1
|
Rahimi Farahani M, Sharifi F, Payab M, Shadman Z, Fakhrzadeh H, Moodi M, Khorashadizadeh M, Ebrahimpur M, Taheri M, Ebrahimi P, Larijani B. Dynapenia-abdominal obesity and mortality risk, is independent effect obscured by age and frailty?:Birjand Longitudinal Aging Study (BLAS). J Diabetes Metab Disord 2024; 23:2343-2353. [PMID: 39610561 PMCID: PMC11599648 DOI: 10.1007/s40200-024-01501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 11/30/2024]
Abstract
Background Abdominal obesity and low muscle strength, known separately as risk factors for mortality, might have a synergistic effect when they co-occur. Dynapenic abdominal obesity (DAO) is a condition defined by the presence of both. However, DAO's independent and combined impact on mortality remains under investigation. Objective The objective of the present study was to evaluate the association of dynapenia, abdominal obesity, and dynapenic abdominal obesity with all-cause mortality among community-dwelling older adults. Methods This is a longitudinal study with a 5-year follow-up conducted involving 1,354 community-dwelling older adults (≥ 65 years) of the Birjand Longitudinal Aging Study (BLAS). Abdominal obesity and dynapenia were respectively defined based on waist circumference (> 102 cm for men and > 88 cm for women) and grip strength (< 26 kg for men and < 16 kg for women). The sample was divided into four groups: non-dynapenic/non-abdominal obesity (ND/NAO), dynapenic/non-abdominal obesity (D/NAO), non-dynapenic/abdominal obesity (ND/AO), and dynapenic/abdominal obesity (D/AO). The outcome was all-cause mortality registered through four methods: 1- telephone interview with the family of the participants during September 2018 and February 2024, 2- hospital information systems, 3- death registry of the deputy of the Health of Birjand University of Medical Sciences 4- in a subject who died at home or out of hospital death registry was verified by a verbal autopsy performed by a clinician. Univariate and multiple Logistic regression models were used to estimate the risk of all-cause mortality as a function of dynapenia and abdominal obesity in competing events controlled by age, sex, multi-morbidity, and frailty. Results The mean age of the study participants was 69.77 ± 7.55 years, and about 703 (51.71%) were female. There was a statistical difference between the alive and the deceased groups in terms of sex, age, multimorbidity, and frailty. Mortality was statistically higher among dynapenic participants (P < 0.001). Unadjusted logistic regression analysis explored the relationship between D/NAO and mortality (OR = 2.18; CI 95% 1.25-3.78). In the adjusted models, no significant relationships were observed. Age and frailty had significant associations with mortality. Conclusion While our study found an association between dynapenia without abdominal obesity and increased mortality risk, factors like age and frailty might play a stronger role. These require further investigation to understand the independent effect of dynapenia on mortality fully. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01501-8.
Collapse
Affiliation(s)
- Marjan Rahimi Farahani
- Non-communicable Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Non-communicable Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Fakhrzadeh
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoumeh Khorashadizadeh
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahbube Ebrahimpur
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Faculty of Medicine, Cardiology Research Center, Hamadan University of Medical Sciences, Tehran, Iran
| | - Pouya Ebrahimi
- Tehran Heart Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Herzog CMS, Goeminne LJE, Poganik JR, Barzilai N, Belsky DW, Betts-LaCroix J, Chen BH, Chen M, Cohen AA, Cummings SR, Fedichev PO, Ferrucci L, Fleming A, Fortney K, Furman D, Gorbunova V, Higgins-Chen A, Hood L, Horvath S, Justice JN, Kiel DP, Kuchel GA, Lasky-Su J, LeBrasseur NK, Maier AB, Schilling B, Sebastiano V, Slagboom PE, Snyder MP, Verdin E, Widschwendter M, Zhavoronkov A, Moqri M, Gladyshev VN. Challenges and recommendations for the translation of biomarkers of aging. NATURE AGING 2024; 4:1372-1383. [PMID: 39285015 DOI: 10.1038/s43587-024-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024]
Abstract
Biomarkers of aging (BOA) are quantitative parameters that predict biological age and ideally its changes in response to interventions. In recent years, many promising molecular and omic BOA have emerged with an enormous potential for translational geroscience and improving healthspan. However, clinical translation remains limited, in part due to the gap between preclinical research and the application of BOA in clinical research and other translational settings. We surveyed experts in these areas to better understand current challenges for the translation of aging biomarkers. We identified six key barriers to clinical translation and developed guidance for the field to overcome them. Core recommendations include linking BOA to clinically actionable insights, improving affordability and availability to broad populations and validation of biomarkers that are robust and responsive at the level of individuals. Our work provides key insights and practical recommendations to overcome barriers impeding clinical translation of BOA.
Collapse
Affiliation(s)
- Chiara M S Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
| | - Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Brian H Chen
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | | | | | | | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, USA
- The National Scientific and Research Council, Austral University, Buenos Aires, Argentina
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | | | - Lee Hood
- Buck Institute for Research on Aging, Novato, CA, USA
- Phenome Health, Seattle, WA, USA
| | | | - Jamie N Justice
- XPRIZE Foundation, Culver City, CA, USA
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - George A Kuchel
- University of Connecticut School of Medicine, @UConnAging, Farmington, CT, USA
| | - Jessica Lasky-Su
- Department of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Department of Women's Cancer, EGA Institute for Women's Health, University College London, London, UK
- Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | | | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Loseva PA, Gladyshev VN. The beginning of becoming a human. Aging (Albany NY) 2024; 16:8378-8395. [PMID: 38713165 PMCID: PMC11131989 DOI: 10.18632/aging.205824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 05/08/2024]
Abstract
According to birth certificates, the life of a child begins once their body comes out of the mother's womb. But when does their organismal life begin? Science holds a palette of answers-depending on how one defines a human life. In 1984, a commission on the regulatory framework for human embryo experimentation opted not to answer this question, instead setting a boundary, 14 days post-fertilization, beyond which any experiments were forbidden. Recently, as the reproductive technologies developed and the demand for experimentation grew stronger, this boundary may be set aside leaving the ultimate decision to local oversight committees. While science has not come closer to setting a zero point for human life, there has been significant progress in our understanding of early mammalian embryogenesis. It has become clear that the 14-day stage does in fact possess features, which make it a foundational time point for a developing human. Importantly, this stage defines the separation of soma from the germline and marks the boundary between rejuvenation and aging. We explore how different levels of life organization emerge during human development and suggest a new meaning for the 14-day stage in organismal life that is grounded in recent mechanistic advances and insights from aging studies.
