1
|
Colloby SJ, McAleese KE, Walker L, Erskine D, Toledo JB, Donaghy PC, McKeith IG, Thomas AJ, Attems J, Taylor JP. Patterns of tau, amyloid and synuclein pathology in ageing, Alzheimer's disease and synucleinopathies. Brain 2025; 148:1562-1576. [PMID: 39531734 PMCID: PMC12073977 DOI: 10.1093/brain/awae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is neuropathologically defined by deposits of misfolded hyperphosphorylated tau (HP-tau) and amyloid-β. Lewy body (LB) dementia, which includes dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), is characterized pathologically by α-synuclein aggregates. HP-tau and amyloid-β can also occur as co-pathologies in LB dementia, and a diagnosis of mixedAD/DLB can be made if present in sufficient quantities. We hypothesized that the spread of these abnormal proteins selectively affects vulnerable areas, resulting in pathologic regional covariance that differentially associates with pre-mortem clinical characteristics. Our aims were to map regional quantitative pathology (HP-tau, amyloid-β, α-synuclein) and investigate the spatial distributions from tissue microarray post-mortem samples across healthy aging, AD and LB dementia. The study involved 159 clinico-pathologically diagnosed human post-mortem brains (48 controls, 47 AD, 25 DLB, 20 mixedAD/DLB, 19 PDD). The burden of HP-tau, amyloid-β and α-synuclein was quantitatively assessed in cortical and subcortical areas. Principal components (PC) analysis was applied across all cases to determine the pattern nature of HP-tau, amyloid-β and α-synuclein. Further analyses explored the relationships of these pathological patterns with cognitive and symptom variables. Cortical (tauPC1) and temporo-limbic (tauPC2) patterns were observed for HP-tau. For amyloid-β, a cortical-subcortical pattern (amylPC1) was identified. For α-synuclein, four patterns emerged: 'posterior temporal-occipital' (synPC1), 'anterior temporal-frontal' (synPC2), 'parieto-cingulate-insula' (synPC3), and 'frontostriatal-amygdala' (synPC4). Distinct synPC scores were apparent among DLB, mixedAD/DLB and PDD, and may relate to different spreading patterns of α-synuclein pathology. In dementia, cognitive measures correlated with tauPC1,tauPC2 and amylPC1 pattern scores (P ≤ 0.02), whereas such variables did not relate to α-synuclein parameters in these or combined LB dementia cases. Mediation analysis then revealed that in the presence of amylPC1, tauPC1 had a direct effect on global cognition in dementia (n = 65, P = 0.04), while tauPC1 mediated the relationship between amylPC1 and cognition through the indirect pathway (amylPC1 → tauPC1 → global cognition) (P < 0.05). Last, in synucleinopathies, synPC1 and synPC4 pattern scores were associated with visual hallucinations and motor impairment, respectively (P = 0.02). In conclusion, distinct patterns of α-synuclein pathology were apparent in LB dementia, which could explain some of the disease heterogeneity and differing spreading patterns among these conditions. Visual hallucinations and motor severity were associated with specific α-synuclein topographies in LB dementia that may be important to the clinical phenotype and could, after necessary testing/validation, be integrated into semiquantitative routine pathological assessment.
Collapse
Affiliation(s)
- Sean J Colloby
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Kirsty E McAleese
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Lauren Walker
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Erskine
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Jon B Toledo
- Stanley H. Appel Department of Neurology, Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Paul C Donaghy
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Ian G McKeith
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Alan J Thomas
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Johannes Attems
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - John-Paul Taylor
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
2
|
McGeachan RI, Meftah S, Taylor LW, Catterson JH, Negro D, Bonthron C, Holt K, Tulloch J, Rose JL, Gobbo F, Chang YY, Elliott J, McLay L, King D, Liaquat I, Spires-Jones TL, Booker SA, Brennan PM, Durrant CS. Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures. Nat Commun 2025; 16:3753. [PMID: 40307257 PMCID: PMC12044016 DOI: 10.1038/s41467-025-58879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
In Alzheimer's disease, amyloid beta (Aβ) and tau pathology are thought to drive synapse loss. However, there is limited information on how endogenous levels of tau, Aβ and other biomarkers relate to patient characteristics, or how manipulating physiological levels of Aβ impacts synapses in living adult human brain. Using live human brain slice cultures, we report that Aβ1-40 and tau release levels vary with donor age and brain region, respectively. Release of other biomarkers such as KLK-6, NCAM-1, and Neurogranin vary between brain region, while TDP-43 and NCAM-1 release is impacted by sex. Pharmacological manipulation of Aβ in either direction results in a loss of synaptophysin puncta, with increased physiological Aβ triggering potentially compensatory synaptic transcript changes. In contrast, treatment with Aβ-containing Alzheimer's disease brain extract results in post-synaptic Aβ uptake and pre-synaptic puncta loss without affecting synaptic transcripts. These data reveal distinct effects of physiological and pathological Aβ on synapses in human brain tissue.
Collapse
Affiliation(s)
- Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Danilo Negro
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Calum Bonthron
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ya Yin Chang
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie Elliott
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lauren McLay
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Declan King
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- Translational Neurosurgery, The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Joseph D. The Unified Theory of Neurodegeneration Pathogenesis Based on Axon Deamidation. Int J Mol Sci 2025; 26:4143. [PMID: 40362380 PMCID: PMC12071446 DOI: 10.3390/ijms26094143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Until now, neurodegenerative diseases like Alzheimer's and Parkinson's have been studied separately in biochemistry and therapeutic drug development, and no causal link has ever been established between them. This study has developed a Unified Theory, which establishes that the regulation of axon and dendrite-specific 4E-BP2 deamidation rates controls the occurrence and progression of neurodegenerative diseases. This is based on identifying axon-specific 4E-BP2 deamidation as a universal denominator for the biochemical processes of deamidation, translational control, oxidative stress, and neurodegeneration. This was achieved by conducting a thorough and critical review of 224 scientific publications regarding (a) deamidation, (b) translational control in protein synthesis initiation, (c) neurodegeneration and (d) oxidative stress, and by applying my discovery of the fundamental neurobiological mechanism behind neuron-specific 4E-BP2 deamidation to practical applications in medicine. Based on this newly developed Unified Theory and my critical review of the scientific literature, I also designed three biochemical flowsheets of (1) in-vivo deamidation, (2) protein synthesis initiation and translational control, and (3) 4E-BP2 deamidation as a control system of the four biochemical processes. The Unified Theory of Neurodegeneration Pathogenesis based on axon deamidation, developed in this work, paves the way to controlling the occurrence and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's through a unique, neuron-specific regulatory system that is 4E-BP2 deamidation, caused by the proteasome-poor environment in neuronal projections, consisting mainly of axons.
Collapse
Affiliation(s)
- Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| |
Collapse
|
4
|
Negi N, Ayyannan SR, Tripathi RKP. Multi-targeted benzylpiperidine-isatin hybrids: Design, synthesis, biological and in silico evaluation as monoamine oxidases and acetylcholinesterase inhibitors for neurodegenerative disease therapies. J Comput Aided Mol Des 2025; 39:10. [PMID: 40021503 DOI: 10.1007/s10822-025-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's and Parkinson's, characterized by gradual loss of neuronal structure and function, results in cognitive and motor impairments. These complex disorders involve multiple pathogenic mechanisms, including neurotransmitter imbalances, oxidative stress, and protein misfolding, necessitating multifunctional therapeutic approaches. Piperidine and isatin are valuable scaffolds in drug design due to their favorable pharmacokinetic profiles, ability to cross blood-brain barrier, and ease of modification. This study focuses on design, synthesis, and evaluation of benzylpiperidine-isatin hybrids as dual inhibitors targeting key enzymes implicated in NDDs: monoamine oxidases (MAO-A/B) and acetylcholinesterase (AChE). Strategic hybridization of piperidine and isatin produced novel benzylpiperidine-isatin hybrids, combining pharmacological benefits of both scaffolds. Synthesized hybrids were tested for MAO-A/B and AChE inhibitory effects. 15 emerged as a lead inhibitor for both MAO-A (IC50 = 0.108 ± 0.004 μM, competitive and reversible) and AChE (IC50 = 0.034 ± 0.002 μM, mixed and reversible), outperforming donepezil in AChE inhibition. 4 showed significant MAO-B inhibition (IC50 = 0.057 ± 0.001 μM, competitive and reversible). SAR studies identified crucial structural elements for potency and selectivity, while molecular docking revealed key interactions stabilizing the enzyme-inhibitor complexes. MD simulations of lead molecules demonstrate the ligand's suitability for strong and consistent binding to the respective proteins. Lead compounds were non-neurotoxic, exhibited good antioxidant properties, and had favorable in silico ADMET predictions. These findings suggest that benzylpiperidine-isatin hybrids hold promise as multifunctional agents against NDDs, warranting further refinement to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Nikita Negi
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Senthil R Ayyannan
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Rati K P Tripathi
- Department of Pharmaceutical Sciences, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India.
