiding hemorrhage and the ensuing deleterious consequences for local structures, animal health, and behavior. To demonstrate the feasibility of this approach we evaluated its consequences acutely during surgery, and thereafter during surgical survival, recovery, behavioral testing, as well as postmortem analysis of histologic impact in the related brain structures of male rats. This method provides a new approach enabling direct access for manipulation and recording of activity in brain areas previously obstructed by the SSS.
Collapse
|
11
|
Barron HC, Auksztulewicz R, Friston K. Prediction and memory: A predictive coding account. Prog Neurobiol 2020; 192:101821. [PMID: 32446883 PMCID: PMC7305946 DOI: 10.1016/j.pneurobio.2020.101821] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 01/27/2023]
Abstract
The hippocampus is crucial for episodic memory, but it is also involved in online prediction. Evidence suggests that a unitary hippocampal code underlies both episodic memory and predictive processing, yet within a predictive coding framework the hippocampal-neocortical interactions that accompany these two phenomena are distinct and opposing. Namely, during episodic recall, the hippocampus is thought to exert an excitatory influence on the neocortex, to reinstate activity patterns across cortical circuits. This contrasts with empirical and theoretical work on predictive processing, where descending predictions suppress prediction errors to 'explain away' ascending inputs via cortical inhibition. In this hypothesis piece, we attempt to dissolve this previously overlooked dialectic. We consider how the hippocampus may facilitate both prediction and memory, respectively, by inhibiting neocortical prediction errors or increasing their gain. We propose that these distinct processing modes depend upon the neuromodulatory gain (or precision) ascribed to prediction error units. Within this framework, memory recall is cast as arising from fictive prediction errors that furnish training signals to optimise generative models of the world, in the absence of sensory data.
Collapse
Affiliation(s)
- Helen C Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Ryszard Auksztulewicz
- Max Planck Institute for Empirical Aesthetics, Frankfurt Am Main, 60322, Germany; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
12
|
Nitzan N, McKenzie S, Beed P, English DF, Oldani S, Tukker JJ, Buzsáki G, Schmitz D. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway. Nat Commun 2020; 11:1947. [PMID: 32327634 PMCID: PMC7181800 DOI: 10.1038/s41467-020-15787-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs.
Collapse
Affiliation(s)
- Noam Nitzan
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Sam McKenzie
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Daniel Fine English
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
- School of Neuroscience, College of Science, Virginia Tech, VA, 24061, USA
| | - Silvia Oldani
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10016, USA.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany.
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- Cluster of Excellence NeuroCure, Berlin, Germany.
- Einstein Center for Neurosciences, Berlin, Germany.
| |
Collapse
|