Collapse
Affiliation(s)
- Polina A. Loseva
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Constantinides C, Baltramonaityte V, Caramaschi D, Han LKM, Lancaster TM, Zammit S, Freeman TP, Walton E. Assessing the association between global structural brain age and polygenic risk for schizophrenia in early adulthood: A recall-by-genotype study. Cortex 2024; 172:1-13. [PMID: 38154374 DOI: 10.1016/j.cortex.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023]
Abstract
Neuroimaging studies consistently show advanced brain age in schizophrenia, suggesting that brain structure is often 'older' than expected at a given chronological age. Whether advanced brain age is linked to genetic liability for schizophrenia remains unclear. In this pre-registered secondary data analysis, we utilised a recall-by-genotype approach applied to a population-based subsample from the Avon Longitudinal Study of Parents and Children to assess brain age differences between young adults aged 21-24 years with relatively high (n = 96) and low (n = 93) polygenic risk for schizophrenia (SCZ-PRS). A global index of brain age (or brain-predicted age) was estimated using a publicly available machine learning model previously trained on a combination of region-wise gray-matter measures, including cortical thickness, surface area and subcortical volumes derived from T1-weighted magnetic resonance imaging (MRI) scans. We found no difference in mean brain-PAD (the difference between brain-predicted age and chronological age) between the high- and low-SCZ-PRS groups, controlling for the effects of sex and age at time of scanning (b = -.21; 95% CI -2.00, 1.58; p = .82; Cohen's d = -.034; partial R2 = .00029). These findings do not support an association between SCZ-PRS and brain-PAD based on global age-related structural brain patterns, suggesting that brain age may not be a vulnerability marker of common genetic risk for SCZ. Future studies with larger samples and multimodal brain age measures could further investigate global or localised effects of SCZ-PRS.
Collapse
Affiliation(s)
| | | | - Doretta Caramaschi
- Department of Psychology, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Laura K M Han
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia; Orygen, Parkville, Australia
| | | | - Stanley Zammit
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, UK
| | | |
Collapse
|
6
|
Gavrilov LA, Gavrilova NS. Exploring Patterns of Human Mortality and Aging: A Reliability Theory Viewpoint. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:341-355. [PMID: 38622100 PMCID: PMC11090256 DOI: 10.1134/s0006297924020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 04/17/2024]
Abstract
The most important manifestation of aging is an increased risk of death with advancing age, a mortality pattern characterized by empirical regularities known as mortality laws. We highlight three significant ones: the Gompertz law, compensation effect of mortality (CEM), and late-life mortality deceleration and describe new developments in this area. It is predicted that CEM should result in declining relative variability of mortality at older ages. The quiescent phase hypothesis of negligible actuarial aging at younger adult ages is tested and refuted by analyzing mortality of the most recent birth cohorts. To comprehend the aging mechanisms, it is crucial to explain the observed empirical mortality patterns. As an illustrative example of data-directed modeling and the insights it provides, we briefly describe two different reliability models applied to human mortality patterns. The explanation of aging using a reliability theory approach aligns with evolutionary theories of aging, including idea of chronic phenoptosis. This alignment stems from their focus on elucidating the process of organismal deterioration itself, rather than addressing the reasons why organisms are not designed for perpetual existence. This article is a part of a special issue of the journal that commemorates the legacy of the eminent Russian scientist Vladimir Petrovich Skulachev (1935-2023) and his bold ideas about evolution of biological aging and phenoptosis.
Collapse
Affiliation(s)
- Leonid A Gavrilov
- NORC at the University of Chicago, Chicago, IL 60637, USA.
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, 109028, Russia
| | - Natalia S Gavrilova
- NORC at the University of Chicago, Chicago, IL 60637, USA
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, 109028, Russia
| |
Collapse
|
7
|
Hahn MW, Peña-Garcia Y, Wang RJ. The 'faulty male' hypothesis for sex-biased mutation and disease. Curr Biol 2023; 33:R1166-R1172. [PMID: 37989088 PMCID: PMC11795531 DOI: 10.1016/j.cub.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Biological differences between males and females lead to many differences in physiology, disease, and overall health. One of the most prominent disparities is in the number of germline mutations passed to offspring: human males transmit three times as many mutations as do females. While the classic explanation for this pattern invokes differences in post-puberty germline replication between the sexes, recent whole-genome evidence in humans and other mammals has cast doubt on this mechanism. Here, we review recent work that is inconsistent with a replication-driven model of male-biased mutation, and propose an alternative, 'faulty male' hypothesis. This model proposes that males are less able to repair and/or protect DNA from damage compared to females. Importantly, we suggest that this new model for male-biased mutation may also help to explain several pronounced differences between the sexes in cancer, aging, and DNA repair. Although the detailed contributions of genetic, epigenetic, and hormonal influences of biological sex on mutation remain to be fully understood, a reconsideration of the mechanisms underlying these differences will lead to a deeper understanding of evolution and disease.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology, Indiana University, 1001 E. 3(rd) Street, Bloomington, IN 47405, USA; Department of Computer Science, 700 N. Woodlawn Avenue, Bloomington, IN 47405, USA.
| | - Yadira Peña-Garcia
- Department of Biology, Indiana University, 1001 E. 3(rd) Street, Bloomington, IN 47405, USA
| | - Richard J Wang
- Department of Biology, Indiana University, 1001 E. 3(rd) Street, Bloomington, IN 47405, USA; Department of Computer Science, 700 N. Woodlawn Avenue, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
9
|
Wolf SE, Shalev I. The shelterin protein expansion of telomere dynamics: Linking early life adversity, life history, and the hallmarks of aging. Neurosci Biobehav Rev 2023; 152:105261. [PMID: 37268182 PMCID: PMC10527177 DOI: 10.1016/j.neubiorev.2023.105261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Aging is characterized by functional decline occurring alongside changes to several hallmarks of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, whether and how it causally contributes to lifelong rates of functional decline is unclear. In this review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent of which may be modulated by currently understudied variation in shelterin protein levels. Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., by translating early life adversity into acceleration of the aging process. We consider how the pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, life history, and lifespan. We highlight key open questions that encourage the integrative, organismal study of shelterin proteins that enhances our understanding of the contribution of the telomere system to aging.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA.
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Zakharova G, Modestov A, Pugacheva P, Mekic R, Savina E, Guryanova A, Rachkova A, Yakushov S, Alimov A, Kulaeva E, Fedoseeva E, Kleyman A, Vasin K, Tkachev V, Garazha A, Sekacheva M, Suntsova M, Sorokin M, Buzdin A, Zolotovskaia MA. Distinct Traits of Structural and Regulatory Evolutional Conservation of Human Genes with Specific Focus on Major Cancer Molecular Pathways. Cells 2023; 12:cells12091299. [PMID: 37174700 PMCID: PMC10177184 DOI: 10.3390/cells12091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements. For the first time, we characterized in parallel the regulatory and structural evolutionary profiles for 10,890 human genes and 2972 molecular pathways. We observed a ~0.1 correlation between the structural and regulatory metrics at the gene level, which appeared much higher (~0.4) at the pathway level. We deposited the data in the publicly available database RetroSpect. We also analyzed the evolutionary dynamics of six cancer pathways of two major axes: Notch/WNT/Hedgehog and AKT/mTOR/EGFR. The Hedgehog pathway had both components slower, whereas the Akt pathway had clearly accelerated structural evolution. In particular, the major hub nodes Akt and beta-catenin showed both components strongly decreased, whereas two major regulators of Akt TCL1 and CTMP had outstandingly high evolutionary rates. We also noticed structural conservation of serine/threonine kinases and the genes related to guanosine metabolism in cancer signaling: GPCRs, G proteins, and small regulatory GTPases (Src, Rac, Ras); however, this was compensated by the accelerated regulatory evolution.