| |
Collapse
|
5
|
Capilla-López MD, Deprada A, Andrade-Talavera Y, Martínez-Gallego I, Coatl-Cuaya H, Sotillo P, Rodríguez-Alvarez J, Rodríguez-Moreno A, Parra-Damas A, Saura CA. Synaptic vulnerability to amyloid-β and tau pathologies differentially disrupts emotional and memory neural circuits. Mol Psychiatry 2025:10.1038/s41380-025-02901-9. [PMID: 39885298 DOI: 10.1038/s41380-025-02901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions. Early memory deficits were associated with hippocampal tau pathology in Tau and APP/Tau mice, whereas anxiety and fear appeared linked to intracellular Aβ in the basolateral amygdala (BLA) of APP and APP/Tau mice. Transcriptome hippocampal profiling revealed gene changes affecting myelination and RNA processing in Tau mice, and inflammation and synaptic-related pathways in APP/Tau mice at 6 months. At 9 months, we detected common and region-specific changes in astrocytic, microglia and 63 AD-associated genes in the hippocampus and BLA of APP/Tau mice. Spatial learning deficits were associated with synaptic tau accumulation and synapse disruption in the hippocampus of Tau and APP/Tau mice, whereas emotional disturbances were linked to Aβ pathology but not synaptic tau in the BLA. Interestingly, Aβ and tau exhibited synergistic detrimental effects in long-term potentiation (LTP) in the hippocampus but they counteract with each other to mitigate LTP impairments in the amygdala. These findings indicate that Aβ and tau pathologies cause region-specific effects and synergize to induce synaptic dysfunction and immune responses, contributing to the differing vulnerability of memory and emotional neural circuits in AD.
Collapse
Affiliation(s)
- Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Heriberto Coatl-Cuaya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Paula Sotillo
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Alvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
7
|
Martínez-Drudis L, Bérard M, Musiol D, Rivest S, Oueslati A. Pharmacological inhibition of PLK2 kinase activity mitigates cognitive decline but aggravates APP pathology in a sex-dependent manner in APP/PS1 mouse model of Alzheimer's disease. Heliyon 2024; 10:e39571. [PMID: 39498012 PMCID: PMC11532864 DOI: 10.1016/j.heliyon.2024.e39571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Converging evidence from clinical and experimental studies suggest the potential significance of Polo-like kinase 2 (PLK2) in regulating the phosphorylation and toxicity of the Alzheimer's disease (AD)-related protein, amyloid precursor protein (APP). These findings have prompted various experimental trials aimed at inhibiting PLK2 kinase activity in different transgenic mouse models of AD. While positive impacts on cognitive decline were reported in these studies, the cellular effects remained controversial. In the present study, we sought to assess the cognitive and cellular consequences of chronic PLK2 inhibitor treatment in the APP/PS1 transgenic mouse model of AD. First, we confirmed that inhibiting PLK2 prevented cognitive decline in a sex-dependent manner, particularly by enhancing working memory in male APP/PS1 mice. Surprisingly, cellular analysis revealed that treatment with PLK2 inhibitor increased the load of amyloid plaques and elevated levels of soluble amyloid β (Aβ) 40 and Aβ42 in the cortex, as well as insoluble Aβ42 in the hippocampus of female mice, without affecting APP pathology in males. These results underscore the potential of PLK2 inhibition to mitigate cognitive symptoms in males. However, paradoxically, it intensifies amyloid pathology in females by enhancing APP amyloidogenic processing, creating a controversial aspect to its therapeutic impact. Overall, these data highlight the sex-dependent nature of the effects of PLK2 inhibition, which may also be influenced by the genetic background of the transgenic mouse model utilized.
Collapse
Affiliation(s)
- Laura Martínez-Drudis
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Morgan Bérard
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Dylan Musiol
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Serge Rivest
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
8
|
Sun Y, Islam S, Gao Y, Nakamura T, Tomita T, Michikawa M, Zou K. Presenilin deficiency enhances tau phosphorylation and its secretion. J Neurochem 2024; 168:2956-2973. [PMID: 38946496 DOI: 10.1111/jnc.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of abnormally folded amyloid β-protein (Aβ) in the brain parenchyma and phosphorylated tau in neurons. Presenilin (PS, PSEN) 1 and PS2 are essential components of γ-secretase, which is responsible for the cleavage of amyloid precursor protein (APP) to generate Aβ. PSEN mutations are associated with tau aggregation in frontotemporal dementia, regardless of the presence or absence of Aβ pathology. However, the mechanism by which PS regulates tau aggregation is still unknown. Here, we found that tau phosphorylation and secretion were significantly increased in PS double-knock-out (PS1/2-/-) fibroblasts compared with wild-type fibroblasts. Tau-positive vesicles in the cytoplasm were significantly increased in PS1/2-/- fibroblasts. Active GSK-3β was increased in PS1/2-/- fibroblasts, and inhibiting GSK3β activity in PS1/2-/- fibroblasts resulted in decreased tau phosphorylation and secretion. Transfection of WT human PS1 and PS2 reduced the secretion of phosphorylated tau and active GSK-3β in PS1/2-/- fibroblasts. However, PS1D257A without γ-secretase activity did not decrease the secretion of phosphorylated tau. Furthermore, nicastrin deficiency also increased tau phosphorylation and secretion. These results suggest that deficient PS complex maturation may increase tau phosphorylation and secretion. Thus, our studies discover a new pathway by which PS regulates tau phosphorylation/secretion and pathology independent of Aβ and suggest that PS serves as a potential therapeutic target for treating neurodegenerative diseases involving tau aggregation.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
9
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
10
|
Ng B, Vowles J, Bertherat F, Abey A, Kilfeather P, Beccano-Kelly D, Stefana MI, O'Brien DP, Bengoa-Vergniory N, Carling PJ, Todd JA, Caffrey TM, Connor-Robson N, Cowley SA, Wade-Martins R. Tau depletion in human neurons mitigates Aβ-driven toxicity. Mol Psychiatry 2024; 29:2009-2020. [PMID: 38361127 PMCID: PMC11408257 DOI: 10.1038/s41380-024-02463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-β (Aβ) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aβ-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aβ were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aβ-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aβ-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.
Collapse
Affiliation(s)
- Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | - Féodora Bertherat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ajantha Abey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Kilfeather
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Dayne Beccano-Kelly
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centres for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Tara M Caffrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK.
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
11
|
Pereira MF, Shyti R, Testa G. In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline. Stem Cell Reports 2024; 19:767-795. [PMID: 38865969 PMCID: PMC11390705 DOI: 10.1016/j.stemcr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
12
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
13
|
Rabanal-Ruiz Y, Pedrero-Prieto CM, Sanchez-Rodriguez L, Flores-Cuadrado A, Saiz-Sanchez D, Frontinan-Rubio J, Ubeda-Banon I, Duran Prado M, Martinez-Marcos A, Peinado JR. Differential accumulation of human β-amyloid and tau from enriched extracts in neuronal and endothelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167204. [PMID: 38679217 DOI: 10.1016/j.bbadis.2024.167204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
While Aβ and Tau cellular distribution has been largely studied, the comparative internalization and subcellular accumulation of Tau and Aβ isolated from human brain extracts in endothelial and neuronal cells has not yet been unveiled. We have previously demonstrated that controlled enrichment of Aβ from human brain extracts constitutes a valuable tool to monitor cellular internalization in vitro and in vivo. Herein, we establish an alternative method to strongly enrich Aβ and Tau aggregates from human AD brains, which has allowed us to study and compare the cellular internalization, distribution and toxicity of both proteins within brain barrier endothelial (bEnd.3) and neuronal (Neuro2A) cells. Our findings demonstrate the suitability of human enriched brain extracts to monitor the intracellular distribution of human Aβ and Tau, which, once internalized, show dissimilar sorting to different organelles within the cell and differential toxicity, exhibiting higher toxic effects on neuronal cells than on endothelial cells. While tau is strongly concentrated preferentially in mitochondria, Aβ is distributed predominantly within the endolysosomal system in endothelial cells, whereas the endoplasmic reticulum was its preferential location in neurons. Altogether, our findings display a picture of the interactions that human Aβ and Tau might establish in these cells.
Collapse
Affiliation(s)
- Y Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - C M Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - L Sanchez-Rodriguez
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - A Flores-Cuadrado
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - D Saiz-Sanchez
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - J Frontinan-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - I Ubeda-Banon
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - M Duran Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - A Martinez-Marcos
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Juan R Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain.
| |
Collapse
|
14
|
Sharma M, Aggarwal N, Mishra J, Panda JJ. Neuroglia targeting nano-therapeutic approaches to rescue aging and neurodegenerating brain. Int J Pharm 2024; 654:123950. [PMID: 38430951 DOI: 10.1016/j.ijpharm.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Despite intense efforts at the bench, the development of successful brain-targeting therapeutics to relieve malicious neural diseases remains primitive. The brain, being a beautifully intricate organ, consists of heterogeneous arrays of neuronal and glial cells. Primarily acting as the support system for neuronal functioning and maturation, glial cells have been observed to be engaged more apparently in the progression and worsening of various neural pathologies. The diseased state is often related to metabolic alterations in glial cells, thereby modulating their physiological homeostasis in conjunction with neuronal dysfunction. A plethora of data indicates the effect of oxidative stress, protein aggregation, and DNA damage in neuroglia impairments. Still, a deeper insight is needed to gain a conflict-free understanding in this arena. As a consequence, glial cells hold the potential to be identified as promising targets for novel therapeutic approaches aimed at brain protection. In this review, we describe the recent strides taken in the direction of understanding the impact of oxidative stress, protein aggregation, and DNA damage on neuroglia impairment and neuroglia-directed nanotherapeutic approaches to mitigate the burden of various neural disorders.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Nidhi Aggarwal
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Jibanananda Mishra
- School of Biosciences, RIMT University, Mandi Gobindgarh, Punjab 147301, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
15
|
Finneran DJ, Desjarlais T, Henry A, Jackman BM, Gordon MN, Morgan D. Induction of tauopathy in a mouse model of amyloidosis using intravenous administration of adeno-associated virus vectors expressing human P301L tau. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12470. [PMID: 38689599 PMCID: PMC11058624 DOI: 10.1002/trc2.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease in which extracellular aggregates of the amyloid beta (Aβ) peptide precede widespread intracellular inclusions of the microtubule-associated protein tau. The autosomal dominant form of AD requires mutations that increase production or aggregation of the Aβ peptide. This has led to the hypothesis that amyloid deposition initiates downstream responses that lead to the hyperphosphorylation and aggregation of tau. METHODS Here we use a novel approach, somatic gene transfer via intravenous adeno-associated virus (AAV), to further explore the effects of pre-existing amyloid deposits on tauopathy. APP+PS1 mice, which develop amyloid deposits at 3 to 6 months of age, and non-transgenic littermates were injected at 8 months of age intravenously with AAV-PHP.eB encoding P301L human tau. Tissue was collected at 13 months and tauopathy was assessed. RESULTS Total human tau expression was observed to be relatively uniform throughout the brain, reflecting the vascular route of AAV administration. Phospho-tau deposition was not equal across brain regions and significantly increased in APP+PS1 mice compared to non-transgenic controls. Interestingly, the rank order of phospho-tau deposition of affected brain regions in both genotypes paralleled the rank order of amyloid plaque deposits in APP+PS1 mice. We also observed significantly increased MAPT RNA expression in APP+PS1 mice compared to non-transgenic despite equal AAV transduction efficiency between groups. DISCUSSION This model has advantages over prior approaches with widespread uniform human tau expression throughout the brain and the ability to specify the stage of amyloidosis when the tau pathology is initiated. These data add further support to the amyloid cascade hypothesis and suggest RNA metabolism as a potential mechanism for amyloid-induced tauopathy.
Collapse
Affiliation(s)
- Dylan J. Finneran
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Taylor Desjarlais
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Alayna Henry
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Brianna M. Jackman
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Marcia N. Gordon
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - David Morgan
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| |
Collapse
|
16
|
Xicota L, Cosentino S, Vardarajan B, Mayeux R, Perls TT, Andersen SL, Zmuda JM, Thyagarajan B, Yashin A, Wojczynski MK, Krinsky‐McHale S, Handen BL, Christian BT, Head E, Mapstone ME, Schupf N, Lee JH, Barral S. Whole genome-wide sequence analysis of long-lived families (Long-Life Family Study) identifies MTUS2 gene associated with late-onset Alzheimer's disease. Alzheimers Dement 2024; 20:2670-2679. [PMID: 38380866 PMCID: PMC11032545 DOI: 10.1002/alz.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Late-onset Alzheimer's disease (LOAD) has a strong genetic component. Participants in Long-Life Family Study (LLFS) exhibit delayed onset of dementia, offering a unique opportunity to investigate LOAD genetics. METHODS We conducted a whole genome sequence analysis of 3475 LLFS members. Genetic associations were examined in six independent studies (N = 14,260) with a wide range of LOAD risk. Association analysis in a sub-sample of the LLFS cohort (N = 1739) evaluated the association of LOAD variants with beta amyloid (Aβ) levels. RESULTS We identified several single nucleotide polymorphisms (SNPs) in tight linkage disequilibrium within the MTUS2 gene associated with LOAD (rs73154407, p = 7.6 × 10-9). Association of MTUS2 variants with LOAD was observed in the five independent studies and was significantly stronger within high levels of Aβ42/40 ratio compared to lower amyloid. DISCUSSION MTUS2 encodes a microtubule associated protein implicated in the development and function of the nervous system, making it a plausible candidate to investigate LOAD biology. HIGHLIGHTS Long-Life Family Study (LLFS) families may harbor late onset Alzheimer's dementia (LOAD) variants. LLFS whole genome sequence analysis identified MTUS2 gene variants associated with LOAD. The observed LLFS variants generalized to cohorts with wide range of LOAD risk. The association of MTUS2 with LOAD was stronger within high levels of beta amyloid. Our results provide evidence for MTUS2 gene as a novel LOAD candidate locus.
Collapse
Affiliation(s)
- Laura Xicota
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Stephanie Cosentino
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Badri Vardarajan
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Richard Mayeux
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Thomas T. Perls
- Section of GeriatricsDepartment of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Stacy L. Andersen
- Section of GeriatricsDepartment of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph M. Zmuda
- Department of EpidemiologyGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Anatoli Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Mary K. Wojczynski
- Division of Statistical GenomicsDepartment of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Sharon Krinsky‐McHale
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
- Department of PsychologyNew York Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T. Christian
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐Madison School of Medicine, and Public HealthMadisonWisconsinUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Mark E. Mapstone
- Department of NeurologyInstitute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Nicole Schupf
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Joseph H. Lee
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Sandra Barral
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | | |
Collapse
|
17
|
Hsu CC, Wang SI, Lin HC, Lin ES, Yang FP, Chang CM, Wei JCC. Difference of Cerebrospinal Fluid Biomarkers and Neuropsychiatric Symptoms Profiles among Normal Cognition, Mild Cognitive Impairment, and Dementia Patient. Int J Mol Sci 2024; 25:3919. [PMID: 38612729 PMCID: PMC11012002 DOI: 10.3390/ijms25073919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The delineation of biomarkers and neuropsychiatric symptoms across normal cognition, mild cognitive impairment (MCI), and dementia stages holds significant promise for early diagnosis and intervention strategies. This research investigates the association of neuropsychiatric symptoms, evaluated via the Neuropsychiatric Inventory (NPI), with cerebrospinal fluid (CSF) biomarkers (Amyloid-β42, P-tau, T-tau) across a spectrum of cognitive states to enhance diagnostic accuracy and treatment approaches. Drawing from the National Alzheimer's Coordinating Center's Uniform Data Set Version 3, comprising 977 individuals with normal cognition, 270 with MCI, and 649 with dementia. To assess neuropsychiatric symptoms, we employed the NPI to understand the behavioral and psychological symptoms associated with each cognitive category. For the analysis of CSF biomarkers, we measured levels of Amyloid-β42, P-tau, and T-tau using the enzyme-linked immunosorbent assay (ELISA) and Luminex multiplex xMAP assay protocols. These biomarkers are critical in understanding the pathophysiological underpinnings of Alzheimer's disease and its progression, with specific patterns indicative of disease stage and severity. This study cohort consists of 1896 participants, which is composed of 977 individuals with normal cognition, 270 with MCI, and 649 with dementia. Dementia is characterized by significantly higher NPI scores, which are largely reflective of mood-related symptoms (p < 0.001). In terms of biomarkers, normal cognition shows median Amyloid-β at 656.0 pg/mL, MCI at 300.6 pg/mL, and dementia at 298.8 pg/mL (p < 0.001). Median P-tau levels are 36.00 pg/mL in normal cognition, 49.12 pg/mL in MCI, and 58.29 pg/mL in dementia (p < 0.001). Median T-tau levels are 241.0 pg/mL in normal cognition, 140.6 pg/mL in MCI, and 298.3 pg/mL in dementia (p < 0.001). Furthermore, the T-tau/Aβ-42 ratio increases progressively from 0.058 in the normal cognition group to 0.144 in the MCI group, and to 0.209 in the dementia group (p < 0.001). Similarly, the P-tau/Aβ-42 ratio also escalates from 0.305 in individuals with normal cognition to 0.560 in MCI, and to 0.941 in dementia (p < 0.001). The notable disparities in NPI and CSF biomarkers among normal, MCI and Alzheimer's patients underscore their diagnostic potential. Their combined assessment could greatly improve early detection and precise diagnosis of MCI and dementia, facilitating more effective and timely treatment strategies.