Collapse
Affiliation(s)
- Galina Zakharova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Alexander Modestov
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Polina Pugacheva
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Rijalda Mekic
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ekaterina Savina
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Anastasia Guryanova
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Anastasia Rachkova
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Semyon Yakushov
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrei Alimov
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Elizaveta Kulaeva
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Elena Fedoseeva
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Artem Kleyman
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Kirill Vasin
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | | | - Marina Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maria Suntsova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maksim Sorokin
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton Buzdin
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Marianna A Zolotovskaia
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
11
|
Salnikov L, Goldberg S, Rijhwani H, Shi Y, Pinsky E. The RNA-Seq data analysis shows how the ontogenesis defines aging. FRONTIERS IN AGING 2023; 4:1143334. [PMID: 36999000 PMCID: PMC10046809 DOI: 10.3389/fragi.2023.1143334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023]
Abstract
This paper presents a global statistical analysis of the RNA-Seq results of the entire Mus musculus genome. We explain aging by a gradual redistribution of limited resources between two major tasks of the organism: its self-sustenance based on the function of the housekeeping gene group (HG) and functional differentiation provided by the integrative gene group (IntG). All known disorders associated with aging are the result of a deficiency in the repair processes provided by the cellular infrastructure. Understanding exactly how this deficiency arises is our primary goal. Analysis of RNA production data of 35,630 genes, from which 5,101 were identified as HG genes, showed that RNA production levels in the HG and IntG genes had statistically significant differences (p-value <0.0001) throughout the entire observation period. In the reproductive period of life, which has the lowest actual mortality risk for Mus musculus, changes in the age dynamics of RNA production occur. The statistically significant dynamics of the decrease of RNA production in the HG group in contrast to the IntG group was determined (p-value = 0.0045). The trend toward significant shift in the HG/IntG ratio occurs after the end of the reproductive period, coinciding with the beginning of the mortality rate increase in Mus musculus indirectly supports our hypothesis. The results demonstrate a different orientation of the impact of ontogenesis regulatory mechanisms on the groups of genes representing cell infrastructures and their organismal functions, making the chosen direction promising for further research and understanding the mechanisms of aging.
Collapse
Affiliation(s)
| | - Saveli Goldberg
- Department of Radiation Oncology, Mass General Hospital, Boston, MA, United Kingdom
| | - Heena Rijhwani
- Department of Computer Science, Met College, Boston University, Boston, MA, United Kingdom
| | - Yuran Shi
- Department of Computer Science, Brandeis University, Waltham, MA, United Kingdom
| | - Eugene Pinsky
- Department of Computer Science, Met College, Boston University, Boston, MA, United Kingdom
| |
Collapse
|
12
|
Flaxman S, Whittaker C, Semenova E, Rashid T, Parks RM, Blenkinsop A, Unwin HJT, Mishra S, Bhatt S, Gurdasani D, Ratmann O. Assessment of COVID-19 as the Underlying Cause of Death Among Children and Young People Aged 0 to 19 Years in the US. JAMA Netw Open 2023; 6:e2253590. [PMID: 36716029 PMCID: PMC9887489 DOI: 10.1001/jamanetworkopen.2022.53590] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 01/31/2023] Open
Abstract
Importance COVID-19 was the underlying cause of death for more than 940 000 individuals in the US, including at least 1289 children and young people (CYP) aged 0 to 19 years, with at least 821 CYP deaths occurring in the 1-year period from August 1, 2021, to July 31, 2022. Because deaths among US CYP are rare, the mortality burden of COVID-19 in CYP is best understood in the context of all other causes of CYP death. Objective To determine whether COVID-19 is a leading (top 10) cause of death in CYP in the US. Design, Setting, and Participants This national population-level cross-sectional epidemiological analysis for the years 2019 to 2022 used data from the US Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (WONDER) database on underlying cause of death in the US to identify the ranking of COVID-19 relative to other causes of death among individuals aged 0 to 19 years. COVID-19 deaths were considered in 12-month periods between April 1, 2020, and August 31, 2022, compared with deaths from leading non-COVID-19 causes in 2019, 2020, and 2021. Main Outcomes and Measures Cause of death rankings by total number of deaths, crude rates per 100 000 population, and percentage of all causes of death, using the National Center for Health Statistics 113 Selected Causes of Death, for ages 0 to 19 and by age groupings (<1 year, 1-4 years, 5-9 years, 10-14 years, 15-19 years). Results There were 821 COVID-19 deaths among individuals aged 0 to 19 years during the study period, resulting in a crude death rate of 1.0 per 100 000 population overall; 4.3 per 100 000 for those younger than 1 year; 0.6 per 100 000 for those aged 1 to 4 years; 0.4 per 100 000 for those aged 5 to 9 years; 0.5 per 100 000 for those aged 10 to 14 years; and 1.8 per 100 000 for those aged 15 to 19 years. COVID-19 mortality in the time period of August 1, 2021, to July 31, 2022, was among the 10 leading causes of death in CYP aged 0 to 19 years in the US, ranking eighth among all causes of deaths, fifth in disease-related causes of deaths (excluding unintentional injuries, assault, and suicide), and first in deaths caused by infectious or respiratory diseases when compared with 2019. COVID-19 deaths constituted 2% of all causes of death in this age group. Conclusions and Relevance The findings of this study suggest that COVID-19 was a leading cause of death in CYP. It caused substantially more deaths in CYP annually than any vaccine-preventable disease historically in the recent period before vaccines became available. Various factors, including underreporting and not accounting for COVID-19's role as a contributing cause of death from other diseases, mean that these estimates may understate the true mortality burden of COVID-19. The findings of this study underscore the public health relevance of COVID-19 to CYP. In the likely future context of sustained SARS-CoV-2 circulation, appropriate pharmaceutical and nonpharmaceutical interventions (eg, vaccines, ventilation, air cleaning) will continue to play an important role in limiting transmission of the virus and mitigating severe disease in CYP.
Collapse
Affiliation(s)
- Seth Flaxman
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, United Kingdom
| | - Elizaveta Semenova
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Theo Rashid
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Robbie M. Parks
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | | | - H. Juliette T. Unwin
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, United Kingdom
| | - Swapnil Mishra
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, United Kingdom
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Oliver Ratmann
- Department of Mathematics, Imperial College London, United Kingdom
| |
Collapse
|
13
|
Leake DW. Tracing Slow Phenoptosis to the Prenatal Stage in Social Vertebrates. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1512-1527. [PMID: 36717460 DOI: 10.1134/s0006297922120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vladimir Skulachev's coining of the term "phenoptosis" 25 years ago (Skulachev, V. P., Biochemistry (Moscow), 62, 1997) highlighted the theoretical possibility that aging is a programmed process to speed the exit of individuals posing some danger to their social group. While rapid "acute phenoptosis" might occur at any age (e.g., to prevent spread of deadly infections), "slow phenoptosis" is generally considered to occur later in life in the form of chronic age-related disorders. However, recent research indicates that risks for such chronic disorders can be greatly raised by early life adversity, especially during the prenatal stage. Much of this research uses indicators of biological aging, the speeding or slowing of natural physiological deterioration in response to environmental inputs, leading to divergence from chronological age. Studies using biological aging indicators commonly find it is accelerated not only in older individuals with chronic disorders, but also in very young individuals with health problems. This review will explain how accelerated biological aging equates to slow phenoptosis. Its occurrence even in the prenatal stage is theoretically supported by W. D. Hamilton's proposal that offsprings detecting they have dangerous mutations should then automatically speed their demise, in order to improve their inclusive fitness by giving their parents the chance to produce other fitter siblings.
Collapse
Affiliation(s)
- David W Leake
- University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
14
|
Schmitt F, Eckert GP. Caenorhabditis elegans as a Model for the Effects of Phytochemicals on Mitochondria and Aging. Biomolecules 2022; 12:1550. [PMID: 36358900 PMCID: PMC9687847 DOI: 10.3390/biom12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The study of aging is an important topic in contemporary research. Considering the demographic changes and the resulting shifts towards an older population, it is of great interest to preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition in aging research. In this review article, we explore the advantages of using the nematode model in aging research, focusing on bioenergetics and the study of secondary plant metabolites that have interesting implications during this process. In the first section, we review the situation of aging research today. Conventional theories and hypotheses about the ongoing aging process will be presented and briefly explained. The second section focuses on the nematode C. elegans and its utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria's influence on aging, we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans. We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth section, we focus on phytochemicals and their applications in contemporary nutritional science, with an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth section with several studies focusing on mitochondrial research and the effects of phytochemicals such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for feeding studies, thus enabling bioenergetics to be observed during the aging process.
Collapse
Affiliation(s)
| | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Science, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
15
|
Wordsworth J, O' Keefe H, Clark P, Shanley D. The damage-independent evolution of ageing by selective destruction. Mech Ageing Dev 2022; 207:111709. [PMID: 35868541 DOI: 10.1016/j.mad.2022.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/06/2023]
Abstract
Ageing is widely believed to reflect the accumulation of molecular damage due to energetic costs of maintenance, as proposed in disposable soma theory (DST). Here we use agent-based modelling to describe an alternative theory by which ageing could undergo positive selection independent of energetic costs. We suggest that the selective advantage of aberrant cells with fast growth might necessitate a mechanism of counterselection we name selective destruction that specifically removes the faster cells from tissues, preventing the morbidity and mortality risks they pose. The resulting survival advantage of slower mutants could switch the direction of selection, allowing them to outcompete both fast mutants and wildtype cells, causing them to spread and induce ageing in the form of a metabolic slowdown. Selective destruction could therefore provide a proximal cause of ageing that is both consistent with the gene expression hallmarks of ageing, and independent of accumulating damage. Furthermore, negligible senescence would acquire a new meaning of increased basal mortality.
Collapse
Affiliation(s)
- James Wordsworth
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Hannah O' Keefe
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Clark
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daryl Shanley
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
17
|
Raffington L, Belsky DW. Integrating DNA Methylation Measures of Biological Aging into Social Determinants of Health Research. Curr Environ Health Rep 2022; 9:196-210. [PMID: 35181865 DOI: 10.1007/s40572-022-00338-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Acceleration of biological processes of aging is hypothesized to drive excess morbidity and mortality in socially disadvantaged populations. DNA methylation measures of biological aging provide tools for testing this hypothesis. RECENT FINDINGS Next-generation DNA methylation measures of biological aging developed to predict mortality risk and physiological decline are more predictive of morbidity and mortality than the original epigenetic clocks developed to predict chronological age. These new measures show consistent evidence of more advanced and faster biological aging in people exposed to socioeconomic disadvantage and may be able to record the emergence of socially determined health inequalities as early as childhood. Next-generation DNA methylation measures of biological aging also indicate race/ethnic disparities in biological aging. More research is needed on these measures in samples of non-Western and non-White populations. New DNA methylation measures of biological aging open opportunities for refining inference about the causes of social disparities in health and devising policies to eliminate them. Further refining measures of biological aging by including more diversity in samples used for measurement development is a critical priority for the field.
Collapse
Affiliation(s)
- Laurel Raffington
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - Daniel W Belsky
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St. Rm 413, New York, NY, 10032, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
18
|
McGill MG, Pokhvisneva I, Clappison AS, McEwen LM, Beijers R, Tollenaar MS, Pham H, Kee MZL, Garg E, de Mendonça Filho EJ, Karnani N, Silveira PP, Kobor MS, de Weerth C, Meaney MJ, O'Donnell KJ. Maternal Prenatal Anxiety and the Fetal Origins of Epigenetic Aging. Biol Psychiatry 2022; 91:303-312. [PMID: 34756561 DOI: 10.1016/j.biopsych.2021.07.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The fetal origins of mental health is a well-established framework that currently lacks a robust index of the biological embedding of prenatal adversity. The Pediatric-Buccal-Epigenetic (PedBE) clock is a novel epigenetic tool that associates with aspects of the prenatal environment, but additional validation in longitudinal datasets is required. Likewise, the relationship between prenatal maternal mental health and the PedBE clock has not been described. METHODS Longitudinal cohorts from the Netherlands (Basal Influences on Baby Development [BIBO] n = 165) and Singapore (Growing Up in Singapore Towards Healthy Outcomes [GUSTO] n = 340) provided data on prenatal maternal anxiety and longitudinal assessments of buccal cell-derived genome-wide DNA methylation assessed at 6 and 10 years of age in BIBO, and at 3, 9, and 48 months of age in GUSTO. Measures of epigenetic age acceleration were calculated using the PedBE clock and benchmarked against an established multi-tissue epigenetic predictor. RESULTS Prenatal maternal anxiety predicted child PedBE epigenetic age acceleration in both cohorts, with effects largely restricted to males and not females. These results were independent of obstetric, socioeconomic, and genetic risk factors, with a larger effect size for prenatal anxiety than depression. PedBE age acceleration predicted increased externalizing symptoms in males from mid- to late childhood in the BIBO cohort only. CONCLUSIONS These findings point to the fetal origins of epigenetic age acceleration and reveal an increased sensitivity in males. Convergent evidence underscores the societal importance of providing timely and effective mental health support to pregnant individuals, which may have lasting consequences for both mother and child.