Collapse
Affiliation(s)
- Ching-Chi Hsu
- Board of Directors, Wizcare Medical Corporation Aggregate, Taichung 404, Taiwan;
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Shiow-Ing Wang
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hong-Chun Lin
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Eric S. Lin
- Department of Economics, National Tsing Hua University, Hsinchu 300, Taiwan;
- EMBA/MBA/MFB/MPM/HBA Programs, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Fan-Pei Yang
- Department of Foreign Languages and Literatures, National Tsinghua University, Hsinchu 300, Taiwan;
- Department of Oral and Maxillofacial Radiology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Nursing, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 402, Taiwan
| |
Collapse
|
18
|
Francisco T, Malafaia D, Melo L, Silva AMS, Albuquerque HMT. Recent Advances in Fluorescent Theranostics for Alzheimer's Disease: A Comprehensive Survey on Design, Synthesis, and Properties. ACS OMEGA 2024; 9:13556-13591. [PMID: 38559945 PMCID: PMC10975685 DOI: 10.1021/acsomega.3c10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia that is rapidly becoming a major health problem, especially in developed countries because of their increasing life expectancy. Two main problems are often associated with the disease: (i) the absence of a widely accessible "gold-standard" for early diagnosis and (ii) lack of effective therapies with disease-modifying effects. The recent success of the monoclonal antibody lecanemab played an important role not only in clarifying a possible druggable pathway but also in spelling the revival of small molecule drug discovery. Unlike bulky biologics, small molecules are structurally less complex, generally cheaper, and compatible with at-home oral consumption, making it feasible for people to start their drug regimen early and stay on it longer. In this sense, small-molecule near-infrared fluorescent theranostics have been gaining more and more attention from the scientific community, as they have the potential to simultaneously provide diagnostic outputs and deliver therapeutic action, paving the way toward personalized medicine in AD patients. They also have the potential to shift the diagnostic "status-quo" from expensive and limited-access PET radiotracers toward inexpensive and handy imaging tools widely available for primary patient screening and preclinical animal studies. Herein, we review the most recent advances in the field of fluorescent theranostics for Alzheimer's disease, detailing their design strategies, synthetic approaches and imaging and therapeutic properties in vitro and in vivo. With this Review, we intend to provide a milestone in the acquired knowledge in the field of AD theranostics, encouraging the future development of properly designed theranostic compounds with improved chances to reach clinical applications.
Collapse
Affiliation(s)
- Telmo
N. Francisco
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela Malafaia
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Lúcia Melo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Hélio M. T. Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Khan S, Ansari B, Ansari NK, Naeem A. Protective role of chlorogenic acid in preserving cytochrome-c stability against HFIP-induced molten globule state at physiological pH. Int J Biol Macromol 2024; 261:129845. [PMID: 38302016 DOI: 10.1016/j.ijbiomac.2024.129845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Numerous neurodegenerative disorders are characterized by protein misfolding and aggregation. The mechanism of protein aggregation is intricate, and it is very challenging to study at cellular level. Inhibition of protein aggregation by interfering with its pathway is one of the ways to prevent neurodegenerative diseases. In the present work, we have evaluated the protective effect of a polyphenol compound chlorogenic acid (CGA) on the native and molten globule state of horse heart cytochrome c (cyt c). A molten globule state of this heme protein was achieved in the presence of fluorinated alcohol 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) at physiological pH, as studied by UV-Vis absorption, circular dichroism, intrinsic and ANS fluorescence. We found that at 50 % (v/v) HFIP, the native cyt c transformed into a molten globule state. The same techniques were also used to analyze the protective effect of CGA on the molten globule state of cyt c, and the results show that the CGA prevented the molten globular state and retained the protein close to the native state at 1:1 protein:CGA sub molar ratio. Molecular dynamics study also revealed that CGA retains the stability of cyt c in HFIP medium by preserving it in an intermediate state close to native conformation.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Bushra Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
20
|
Colom-Cadena M, Toombs J, Simzer E, Holt K, McGeachan R, Tulloch J, Jackson RJ, Catterson JH, Spires-Jones MP, Rose J, Waybright L, Caggiano AO, King D, Gobbo F, Davies C, Hooley M, Dunnett S, Tempelaar R, Meftah S, Tzioras M, Hamby ME, Izzo NJ, Catalano SM, Durrant CS, Smith C, Dando O, Spires-Jones TL. Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer's disease. Acta Neuropathol 2024; 147:32. [PMID: 38319380 PMCID: PMC10847197 DOI: 10.1007/s00401-023-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aβ) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aβ leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aβ and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aβ binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aβ generates a FRET signal with transmembrane protein 97. Further, Aβ generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aβ/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aβ. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aβ when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aβ including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aβ in human Alzheimer's disease brain where it may mediate synaptotoxicity.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Toombs
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Elizabeth Simzer
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Kristjan Holt
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert McGeachan
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Rosemary J Jackson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - James H Catterson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | | - Declan King
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Monique Hooley
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Sophie Dunnett
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert Tempelaar
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Makis Tzioras
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- Scottish Brain Sciences, Edinburgh, EH12 9DQ, UK
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, USA
| | | | | | - Claire S Durrant
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh, EH16 4HB, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
21
|
Abdollahi Z, Nejabat M, Abnous K, Hadizadeh F. The therapeutic value of thiazole and thiazolidine derivatives in Alzheimer's disease: a systematic literature review. Res Pharm Sci 2024; 19:1-12. [PMID: 39006977 PMCID: PMC11244712 DOI: 10.4103/1735-5362.394816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/19/2023] [Accepted: 12/23/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a common neurodegenerative disease and the fifth leading cause of death among the elderly. The development of drugs for AD treatment is based on inhibiting cholinesterase (ChE) activity and inhibiting amyloid-beta peptide and tau protein aggregations. Many in vitro findings have demonstrated that thiazole-and thiazolidine-based compounds have a good inhibitory effect on ChE and other elements involved in the AD pathogenicity cascade. Experimental approach In the present review, we collected available documents to verify whether these synthetic compounds can be a step forward in developing new medications for AD. A systematic literature search was performed in major electronic databases in April 2021. Twenty-eight relevant in vitro and in vivo studies were found and used for data extraction. Findings/Results Findings demonstrated that thiazole-and thiazolidine-based compounds could ameliorate AD's pathologic condition by affecting various targets, including inhibition of ChE activity, amyloid-beta, and tau aggregation in addition to cyclin-dependent kinase 5/p25, beta-secretase-1, cyclooxygenase, and glycogen synthase kinase-3β. Conclusion and implications Due to multitarget effects at micromolar concentration, this review demonstrated that these synthetic compounds could be considered promising candidates for developing anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Zahra Abdollahi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Wei M, Wu T, Chen N. Bridging neurotrophic factors and bioactive peptides to Alzheimer's disease. Ageing Res Rev 2024; 94:102177. [PMID: 38142891 DOI: 10.1016/j.arr.2023.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. As the demographic shifting towards an aging population, AD has emerged as a prominent public health concern. The pathogenesis of AD is complex, and there are no effective treatment methods for AD until now. In recent years, neurotrophic factors and bioactive peptides including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), irisin, melatonin, have been discovered to exert neuroprotective functions for AD. Bioactive peptides can be divided into two categories based on their sources: endogenous and exogenous. This review briefly elaborates on the pathogenesis of AD and analyzes the regulatory effects of endogenous and exogenous peptides on the pathogenesis of AD, thereby providing new therapeutic targets for AD and a theoretical basis for the application of bioactive peptides as adjunctive therapies for AD.
Collapse
Affiliation(s)
- Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
23
|
Taylor LW, Simzer EM, Pimblett C, Lacey-Solymar OTT, McGeachan RI, Meftah S, Rose JL, Spires-Jones MP, Holt K, Catterson JH, Koch H, Liaquat I, Clarke JH, Skidmore J, Smith C, Booker SA, Brennan PM, Spires-Jones TL, Durrant CS. p-tau Ser356 is associated with Alzheimer's disease pathology and is lowered in brain slice cultures using the NUAK inhibitor WZ4003. Acta Neuropathol 2024; 147:7. [PMID: 38175261 PMCID: PMC10766794 DOI: 10.1007/s00401-023-02667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Tau hyperphosphorylation and aggregation is a common feature of many dementia-causing neurodegenerative diseases. Tau can be phosphorylated at up to 85 different sites, and there is increasing interest in whether tau phosphorylation at specific epitopes, by specific kinases, plays an important role in disease progression. The AMP-activated protein kinase (AMPK)-related enzyme NUAK1 has been identified as a potential mediator of tau pathology, whereby NUAK1-mediated phosphorylation of tau at Ser356 prevents the degradation of tau by the proteasome, further exacerbating tau hyperphosphorylation and accumulation. This study provides a detailed characterisation of the association of p-tau Ser356 with progression of Alzheimer's disease pathology, identifying a Braak stage-dependent increase in p-tau Ser356 protein levels and an almost ubiquitous presence in neurofibrillary tangles. We also demonstrate, using sub-diffraction-limit resolution array tomography imaging, that p-tau Ser356 co-localises with synapses in AD postmortem brain tissue, increasing evidence that this form of tau may play important roles in AD progression. To assess the potential impacts of pharmacological NUAK inhibition in an ex vivo system that retains multiple cell types and brain-relevant neuronal architecture, we treated postnatal mouse organotypic brain slice cultures from wildtype or APP/PS1 littermates with the commercially available NUAK1/2 inhibitor WZ4003. Whilst there were no genotype-specific effects, we found that WZ4003 results in a culture-phase-dependent loss of total tau and p-tau Ser356, which corresponds with a reduction in neuronal and synaptic proteins. By contrast, application of WZ4003 to live human brain slice cultures results in a specific lowering of p-tau Ser356, alongside increased neuronal tubulin protein. This work identifies differential responses of postnatal mouse organotypic brain slice cultures and adult human brain slice cultures to NUAK1 inhibition that will be important to consider in future work developing tau-targeting therapeutics for human disease.