Collapse
Affiliation(s)
- Megan G McGill
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Irina Pokhvisneva
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Andrew S Clappison
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roseriet Beijers
- Department of Developmental Psychology, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Marieke S Tollenaar
- Department of Clinical Psychology, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Hung Pham
- Yale Child Study Center and Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| | | | - Elika Garg
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | | | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore
| | - Patricia P Silveira
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Michael J Meaney
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada; Singapore Institute for Clinical Sciences, Singapore; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kieran J O'Donnell
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada; Yale Child Study Center and Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Kerepesi C, Meer MV, Ablaeva J, Amoroso VG, Lee SG, Zhang B, Gerashchenko MV, Trapp A, Yim SH, Lu AT, Levine ME, Seluanov A, Horvath S, Park TJ, Gorbunova V, Gladyshev VN. Epigenetic aging of the demographically non-aging naked mole-rat. Nat Commun 2022; 13:355. [PMID: 35039495 PMCID: PMC8763950 DOI: 10.1038/s41467-022-27959-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
The naked mole-rat (NMR) is an exceptionally long-lived rodent that shows no increase of mortality with age, defining it as a demographically non-aging mammal. Here, we perform bisulfite sequencing of the blood of > 100 NMRs, assessing > 3 million common CpG sites. Unsupervised clustering based on sites whose methylation correlates with age reveals an age-related methylome remodeling, and we also observe a methylome information loss, suggesting that NMRs age. We develop an epigenetic aging clock that accurately predicts the NMR age. We show that these animals age much slower than mice and much faster than humans, consistent with their known maximum lifespans. Interestingly, patterns of age-related changes of clock sites in Tert and Prpf19 differ between NMRs and mice, but there are also sites conserved between the two species. Together, the data indicate that NMRs, like other mammals, epigenetically age even in the absence of demographic aging of this species.
Collapse
Affiliation(s)
- Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Margarita V Meer
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Julia Ablaeva
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14627, USA
| | - Vince G Amoroso
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Morgan E Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14627, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14627, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Douhard F, Douhard M, Gilbert H, Monget P, Gaillard J, Lemaître J. How much energetic trade-offs limit selection? Insights from livestock and related laboratory model species. Evol Appl 2021; 14:2726-2749. [PMID: 34950226 PMCID: PMC8674892 DOI: 10.1111/eva.13320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Trade-offs between life history traits are expected to occur due to the limited amount of resources that organisms can obtain and share among biological functions, but are of least concern for selection responses in nutrient-rich or benign environments. In domestic animals, selection limits have not yet been reached despite strong selection for higher meat, milk or egg yields. Yet, negative genetic correlations between productivity traits and health or fertility traits have often been reported, supporting the view that trade-offs do occur in the context of nonlimiting resources. The importance of allocation mechanisms in limiting genetic changes can thus be questioned when animals are mostly constrained by their time to acquire and process energy rather than by feed availability. Selection for high productivity traits early in life should promote a fast metabolism with less energy allocated to self-maintenance (contributing to soma preservation and repair). Consequently, the capacity to breed shortly after an intensive period of production or to remain healthy should be compromised. We assessed those predictions in mammalian and avian livestock and related laboratory model species. First, we surveyed studies that compared energy allocation to maintenance between breeds or lines of contrasting productivity but found little support for the occurrence of an energy allocation trade-off. Second, selection experiments for lower feed intake per unit of product (i.e. higher feed efficiency) generally resulted in reduced allocation to maintenance, but this did not entail fitness costs in terms of survival or future reproduction. These findings indicate that the consequences of a particular selection in domestic animals are much more difficult to predict than one could anticipate from the energy allocation framework alone. Future developments to predict the contribution of time constraints and trade-offs to selection limits will be insightful to breed livestock in increasingly challenging environments.
Collapse
Affiliation(s)
| | - Mathieu Douhard
- Laboratoire de Biométrie & Biologie EvolutiveCNRSUMR 5558Université Lyon 1VilleurbanneFrance
| | - Hélène Gilbert
- GenPhySEINRAEENVTUniversité de ToulouseCastanet‐TolosanFrance
| | | | - Jean‐Michel Gaillard
- Laboratoire de Biométrie & Biologie EvolutiveCNRSUMR 5558Université Lyon 1VilleurbanneFrance
| | - Jean‐François Lemaître
- Laboratoire de Biométrie & Biologie EvolutiveCNRSUMR 5558Université Lyon 1VilleurbanneFrance
| |
Collapse
|
21
|
Gladyshev VN, Kritchevsky SB, Clarke SG, Cuervo AM, Fiehn O, de Magalhães JP, Mau T, Maes M, Moritz R, Niedernhofer LJ, Van Schaftingen E, Tranah GJ, Walsh K, Yura Y, Zhang B, Cummings SR. Molecular Damage in Aging. NATURE AGING 2021; 1:1096-1106. [PMID: 36846190 PMCID: PMC9957516 DOI: 10.1038/s43587-021-00150-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
Cellular metabolism generates molecular damage affecting all levels of biological organization. Accumulation of this damage over time is thought to play a central role in the aging process, but damage manifests in diverse molecular forms complicating its assessment. Insufficient attention has been paid to date to the role of molecular damage in aging-related phenotypes, particularly in humans, in part because of the difficulty in measuring its various forms. Recently, omics approaches have been developed that begin to address this challenge, because they are able to assess a sizeable proportion of age-related damage at the level of small molecules, proteins, RNA, DNA, organelles and cells. This review describes the concept of molecular damage in aging and discusses its diverse aspects from theoretical models to experimental approaches. Measurement of multiple types of damage enables studies of the role of damage in human aging outcomes and lays a foundation for testing interventions to reduce the burden of molecular damage, opening new approaches to slowing aging and reducing its consequences.