Collapse
Affiliation(s)
- Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth M Simzer
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire Pimblett
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Henner Koch
- Department of Neurology, Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Jonathan H Clarke
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Colin Smith
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Li X, Chen Y, Yang Z, Zhang S, Wei G, Zhang L. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations. Int J Biol Macromol 2024; 254:127841. [PMID: 37924907 DOI: 10.1016/j.ijbiomac.2023.127841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
The self-aggregation of amyloid-β (Aβ) and tau proteins are closely implicated in Alzheimer's disease (AD). Recent evidence indicates that Aβ and tau proteins can cross-interact to form co-aggregates, which aggravates the development of AD. However, their transient heterooligomer conformations and co-aggregation molecular mechanisms are largely unknown. Herein, we utilize replica exchange molecular dynamics simulations to investigate the conformational ensembles formed by the central hydrophobic core of Aβ (Aβ16-22) and each of two fibril-nucleating core segments of tau (PHF6* and PHF6). Both PHF6 and PHF6* are found to co-aggregate with Aβ16-22 into β-sheet-rich heterooligomers. Intriguingly, PHF6 and Aβ16-22 peptides formed closed β-barrels, while PHF6* and Aβ16-22 formed open β-barrels, implying their distinct co-aggregation property. Compared to Aβ16-22-PHF6*, Aβ16-22-PHF6 heterooligomers have higher β-sheet content, and contain longer β-strands and larger β-sheets, indicative of stronger co-aggregation ability of PHF6 with Aβ16-22. Further analyses reveal that hydrophobic and π-π stacking interactions between Y310 of PHF6 and Aβ16-22 are crucial for the closed β-barrel/larger β-sheet formation in Aβ16-22-PHF6 heterooligomers. These results highlight the paramount importance of PHF6 fragment, particularly Y310 residue, as a potential target for inhibiting Aβ-tau co-aggregation, which could help for effective therapeutic design in mitigating Aβ-tau co-aggregation related amyloidogenesis.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China; State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China..
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China.
| |
Collapse
|
25
|
Gaikwad S, Senapati S, Haque MA, Kayed R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer's disease: Evidence from clinical and preclinical studies. Alzheimers Dement 2024; 20:709-727. [PMID: 37814508 PMCID: PMC10841264 DOI: 10.1002/alz.13490] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Aging, tau pathology, and chronic inflammation in the brain play crucial roles in synaptic loss, neurodegeneration, and cognitive decline in tauopathies, including Alzheimer's disease. Senescent cells accumulate in the aging brain, accelerate the aging process, and promote tauopathy progression through their abnormal inflammatory secretome known as the senescence-associated secretory phenotype (SASP). Tau oligomers (TauO)-the most neurotoxic tau species-are known to induce senescence and the SASP, which subsequently promote neuropathology, inflammation, oxidative stress, synaptic dysfunction, neuronal death, and cognitive dysfunction. TauO, brain inflammation, and senescence are associated with heterogeneity in tauopathy progression and cognitive decline. However, the underlying mechanisms driving the disease heterogeneity remain largely unknown, impeding the development of therapies for tauopathies. Based on clinical and preclinical evidence, this review highlights the critical role of TauO and senescence in neurodegeneration. We discuss key knowledge gaps and potential strategies for targeting senescence and TauO to treat tauopathies. HIGHLIGHTS: Senescence, oligomeric Tau (TauO), and brain inflammation accelerate the aging process and promote the progression of tauopathies, including Alzheimer's disease. We discuss their role in contributing to heterogeneity in tauopathy and cognitive decline. We highlight strategies to target senescence and TauO to treat tauopathies while addressing key knowledge gaps.
Collapse
Affiliation(s)
- Sagar Gaikwad
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Sudipta Senapati
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md. Anzarul Haque
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
26
|
Robles-Gómez ÁA, Ordaz B, Lorea-Hernández JJ, Peña-Ortega F. Deleterious and protective effects of epothilone-D alone and in the context of amyloid β- and tau-induced alterations. Front Mol Neurosci 2023; 16:1198299. [PMID: 37900942 PMCID: PMC10603193 DOI: 10.3389/fnmol.2023.1198299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (P-tau) are Alzheimer's disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aβ, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aβ, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aβ and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aβ and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aβ and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.
Collapse
Affiliation(s)
- Ángel Abdiel Robles-Gómez
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México City, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | | | | |
Collapse
|
27
|
Tzioras M, Daniels MJD, Davies C, Baxter P, King D, McKay S, Varga B, Popovic K, Hernandez M, Stevenson AJ, Barrington J, Drinkwater E, Borella J, Holloway RK, Tulloch J, Moss J, Latta C, Kandasamy J, Sokol D, Smith C, Miron VE, Káradóttir RT, Hardingham GE, Henstridge CM, Brennan PM, McColl BW, Spires-Jones TL. Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8. Cell Rep Med 2023; 4:101175. [PMID: 37652017 PMCID: PMC10518633 DOI: 10.1016/j.xcrm.2023.101175] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/30/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.
Collapse
Affiliation(s)
- Makis Tzioras
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Michael J D Daniels
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Caitlin Davies
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Paul Baxter
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Declan King
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Sean McKay
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Balazs Varga
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Karla Popovic
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Madison Hernandez
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Anna J Stevenson
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jack Barrington
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Elizabeth Drinkwater
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Julia Borella
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jane Tulloch
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jonathan Moss
- MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK; The Roslin Institute, the Royal (Dick) School of Veterinary Studies, the University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Clare Latta
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jothy Kandasamy
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Drahoslav Sokol
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK; Barlo Multiple Sclerosis Centre at St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, ON M5B 1T8, Canada
| | | | - Giles E Hardingham
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | | | - Paul M Brennan
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK; Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Barry W McColl
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK.
| | - Tara L Spires-Jones
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
28
|
Park HH, Kim BH, Leem SH, Park YH, Hoe HS, Nam Y, Kim S, Shin SJ, Moon M. Characterization of age- and stage-dependent impaired adult subventricular neurogenesis in 5XFAD mouse model of Alzheimer's disease. BMB Rep 2023; 56:520-525. [PMID: 37482752 PMCID: PMC10547970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aβ. Although Aβ-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aβ-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aβ accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aβ accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aβ deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression. [BMB Reports 2023; 56(9): 520-525].
Collapse
Affiliation(s)
- Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
29
|
Yang M, Zinkgraf M, Fitzgerald-Cook C, Harrison BR, Putzier A, Promislow DEL, Wang AM. Using Drosophila to identify naturally occurring genetic modifiers of amyloid beta 42- and tau-induced toxicity. G3 (BETHESDA, MD.) 2023; 13:jkad132. [PMID: 37311212 PMCID: PMC10468303 DOI: 10.1093/g3journal/jkad132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease is characterized by 2 pathological proteins, amyloid beta 42 and tau. The majority of Alzheimer's disease cases in the population are sporadic and late-onset Alzheimer's disease, which exhibits high levels of heritability. While several genetic risk factors for late-onset Alzheimer's disease have been identified and replicated in independent studies, including the ApoE ε4 allele, the great majority of the heritability of late-onset Alzheimer's disease remains unexplained, likely due to the aggregate effects of a very large number of genes with small effect size, as well as to biases in sample collection and statistical approaches. Here, we present an unbiased forward genetic screen in Drosophila looking for naturally occurring modifiers of amyloid beta 42- and tau-induced ommatidial degeneration. Our results identify 14 significant SNPs, which map to 12 potential genes in 8 unique genomic regions. Our hits that are significant after genome-wide correction identify genes involved in neuronal development, signal transduction, and organismal development. Looking more broadly at suggestive hits (P < 10-5), we see significant enrichment in genes associated with neurogenesis, development, and growth as well as significant enrichment in genes whose orthologs have been identified as significantly or suggestively associated with Alzheimer's disease in human GWAS studies. These latter genes include ones whose orthologs are in close proximity to regions in the human genome that are associated with Alzheimer's disease, but where a causal gene has not been identified. Together, our results illustrate the potential for complementary and convergent evidence provided through multitrait GWAS in Drosophila to supplement and inform human studies, helping to identify the remaining heritability and novel modifiers of complex diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Matthew Zinkgraf
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Cecilia Fitzgerald-Cook
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alexandra Putzier
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M Wang
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
30
|
Pan L, Cho KS, Wei X, Xu F, Lennikov A, Hu G, Tang J, Guo S, Chen J, Kriukov E, Kyle R, Elzaridi F, Jiang S, Dromel PA, Young M, Baranov P, Do CW, Williams RW, Chen J, Lu L, Chen DF. IGFBPL1 is a master driver of microglia homeostasis and resolution of neuroinflammation in glaucoma and brain tauopathy. Cell Rep 2023; 42:112889. [PMID: 37527036 PMCID: PMC10528709 DOI: 10.1016/j.celrep.2023.112889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023] Open
Abstract
Microglia shift toward an inflammatory phenotype during aging that is thought to exacerbate age-related neurodegeneration. The molecular and cellular signals that resolve neuroinflammation post-injury are largely undefined. Here, we exploit systems genetics methods based on the extended BXD murine reference family and identify IGFBPL1 as an upstream cis-regulator of microglia-specific genes to switch off inflammation. IGFBPL1 is expressed by mouse and human microglia, and higher levels of its expression resolve lipopolysaccharide-induced neuroinflammation by resetting the transcriptome signature back to a homeostatic state via IGF1R signaling. Conversely, IGFBPL1 deficiency or selective deletion of IGF1R in microglia shifts these cells to an inflammatory landscape and induces early manifestation of brain tauopathy and retinal neurodegeneration. Therapeutic administration of IGFBPL1 drives pro-homeostatic microglia and prevents glaucomatous neurodegeneration and vision loss in mice. These results identify IGFBPL1 as a master driver of the counter-inflammatory microglial modulator that presents an endogenous resolution of neuroinflammation to prevent neurodegeneration in eye and brain.
Collapse
Affiliation(s)
- Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Xin Wei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuai Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Julie Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Emil Kriukov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Robert Kyle
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pierre A Dromel
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Petr Baranov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
31
|
Colom-Cadena M, Davies C, Sirisi S, Lee JE, Simzer EM, Tzioras M, Querol-Vilaseca M, Sánchez-Aced É, Chang YY, Holt K, McGeachan RI, Rose J, Tulloch J, Wilkins L, Smith C, Andrian T, Belbin O, Pujals S, Horrocks MH, Lleó A, Spires-Jones TL. Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain. Neuron 2023; 111:2170-2183.e6. [PMID: 37192625 DOI: 10.1016/j.neuron.2023.04.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Caitlin Davies
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Sònia Sirisi
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ji-Eun Lee
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Elizabeth M Simzer
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Makis Tzioras
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Érika Sánchez-Aced
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ya Yin Chang
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Kristjan Holt
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Robert I McGeachan
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jamie Rose
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jane Tulloch
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Lewis Wilkins
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, The University of Edinburgh, Edinburgh, UK
| | - Teodora Andrian
- Nanoscopy for Nanomedicine Lab, Institute of Bioengineering of Catalonia (IBEC Barcelona Institute of Science and Technology), Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sílvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK.
| |
Collapse
|
32
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 326] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
33
|
Samudra N, Lane-Donovan C, VandeVrede L, Boxer AL. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest 2023; 133:e168553. [PMID: 37317972 PMCID: PMC10266783 DOI: 10.1172/jci168553] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Tauopathies are disorders associated with tau protein dysfunction and insoluble tau accumulation in the brain at autopsy. Multiple lines of evidence from human disease, as well as nonclinical translational models, suggest that tau has a central pathologic role in these disorders, historically thought to be primarily related to tau gain of toxic function. However, a number of tau-targeting therapies with various mechanisms of action have shown little promise in clinical trials in different tauopathies. We review what is known about tau biology, genetics, and therapeutic mechanisms that have been tested in clinical trials to date. We discuss possible reasons for failures of these therapies, such as use of imperfect nonclinical models that do not predict human effects for drug development; heterogeneity of human tau pathologies which may lead to variable responses to therapy; and ineffective therapeutic mechanisms, such as targeting of the wrong tau species or protein epitope. Innovative approaches to human clinical trials can help address some of the difficulties that have plagued our field's development of tau-targeting therapies thus far. Despite limited clinical success to date, as we continue to refine our understanding of tau's pathogenic mechanism(s) in different neurodegenerative diseases, we remain optimistic that tau-targeting therapies will eventually play a central role in the treatment of tauopathies.
Collapse
|
34
|
King D, Holt K, Toombs J, HE X, Dando O, Okely JA, Tzioras M, Rose J, Gunn C, Correia A, Montero C, McAlister H, Tulloch J, Lamont D, Taylor AM, Harris SE, Redmond P, Cox SR, Henstridge CM, Deary IJ, Smith C, Spires‐Jones TL. Synaptic resilience is associated with maintained cognition during ageing. Alzheimers Dement 2023; 19:2560-2574. [PMID: 36547260 PMCID: PMC11497288 DOI: 10.1002/alz.12894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION It remains unclear why age increases risk of Alzheimer's disease and why some people experience age-related cognitive decline in the absence of dementia. Here we test the hypothesis that resilience to molecular changes in synapses contribute to healthy cognitive ageing. METHODS We examined post-mortem brain tissue from people in mid-life (n = 15), healthy ageing with either maintained cognition (n = 9) or lifetime cognitive decline (n = 8), and Alzheimer's disease (n = 13). Synapses were examined with high resolution imaging, proteomics, and RNA sequencing. Stem cell-derived neurons were challenged with Alzheimer's brain homogenate. RESULTS Synaptic pathology increased, and expression of genes involved in synaptic signaling decreased between mid-life, healthy ageing and Alzheimer's. In contrast, brain tissue and neurons from people with maintained cognition during ageing exhibited decreases in synaptic signaling genes compared to people with cognitive decline. DISCUSSION Efficient synaptic networks without pathological protein accumulation may contribute to maintained cognition during ageing.
Collapse
Affiliation(s)
- Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Kris Holt
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Toombs
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Xin HE
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Owen Dando
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Judith A Okely
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Makis Tzioras
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Rose
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Ciaran Gunn
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Adele Correia
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Carmen Montero
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Hannah McAlister
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jane Tulloch
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Douglas Lamont
- FingerPrints Proteomics FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Adele M Taylor
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Sarah E Harris
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Paul Redmond
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Simon R Cox
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | | | - Ian J Deary
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Colin Smith
- NeuropathologyCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tara L Spires‐Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| |
Collapse
|
35
|
Aghamohammad S, Hafezi A, Rohani M. Probiotics as functional foods: How probiotics can alleviate the symptoms of neurological disabilities. Biomed Pharmacother 2023; 163:114816. [PMID: 37150033 DOI: 10.1016/j.biopha.2023.114816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Neurological disorders are diseases of the central nervous system with progressive loss of nervous tissue. One of the most difficult problems associated with neurological disorders is that there is no clear treatment for these diseases. In this review, the physiopathology of some neurodegenerative diseases, etiological causes, drugs used and their side effects, and finally the role of probiotics in controlling the symptoms of these neurodegenerative diseases are presented. Recently, researchers have focused more on the microbiome and the gut-brain axis, which may play a critical role in maintaining brain health. Probiotics are among the most important bacteria that have positive effects on the balance of homeostasis via influencing the microbiome. Other important functions of probiotics in alleviating symptoms of neurological disorders include anti-inflammatory properties, short-chain fatty acid production, and the production of various neurotransmitters. The effects of probiotics on the control of abnormalities seen in neurological disorders led to probiotics being referred to as "psychobiotic. Given the important role of the gut-brain axis and the imbalance of the gut microbiome in the etiology and symptoms of neurological disorders, probiotics could be considered safe agents that positively affect the balance of the microbiome as complementary treatment options for neurological disorders.
Collapse
Affiliation(s)
| | - Asal Hafezi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
36
|
De Bastiani MA, Bellaver B, Brum WS, Souza DG, Ferreira PCL, Rocha AS, Povala G, Ferrari-Souza JP, Benedet AL, Ashton NJ, Karikari TK, Zetterberg H, Blennow K, Rosa-Neto P, Pascoal TA, Zimmer ER. Hippocampal GFAP-positive astrocyte responses to amyloid and tau pathologies. Brain Behav Immun 2023; 110:175-184. [PMID: 36878332 DOI: 10.1016/j.bbi.2023.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION In Alzheimer's disease clinical research, glial fibrillary acidic protein (GFAP) released/leaked into the cerebrospinal fluid and blood is widely measured and perceived as a biomarker of reactive astrogliosis. However, it was demonstrated that GFAP levels differ in individuals presenting with amyloid-β (Aβ) or tau pathologies. The molecular underpinnings behind this specificity are little explored. Here we investigated biomarker and transcriptomic associations of hippocampal GFAP-positive astrocytes with Aβ and tau pathologies in humans and mouse models. METHODS We studied 90 individuals with plasma GFAP, Aβ- and Tau-PET to investigate the association between biomarkers. Then, transcriptomic analysis in hippocampal GFAP-positive astrocytes isolated from mouse models presenting Aβ (PS2APP) or tau (P301S) pathologies was conducted to explore differentially expressed genes (DEGs), Gene Ontology terms, and protein-protein interaction networks associated with each phenotype. RESULTS In humans, we found that plasma GFAP associates with Aβ but not tau pathology. Unveiling the unique nature of hippocampal GFAP-positive astrocytic responses to Aβ or tau pathologies, mouse transcriptomics showed scarce overlap of DEGs between the Aβ. and tau mouse models. While Aβ GFAP-positive astrocytes were overrepresented with DEGs associated with proteostasis and exocytosis-related processes, tau hippocampal GFAP-positive astrocytes presented greater abnormalities in functions related to DNA/RNA processing and cytoskeleton dynamics. CONCLUSION Our results offer insights into Aβ- and tau-driven specific signatures in hippocampal GFAP-positive astrocytes. Characterizing how different underlying pathologies distinctly influence astrocyte responses is critical for the biological interpretation of astrocyte biomarkers and suggests the need to develop context-specific astrocyte targets to study AD. FUNDING This study was supported by Instituto Serrapilheira, Alzheimer's Association, CAPES, CNPq and FAPERGS.