Collapse
Affiliation(s)
- Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Michal Maes
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Robert Moritz
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Emile Van Schaftingen
- De Duve Institute, Université catholique de Louvain, Bruxelles, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Bruxelles, Belgium
| | - Gregory J. Tranah
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Wolf AM. The tumor suppression theory of aging. Mech Ageing Dev 2021; 200:111583. [PMID: 34637937 DOI: 10.1016/j.mad.2021.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023]
Abstract
Despite continued increases in human life expectancy, the factors determining the rate of human biological aging remain unknown. Without understanding the molecular mechanisms underlying aging, efforts to prevent aging are unlikely to succeed. The tumor suppression theory of aging introduced here proposes somatic mutation as the proximal cause of aging, but postulates that oncogenic transformation and clonal expansion, not functional impairment, are the relevant consequences of somatic mutation. Obesity and caloric restriction accelerate and decelerate aging due to their effect on cell proliferation, during which most mutations arise. Most phenotypes of aging are merely tumor-suppressive mechanisms that evolved to limit malignant growth, the dominant age-related cause of death in early and middle life. Cancer limits life span for most long-lived mammals, a phenomenon known as Peto's paradox. Its conservation across species demonstrates that mutation is a fundamental but hard limit on mammalian longevity. Cell senescence and apoptosis and differentiation induced by oncogenes, telomere shortening or DNA damage evolved as a second line of defense to limit the tumorigenic potential of clonally expanding cells, but accumulating senescent cells, senescence-associated secretory phenotypes and stem cell exhaustion eventually cause tissue dysfunction and the majority, if not most, phenotypes of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
23
|
Khera N, Santesmasses D, Kerepesi C, Gladyshev VN. COVID-19 mortality rate in children is U-shaped. Aging (Albany NY) 2021; 13:19954-19962. [PMID: 34411000 PMCID: PMC8436910 DOI: 10.18632/aging.203442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Children are known to be better protected from COVID-19 than adults, but their susceptibility patterns and the risk relative to other diseases are insufficiently defined. Here, we found that the COVID-19 mortality rate is U-shaped in childhood: it initially decreases, reaching the minimum at the ages 3-10 years, and then increases throughout life. All-cause mortality and mortality from other diseases, such as pneumonia and influenza, show a similar pattern; however, childhood mortality rates from COVID-19 are considerably lower than from other diseases, with the best relative protection achieved at the youngest ages. Consistent with this, the fraction of COVID-19 deaths among all deaths increases as a function of age throughout childhood and the entire life. We discuss implications of the elevated postnatal COVID-19 risk and lower childhood COVID-19 mortality compared to other diseases.
Collapse
Affiliation(s)
- Nina Khera
- Buckingham Browne and Nichols School, Cambridge, MA 02138, USA.,Biotein, Wellesley, MA 02482, USA
| | - Didac Santesmasses
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
25
|
Kohzaki M, Ootsuyama A, Umata T, Okazaki R. Comparison of the fertility of tumor suppressor gene-deficient C57BL/6 mouse strains reveals stable reproductive aging and novel pleiotropic gene. Sci Rep 2021; 11:12357. [PMID: 34117297 PMCID: PMC8195996 DOI: 10.1038/s41598-021-91342-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor genes are involved in maintaining genome integrity during reproduction (e.g., meiosis). Thus, deleterious alleles in tumor suppressor-deficient mice would exhibit higher mortality during the perinatal period. A recent aging model proposes that perinatal mortality and age-related deleterious changes might define lifespan. This study aimed to quantitatively understand the relationship between reproduction and lifespan using three established tumor suppressor gene (p53, APC, and RECQL4)-deficient mouse strains with the same C57BL/6 background. Transgenic mice delivered slightly reduced numbers of 1st pups than wild-type mice [ratio: 0.81–0.93 (p = 0.1–0.61)] during a similar delivery period, which suggest that the tumor suppressor gene-deficient mice undergo relatively stable reproduction. However, the transgenic 1st pups died within a few days after birth, resulting in a further reduction in litter size at 3 weeks after delivery compared with that of wild-type mice [ratio: 0.35–0.68 (p = 0.034–0.24)] without sex differences, although the lifespan was variable. Unexpectedly, the significance of reproductive reduction in transgenic mice was decreased at the 2nd or later delivery. Because mice are easily affected by environmental factors, our data underscore the importance of defining reproductive ability through experiments on aging-related reproduction that can reveal a trade-off between fecundity and aging and identify RECQL4 as a novel pleiotropic gene.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Umata
- Radioisotope Research Center, Facility for Education and Research Support, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Ryuji Okazaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
26
|
Kerepesi C, Zhang B, Lee SG, Trapp A, Gladyshev VN. Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging. SCIENCE ADVANCES 2021; 7:eabg6082. [PMID: 34172448 PMCID: PMC8232908 DOI: 10.1126/sciadv.abg6082] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/12/2021] [Indexed: 05/05/2023]
Abstract
The notion that the germ line does not age goes back to the 19th-century ideas of August Weismann. However, being metabolically active, the germ line accumulates damage and other changes over time, i.e., it ages. For new life to begin in the same young state, the germ line must be rejuvenated in the offspring. Here, we developed a multi-tissue epigenetic clock and applied it, together with other aging clocks, to track changes in biological age during mouse and human prenatal development. This analysis revealed a significant decrease in biological age, i.e., rejuvenation, during early stages of embryogenesis, followed by an increase in later stages. We further found that pluripotent stem cells do not age even after extensive passaging and that the examined epigenetic age dynamics is conserved across species. Overall, this study uncovers a natural rejuvenation event during embryogenesis and suggests that the minimal biological age (ground zero) marks the beginning of organismal aging.
Collapse
Affiliation(s)
- Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Raffington L, Belsky DW, Kothari M, Malanchini M, Tucker-Drob EM, Harden KP. Socioeconomic Disadvantage and the Pace of Biological Aging in Children. Pediatrics 2021; 147:e2020024406. [PMID: 34001641 PMCID: PMC8785753 DOI: 10.1542/peds.2020-024406] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Children who grow up in socioeconomic disadvantage face increased burden of disease and disability throughout their lives. One hypothesized mechanism for this increased burden is that early-life disadvantage accelerates biological processes of aging, increasing vulnerability to subsequent disease. To evaluate this hypothesis and the potential impact of preventive interventions, measures are needed that can quantify early acceleration of biological aging in childhood. METHODS Saliva DNA methylation and socioeconomic circumstances were measured in N = 600 children and adolescents aged 8 to 18 years (48% female) participating in the Texas Twin Project. We measured pace of biological aging using the DunedinPoAm DNA methylation algorithm, developed to quantify the pace-of-aging-related decline in system integrity. We tested if children in more disadvantaged families and neighborhoods exhibited a faster pace of aging as compared with children in more affluent contexts. RESULTS Children living in more disadvantaged families and neighborhoods exhibited a faster DunedinPoAm-measured pace of aging (r = 0.18; P = .001 for both). Latinx-identifying children exhibited a faster DunedinPoAm-measured pace of aging compared with both White- and Latinx White-identifying children, consistent with higher levels of disadvantage in this group. Children with more advanced pubertal development, higher BMI, and more tobacco exposure exhibited faster a faster DunedinPoAm-measured pace of aging. However, DunedinPoAm-measured pace of aging associations with socioeconomic disadvantage were robust to control for these factors. CONCLUSIONS Children growing up under conditions of socioeconomic disadvantage exhibit a faster pace of biological aging. DNA methylation pace of aging might be useful as a surrogate end point in evaluation of programs and policies to address the childhood social determinants of lifelong health disparities.