Collapse
Affiliation(s)
- Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Debora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | - Andreia S Rocha
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Povala
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health University Institute, Departments of Neurology and Neurosurgery, Psychiatry, and Pharmacology, McGill University, Montreal, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Cangalaya C, Wegmann S, Sun W, Diez L, Gottfried A, Richter K, Stoyanov S, Pakan J, Fischer KD, Dityatev A. Real-time mechanisms of exacerbated synaptic remodeling by microglia in acute models of systemic inflammation and tauopathy. Brain Behav Immun 2023; 110:245-259. [PMID: 36906076 DOI: 10.1016/j.bbi.2023.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/13/2023] Open
Abstract
Remodeling of synapses by microglia is essential for synaptic plasticity in the brain. However, during neuroinflammation and neurodegenerative diseases, microglia can induce excessive synaptic loss, although the precise underlying mechanisms are unknown. To directly observe microglia-synapse interactions under inflammatory conditions, we performed in vivo two-photon time-lapse imaging of microglia-synapse interactions after bacterial lipopolysaccharide administration to model systemic inflammation, or after inoculation of Alzheimer's disease (AD) brain extracts to model disease-associated neuroinflammatory microglial response. Both treatments prolonged microglia-neuron contacts, decreased basal surveillance of synapses and promoted synaptic remodeling in response to synaptic stress induced by focal single-synapse photodamage. Spine elimination correlated with the expression of microglial complement system/phagocytic proteins and the occurrence of synaptic filopodia. Microglia were observed contacting spines, then stretching and phagocytosing spine head filopodia. Thus, in response to inflammatory stimuli microglia exacerbated spine remodeling through prolonged microglial contact and elimination of spines 'tagged' by synaptic filopodia.
Collapse
Affiliation(s)
- Carla Cangalaya
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany; ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Magdeburg, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Anna Gottfried
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Karin Richter
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Janelle Pakan
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
39
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
41
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
42
|
Barendrecht S, Schreurs A, Geissler S, Sabanov V, Ilse V, Rieckmann V, Eichentopf R, Künemund A, Hietel B, Wussow S, Hoffmann K, Körber-Ferl K, Pandey R, Carter GW, Demuth HU, Holzer M, Roßner S, Schilling S, Preuss C, Balschun D, Cynis H. A novel human tau knock-in mouse model reveals interaction of Abeta and human tau under progressing cerebral amyloidosis in 5xFAD mice. Alzheimers Res Ther 2023; 15:16. [PMID: 36641439 PMCID: PMC9840277 DOI: 10.1186/s13195-022-01144-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/14/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.
Collapse
Affiliation(s)
- Susan Barendrecht
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - An Schreurs
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Stefanie Geissler
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Victor Sabanov
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Victoria Ilse
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Vera Rieckmann
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Rico Eichentopf
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Anja Künemund
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Benjamin Hietel
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Sebastian Wussow
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Katrin Hoffmann
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Kerstin Körber-Ferl
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Ravi Pandey
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Gregory W. Carter
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Hans-Ulrich Demuth
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Max Holzer
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Stephan Schilling
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany ,grid.427932.90000 0001 0692 3664Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
| | - Christoph Preuss
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Detlef Balschun
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Holger Cynis
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| |
Collapse
|
43
|
Jones ME, Büchler J, Dufor T, Palomer E, Teo S, Martin-Flores N, Boroviak K, Metzakopian E, Gibb A, Salinas PC. A genetic variant of the Wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eabo7421. [PMID: 36638182 PMCID: PMC10624429 DOI: 10.1126/sciadv.abo7421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Synapse loss strongly correlates with cognitive decline in Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Deficient Wnt signaling contributes to synapse dysfunction and loss in AD. Consistently, a variant of the LRP6 receptor, (LRP6-Val), with reduced Wnt signaling, is linked to late-onset AD. However, the impact of LRP6-Val on the healthy and AD brain has not been examined. Knock-in mice, generated by gene editing, carrying this Lrp6 variant develop normally. However, neurons from Lrp6-val mice do not respond to Wnt7a, a ligand that promotes synaptic assembly through the Frizzled-5 receptor. Wnt7a stimulates the formation of the low-density lipoprotein receptor-related protein 6 (LRP6)-Frizzled-5 complex but not if LRP6-Val is present. Lrp6-val mice exhibit structural and functional synaptic defects that become pronounced with age. Lrp6-val mice present exacerbated synapse loss around plaques when crossed to the NL-G-F AD model. Our findings uncover a previously unidentified role for Lrp6-val in synapse vulnerability during aging and AD.
Collapse
Affiliation(s)
- Megan E. Jones
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Johanna Büchler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Samuel Teo
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Martin-Flores
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Katharina Boroviak
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0AH, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
44
|
Amyloid-β in Alzheimer's disease - front and centre after all? Neuronal Signal 2023; 7:NS20220086. [PMID: 36687366 PMCID: PMC9829960 DOI: 10.1042/ns20220086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The amyloid hypothesis, which proposes that accumulation of the peptide amyloid-β at synapses is the key driver of Alzheimer's disease (AD) pathogenesis, has been the dominant idea in the field of Alzheimer's research for nearly 30 years. Recently, however, serious doubts about its validity have emerged, largely motivated by disappointing results from anti-amyloid therapeutics in clinical trials. As a result, much of the AD research effort has shifted to understanding the roles of a variety of other entities implicated in pathogenesis, such as microglia, astrocytes, apolipoprotein E and several others. All undoubtedly play an important role, but the nature of this has in many cases remained unclear, partly due to their pleiotropic functions. Here, we propose that all of these AD-related entities share at least one overlapping function, which is the local regulation of amyloid-β levels, and that this may be critical to their role in AD pathogenesis. We also review what is currently known of the actions of amyloid-β at the synapse in health and disease, and consider in particular how it might interact with the key AD-associated protein tau in the disease setting. There is much compelling evidence in support of the amyloid hypothesis; rather than detract from this, the implication of many disparate AD-associated cell types, molecules and processes in the regulation of amyloid-β levels may lend further support.
Collapse
|
45
|
Alexandersen CG, de Haan W, Bick C, Goriely A. A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer's disease. J R Soc Interface 2023; 20:20220607. [PMID: 36596460 PMCID: PMC9810432 DOI: 10.1098/rsif.2022.0607] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia and is linked to the spreading of pathological amyloid-β and tau proteins throughout the brain. Recent studies have highlighted stark differences in how amyloid-β and tau affect neurons at the cellular scale. On a larger scale, Alzheimer's patients are observed to undergo a period of early-stage neuronal hyperactivation followed by neurodegeneration and frequency slowing of neuronal oscillations. Herein, we model the spreading of both amyloid-β and tau across a human connectome and investigate how the neuronal dynamics are affected by disease progression. By including the effects of both amyloid-β and tau pathology, we find that our model explains AD-related frequency slowing, early-stage hyperactivation and late-stage hypoactivation. By testing different hypotheses, we show that hyperactivation and frequency slowing are not due to the topological interactions between different regions but are mostly the result of local neurotoxicity induced by amyloid-β and tau protein.
Collapse
Affiliation(s)
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford, UK,Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Amsterdam Neuroscience—Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Kobro-Flatmoen A, Battistin C, Nair RR, Bjorkli C, Skender B, Kentros C, Gouras G, Witter MP. Lowering levels of reelin in entorhinal cortex layer II-neurons results in lowered levels of intracellular amyloid-β. Brain Commun 2023; 5:fcad115. [PMID: 37091586 PMCID: PMC10120433 DOI: 10.1093/braincomms/fcad115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Projection neurons in the anteriolateral part of entorhinal cortex layer II are the predominant cortical site for hyper-phosphorylation of tau and formation of neurofibrillary tangles in prodromal Alzheimer's disease. A majority of layer II projection neurons in anteriolateral entorhinal cortex are unique among cortical excitatory neurons by expressing the protein reelin. In prodromal Alzheimer's disease, these reelin-expressing neurons are prone to accumulate intracellular amyloid-β, which is mimicked in a rat model that replicates the spatio-temporal cascade of the disease. Two important findings in relation to this are that reelin-signalling downregulates tau phosphorylation, and that oligomeric amyloid-β interferes with reelin-signalling. Taking advantage of this rat model, we used proximity ligation assay to assess whether reelin and intracellular amyloid-β directly interact during early, pre-plaque stages in anteriolateral entorhinal cortex layer II reelin-expressing neurons. We next made a viral vector delivering micro-RNA against reelin, along with a control vector, and infected reelin-expressing anteriolateral entorhinal cortex layer II-neurons to test whether reelin levels affect levels of intracellular amyloid-β and/or amyloid precursor protein. We analysed 25.548 neurons from 24 animals, which results in three important findings. First, in reelin-expressing anteriolateral entorhinal cortex layer II-neurons, reelin and intracellular amyloid-β engage in a direct protein-protein interaction. Second, injecting micro-RNA against reelin lowers reelin levels in these neurons, amounting to an effect size of 1.3-4.5 (Bayesian estimation of Cohen's d effect size, 95% credible interval). This causes a concomitant reduction of intracellular amyloid-β ranging across three levels of aggregation, including a reduction of Aβ42 monomers/dimers amounting to an effect size of 0.5-3.1, a reduction of Aβ prefibrils amounting to an effect size of 1.1-3.5 and a reduction of protofibrils amounting to an effect size of 0.05-2.1. Analysing these data using Bayesian estimation of mutual information furthermore reveals that levels of amyloid-β are dependent on levels of reelin. Third, the reduction of intracellular amyloid-β occurs without any substantial associated changes in levels of amyloid precursor protein. We conclude that reelin and amyloid-β directly interact at the intracellular level in the uniquely reelin-expressing projection neurons in anteriolateral entorhinal cortex layer II, where levels of amyloid-β are dependent on levels of reelin. Since amyloid-β is known to impair reelin-signalling causing upregulated phosphorylation of tau, our findings are likely relevant to the vulnerability for neurofibrillary tangle-formation of this entorhinal neuronal population.
Collapse
Affiliation(s)
| | - Claudia Battistin
- Kavli Institute for Systems Neuroscience MTFS, NTNU Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7489, Trondheim, Norway
| | - Rajeevkumar Raveendran Nair
- Kavli Institute for Systems Neuroscience MTFS, NTNU Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7489, Trondheim, Norway
| | - Christiana Bjorkli
- Kavli Institute for Systems Neuroscience MTFS, NTNU Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7489, Trondheim, Norway
| | - Belma Skender
- Kavli Institute for Systems Neuroscience MTFS, NTNU Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7489, Trondheim, Norway
| | - Cliff Kentros
- Kavli Institute for Systems Neuroscience MTFS, NTNU Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7489, Trondheim, Norway
- Mohn Research Center for the Brain, NTNU, 7489, Trondheim, Norway
- Institute of Neuroscience, University of Oregon, 97401, Eugene, OR, USA
| | - Gunnar Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Menno P Witter
- Correspondence to: Menno P. Witter Kavli Institute for Systems Neuroscience MTFS, NTNU Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7489, Trondheim, Norway 7030 Trondheim, Norway E-mail:
| |
Collapse
|
47
|
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 2023; 19:19-38. [PMID: 36513730 DOI: 10.1038/s41582-022-00749-z] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-β and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-β and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
48
|
Jiang Y, Zhang JX, Liu R. Systematic comparison of differential expression networks in MTB mono-, HIV mono- and MTB/HIV co-infections for drug repurposing. PLoS Comput Biol 2022; 18:e1010744. [PMID: 36534703 PMCID: PMC9810203 DOI: 10.1371/journal.pcbi.1010744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/03/2023] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
The synergy between human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (MTB) could accelerate the deterioration of immunological functions. Previous studies have explored the pathogenic mechanisms of HIV mono-infection (HMI), MTB mono-infection (MMI) and MTB/HIV co-infection (MHCI), but their similarities and specificities remain to be profoundly investigated. We thus designed a computational framework named IDEN to identify gene pairs related to these states, which were then compared from different perspectives. MMI-related genes showed the highest enrichment level on a greater number of chromosomes. Genes shared by more states tended to be more evolutionarily conserved, posttranslationally modified and topologically important. At the expression level, HMI-specific gene pairs yielded higher correlations, while the overlapping pairs involved in MHCI had significantly lower correlations. The correlation changes of common gene pairs showed that MHCI shared more similarities with MMI. Moreover, MMI- and MHCI-related genes were enriched in more identical pathways and biological processes, further illustrating that MTB may play a dominant role in co-infection. Hub genes specific to each state could promote pathogen infections, while those shared by two states could enhance immune responses. Finally, we improved the network proximity measure for drug repurposing by considering the importance of gene pairs, and approximately ten drug candidates were identified for each disease state.
Collapse
Affiliation(s)
- Yao Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jia-Xuan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
49
|
Gandini A, Gonçalves AE, Strocchi S, Albertini C, Janočková J, Tramarin A, Grifoni D, Poeta E, Soukup O, Muñoz-Torrero D, Monti B, Sabaté R, Bartolini M, Legname G, Bolognesi ML. Discovery of Dual Aβ/Tau Inhibitors and Evaluation of Their Therapeutic Effect on a Drosophila Model of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3314-3329. [PMID: 36445009 PMCID: PMC9732823 DOI: 10.1021/acschemneuro.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-β (Aβ) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aβ clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aβ and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aβ42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 μM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aβ42 expressing flies and generating a better outcome than doxycycline (50 μM). Moreover, 22 proved to be able to decrease Aβ42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aβ/Tau aggregation inhibition in AD.
Collapse
Affiliation(s)
- Annachiara Gandini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Ana Elisa Gonçalves
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Silvia Strocchi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Claudia Albertini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Jana Janočková
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Anna Tramarin
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Daniela Grifoni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito II, 67100L’Aquila, Italy
| | - Eleonora Poeta
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Ondrej Soukup
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028Barcelona, Spain
| | - Barbara Monti
- Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Raimon Sabaté
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Science, University
of Barcelona, Av Joan
XXIII 27-31, E-08028Barcelona, Spain
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Giuseppe Legname
- Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,. Tel: +39 0512099718
| |
Collapse
|
50
|
Lee HY, Yoon S, Lee JH, Park K, Jung Y, Cho I, Lee D, Shin J, Kim K, Kim S, Kim J, Kim K, Han SH, Kim SM, Kim HJ, Kim HY, Kim I, Kim YS. Aryloxypropanolamine targets amyloid aggregates and reverses Alzheimer-like phenotypes in Alzheimer mouse models. Alzheimers Res Ther 2022; 14:177. [PMID: 36443837 PMCID: PMC9706920 DOI: 10.1186/s13195-022-01112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Aggregated amyloid-β (Aβ) is considered a pathogenic initiator of Alzheimer's disease (AD), in strong association with tau hyperphosphorylation, neuroinflammation, synaptic dysfunction, and cognitive decline. As the removal of amyloid burden from AD patient brains by antibodies has shown therapeutic potential, the development of small molecule drugs inducing chemical dissociation and clearance of Aβ is compelling as a therapeutic strategy. In this study, we synthesized and screened aryloxypropanolamine derivatives and identified 1-(3-(2,4-di-tert-pentylphenoxy)-2-hydroxypropyl)pyrrolidin-1-ium chloride, YIAD002, as a strong dissociator of Aβ aggregates. METHODS The dissociative activity of aryloxypropanolamine derivatives against Aβ aggregates were evaluated through in vitro assays. Immunohistochemical staining, immunoblot assays, and the Morris water maze were used to assess the anti-Alzheimer potential in YIAD002-treated 5XFAD and transgenic APP/PS1 mice. Target-ligand interaction mechanism was characterized via a combination of peptide mapping, fluorescence dissociation assays, and constrained docking simulations. RESULTS Among 11 aryloxypropanolamine derivatives, YIAD002 exerted strongest dissociative activity against β-sheet-rich Aβ aggregates. Upon oral administration, YIAD002 substantially reduced amyloid burden and accordingly, improved cognitive performance in the Morris water maze and attenuated major pathological hallmarks of AD including tauopathy, neuroinflammation, and synaptic protein loss. Mechanism studies suggest that YIAD002 interferes with intermolecular β-sheet fibrillation by directly interacting with KLVFFA and IGLMVG domains of Aβ. In addition, YIAD002 was found to possess dissociative activity against aggregates of pyroglutamate-modified Aβ and tau. CONCLUSIONS Collectively, our results evince the potential of chemical-driven dissociation of Aβ aggregates by aryloxypropanolamines as a therapeutic modality of the amyloid clearance approach.
Collapse
Affiliation(s)
- Hee Yang Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Soljee Yoon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea.,Department of Integrative Biotechnology & Translational Medicine, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Jeong Hwa Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangwon-do, 25451, South Korea
| | - Youngeun Jung
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Illhwan Cho
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Donghee Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Sunmi Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Jimin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Koeun Kim
- Amyloid Solution, Bundang-gu, Seongnam-si, Gyeonggi-do, 13486, South Korea
| | - Seung Hoon Han
- Amyloid Solution, Bundang-gu, Seongnam-si, Gyeonggi-do, 13486, South Korea
| | - Seong Muk Kim
- Amyloid Solution, Bundang-gu, Seongnam-si, Gyeonggi-do, 13486, South Korea
| | - Hye Ju Kim
- Amyloid Solution, Bundang-gu, Seongnam-si, Gyeonggi-do, 13486, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea
| | - Ikyon Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea.
| | - Young Soo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea. .,Department of Integrative Biotechnology & Translational Medicine, Yonsei University, Yeonsu-gu, Incheon, 21983, South Korea. .,Amyloid Solution, Bundang-gu, Seongnam-si, Gyeonggi-do, 13486, South Korea.
| |
Collapse
|