Collapse
Affiliation(s)
- Laurel Raffington
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
| | - Daniel W Belsky
- Department of Epidemiology and
- The Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, New York; and
| | - Meeraj Kothari
- The Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, New York; and
| | - Margherita Malanchini
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, United Kingdom
| | - Elliot M Tucker-Drob
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
- Contributed equally as co-lead authors
| | - K Paige Harden
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
- Contributed equally as co-lead authors
| |
Collapse
|
28
|
Walker S. Evidence of resistance training-induced neural adaptation in older adults. Exp Gerontol 2021; 151:111408. [PMID: 34022275 DOI: 10.1016/j.exger.2021.111408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
The deleterious effects of aging on force production are observable from the age of 40 upwards, depending on the measure. Neural mechanisms contributing to maximum force production and rate of force development have been suggested as descending drive from supraspinal centers, spinal motoneuron excitability, and corticospinal inhibition of descending drive; all of which influence motor unit recruitment and/or firing rate. Resistance-trained Master athletes offer a good source of information regarding the inevitable effects of aging despite the countermeasure of systematic resistance-training. However, most evidence of neural adaptation is derived from longitudinal intervention studies in previously untrained (i.e. resistance-training naïve) older adults. There is good evidence for the effect of resistance-training on the end-point of neural activation, i.e. motor unit behavior, but little to no data on the generation of descending drive from e.g. transcranial magnetic stimulation or cortical imaging studies in older adults. This, along with tracking master athletes over several years, would provide valuable information and could be the focus of future research.
Collapse
Affiliation(s)
- Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland.
| |
Collapse
|
29
|
Gladyshev VN. The Ground Zero of Organismal Life and Aging. Trends Mol Med 2021; 27:11-19. [PMID: 32980264 PMCID: PMC9183202 DOI: 10.1016/j.molmed.2020.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Cells may naturally proceed or be forced to transition to a state with a radically lower biological age, that is, be rejuvenated. Examples are the conversion of somatic cells to induced pluripotent stem cells and rejuvenation of the germline with each generation. We posit that these processes converge to the same 'ground zero', the mid-embryonic state characterized by the lowest biological age where both organismal life and aging begin. It may also be related to the phylotypic state. The ground zero model clarifies the relationship between aging, development, rejuvenation, and de-differentiation, which are distinct throughout life. By extending the rejuvenation phase during early embryogenesis and editing the genome, it may be possible to achieve the biological age at the ground zero lower than that achieved naturally.
Collapse
Affiliation(s)
- Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Abstract
Abstract
Biological ageing can be tentatively defined as an intrinsic and inevitable degradation of biological function that accumulates over time at every level of biological organisation from molecules to populations. Senescence is characterised by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. With advancing age, all components of the human body undergo these cumulative, universal, progressive, intrinsic and deleterious (CUPID) changes. Although ageing is not a disease per se, age is the main risk factor for the development of a panoply of age-related diseases. From a mechanistic perspective, a myriad of molecular processes and components of ageing can be studied. Some of them seem especially important and they are referred to as the hallmarks of ageing. There is compelling evidence that senescence has evolved as an emergent metaphenomenon that originates in the difficulty in maintaining homeodynamics in biological systems. From an evolutionary perspective, senescence is the inevitable outcome of an evolutionarily derived equilibrium between the amount of resources devoted to somatic maintenance and the amount of resources devoted to sexual reproduction. Single-target, single-molecule and disease-oriented approaches to ageing are severely limited because they neglect the dynamic, interactive and networking nature of life. These limitations notwithstanding, many authors promote single-target and disease-oriented approaches to senescence, e.g. repurposed drugs, claiming that these methods can enhance human health and longevity. Senescence is neither a disease nor a monolithic process. In this review, the limitations of these methods are discussed. The current state of biogerontology is also summarised.
Collapse
|
31
|
Zhang B, Gladyshev VN. How can aging be reversed? Exploring rejuvenation from a damage-based perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10025. [PMID: 36619246 PMCID: PMC9744548 DOI: 10.1002/ggn2.10025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Advanced age is associated with accumulation of damage and other deleterious changes and a consequential systemic decline of function. This decline affects all organs and systems in an organism, leading to their inadaptability to the environment, and therefore is thought to be inevitable for humans and most animal species. However, in vitro and in vivo application of reprogramming strategies, which convert somatic cells to induced pluripotent stem cells, has demonstrated that the aged cells can be rejuvenated. Moreover, the data and theoretical considerations suggest that reversing the biological age of somatic cells (from old to young) and de-differentiating somatic cells into stem cells represent two distinct processes that take place during rejuvenation, and thus they may be differently targeted. We advance a stemness-function model to explain these data and discuss a possibility of rejuvenation from the perspective of damage accumulation. In turn, this suggests approaches to achieve rejuvenation of cells in vitro and in vivo.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
32
|
Cohen AA, Legault V, Fülöp T. What if there’s no such thing as “aging”? Mech Ageing Dev 2020; 192:111344. [DOI: 10.1016/j.mad.2020.111344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
33
|
Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Gut P, Ivanchenko M, Legault V, Lemaître JF, Liontis T, Liu GH, Liu M, Maier AB, Nóbrega OT, Olde Rikkert MGM, Pawelec G, Rheault S, Senior AM, Simm A, Soo S, Traa A, Ukraintseva S, Vanhaelen Q, Van Raamsdonk JM, Witkowski JM, Yashin AI, Ziman R, Fülöp T. Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev 2020; 191:111316. [PMID: 32693105 DOI: 10.1016/j.mad.2020.111316] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
At a recent symposium on aging biology, a debate was held as to whether or not we know what biological aging is. Most of the participants were struck not only by the lack of consensus on this core question, but also on many basic tenets of the field. Accordingly, we undertook a systematic survey of our 71 participants on key questions that were raised during the debate and symposium, eliciting 37 responses. The results confirmed the impression from the symposium: there is marked disagreement on the most fundamental questions in the field, and little consensus on anything other than the heterogeneous nature of aging processes. Areas of major disagreement included what participants viewed as the essence of aging, when it begins, whether aging is programmed or not, whether we currently have a good understanding of aging mechanisms, whether aging is or will be quantifiable, whether aging will be treatable, and whether many non-aging species exist. These disagreements lay bare the urgent need for a more unified and cross-disciplinary paradigm in the biology of aging that will clarify both areas of agreement and disagreement, allowing research to proceed more efficiently. We suggest directions to encourage the emergence of such a paradigm.
Collapse
Affiliation(s)
- Alan A Cohen
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, 117596, Singapore; National University Health System (NUHS) Centre for Healthy Longevity, 1E Kent Ridge Road, 119228, Singapore; Singapore Institute of Clinical Sciences, A⁎STAR, Brenner Center for Molecular Medicine, 30 Medical Dr., 117609, Singapore; Buck Institute for Research on Ageing, 8001 Redwood Blvd, Novato, CA, 94945, United States.
| | - Ulrich Anglas
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, United States.
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, PO Box 41 06 23, 50866, Cologne, Germany; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands.
| | - Frédérik Dufour
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Gerardo Ferbeyre
- Centre De Recherche Du Centre Hospitalier De l'Université De Montréal (CRCHUM), 900 Saint-Denis St, Montréal, QC, H2X 0A9, Canada.
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, 21225, United States.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 33 Via Zamboni, Bologna, 40126 BO, Italy; IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Padiglione G, 3 Via Altura, Bologna, 40139, BO, Italy; Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), 23 Gagarin Avenue, 603950, Nizhnij Novgorod, Russia.
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, United States.
| | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut De Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France.
| | - Pierrette Gaudreau
- Centre De Recherche Du Centre Hospitalier De l'Université De Montréal (CRCHUM), 900 Saint-Denis St, Montréal, QC, H2X 0A9, Canada; Department of Medicine, Université De Montréal, 2900, Boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, United States.
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester, NY, 14627, United States.
| | - Philipp Gut
- Nestlé Research, Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland.
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod, Russia.
| | - Véronique Legault
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1; CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France.
| | - Thomas Liontis
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Mingxin Liu
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, Royal Melbourne Hospital, University of Melbourne, 34-54 Poplar Rd, Parkville, VIC, 3052, Australia; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Van Der Boechorststraat 7, 1081 BT, Amsterdam, the Netherlands.
| | - Otávio T Nóbrega
- Medical Centre for the Elderly, University Hospital, University of Brasília (UnB), 70910-900, Brasília, DF, Brazil; Centre De Recherche De l'Institut Universitaire De Gériatrie De Montréal (CRIUGM), 4545 Chemin Queen-Mary, Montreal, Qc, H3W 1W5, Canada.
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboud University Medical Centre, Reinier Postlaan 4, 6525 GC, Nijmegen, the Netherlands.
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Auf Der Morgenstelle 15, 72076 Tübingen, Germany; Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON, P3E 2H2, Canada.
| | - Sylvie Rheault
- Département De Neurosciences, Université De Montréal, 2960 Chemin De La Tour, Montréal, QC, H3T 1J4, Canada; Centre De Recherche De l'Institut Universitaire De Gériatrie De Montréal, 4545 Chemin Queen-Mary, Montréal, QC, H3W 1W4, Canada.
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia.
| | - Andreas Simm
- University Clinic and Outpatient Clinic for Cardiac Surgery, Middle German Heart Centre, University Hospital Halle (Saale), Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany.
| | - Sonja Soo
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024W. Main St, Durham, NC, 27705, United States.
| | - Quentin Vanhaelen
- Insilico Medicine Hong Kong Ltd., 307A, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong.
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, M. Skłodowskiej-Curie 3a Street, 80-210, Gdańsk, Poland.
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024W. Main St, Durham, NC, 27705, United States.
| | - Robert Ziman
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Tamàs Fülöp
- Department of Medicine, Geriatric Division, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5N4, Canada; Research Center on Aging, 1036 Rue Belvédère S, Sherbrooke, QC, J1H 4C4, Canada.
| |
Collapse
|
34
|
Cawthon RM, Meeks HD, Sasani TA, Smith KR, Kerber RA, O'Brien E, Baird L, Dixon MM, Peiffer AP, Leppert MF, Quinlan AR, Jorde LB. Germline mutation rates in young adults predict longevity and reproductive lifespan. Sci Rep 2020; 10:10001. [PMID: 32561805 PMCID: PMC7305191 DOI: 10.1038/s41598-020-66867-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Ageing may be due to mutation accumulation across the lifespan, leading to tissue dysfunction, disease, and death. We tested whether germline autosomal mutation rates in young adults predict their remaining survival, and, for women, their reproductive lifespans. Age-adjusted mutation rates (AAMRs) in 61 women and 61 men from the Utah CEPH (Centre d’Etude du Polymorphisme Humain) families were determined. Age at death, cause of death, all-site cancer incidence, and reproductive histories were provided by the Utah Population Database, Utah Cancer Registry, and Utah Genetic Reference Project. Higher AAMRs were significantly associated with higher all-cause mortality in both sexes combined. Subjects in the top quartile of AAMRs experienced more than twice the mortality of bottom quartile subjects (hazard ratio [HR], 2.07; 95% confidence interval [CI], 1.21–3.56; p = 0.008; median survival difference = 4.7 years). Fertility analyses were restricted to women whose age at last birth (ALB) was ≥ 30 years, the age when fertility begins to decline. Women with higher AAMRs had significantly fewer live births and a younger ALB. Adult germline mutation accumulation rates are established in adolescence, and later menarche in women is associated with delayed mutation accumulation. We conclude that germline mutation rates in healthy young adults may provide a measure of both reproductive and systemic ageing. Puberty may induce the establishment of adult mutation accumulation rates, just when DNA repair systems begin their lifelong decline.
Collapse
Affiliation(s)
- Richard M Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| | - Huong D Meeks
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, United States
| | - Thomas A Sasani
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Ken R Smith
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, United States
| | - Richard A Kerber
- Department of Health Management & Systems Sciences, University of Louisville, Louisville, KY, United States
| | - Elizabeth O'Brien
- Department of Health Management & Systems Sciences, University of Louisville, Louisville, KY, United States
| | - Lisa Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Melissa M Dixon
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Andreas P Peiffer
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Mark F Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, United States
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
35
|
LRG1 May Accelerate the Progression of ccRCC via the TGF- β Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1285068. [PMID: 32337221 PMCID: PMC7149433 DOI: 10.1155/2020/1285068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. It is an urgent mission to find more therapeutic targets for advanced ccRCC. Leucine-rich a-2-glycoprotein 1 (LRG1) is a secreted protein associated with a variety of malignancies. Our study focused on the expression and mechanism of LRG1 in ccRCC based on data from The Cancer Genome Atlas (TCGA) and provided primary verification including LRG1 expression detection, LRG1 gene methylation detection, and downstream signaling detection. We found that LRG1 was overexpressed in ccRCC kidney tissue samples, and the methylation level of LRG1 gene was significantly decreased in ccRCC. Moreover, the expression of LRG1 was negatively related to patient survival. Based on our previous study and the verification reported in this article, we propose that demethylation-induced overexpression of LRG1 is likely to accelerate ccRCC progression via the TGF-β pathway.
Collapse
|