1
|
Schnepel P, Paricio-Montesinos R, Ezquerra-Romano I, Haggard P, Poulet JFA. Cortical cellular encoding of thermotactile integration. Curr Biol 2024; 34:1718-1730.e3. [PMID: 38582078 DOI: 10.1016/j.cub.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/24/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.
Collapse
Affiliation(s)
- Philipp Schnepel
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ricardo Paricio-Montesinos
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivan Ezquerra-Romano
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - James F A Poulet
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
2
|
Lemercier CE, Krieger P, Manahan-Vaughan D. Dynamic modulation of mouse thalamocortical visual activity by salient sounds. iScience 2024; 27:109364. [PMID: 38523779 PMCID: PMC10959669 DOI: 10.1016/j.isci.2024.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Visual responses of the primary visual cortex (V1) are altered by sound. Sound-driven behavioral arousal suggests that, in addition to direct inputs from the primary auditory cortex (A1), multiple other sources may shape V1 responses to sound. Here, we show in anesthetized mice that sound (white noise, ≥70dB) drives a biphasic modulation of V1 visually driven gamma-band activity, comprising fast-transient inhibitory and slow, prolonged excitatory (A1-independent) arousal-driven components. An analogous yet quicker modulation of the visual response also occurred earlier in the visual pathway, at the level of the dorsolateral geniculate nucleus (dLGN), where sound transiently inhibited the early phasic visual response and subsequently induced a prolonged increase in tonic spiking activity and gamma rhythmicity. Our results demonstrate that sound-driven modulations of visual activity are not exclusive to V1 and suggest that thalamocortical inputs from the dLGN to V1 contribute to shaping V1 visual response to sound.
Collapse
Affiliation(s)
- Clément E. Lemercier
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Patrik Krieger
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
Mazo C, Baeta M, Petreanu L. Auditory cortex conveys non-topographic sound localization signals to visual cortex. Nat Commun 2024; 15:3116. [PMID: 38600132 PMCID: PMC11006897 DOI: 10.1038/s41467-024-47546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.
Collapse
Affiliation(s)
- Camille Mazo
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
4
|
Oude Lohuis MN, Marchesi P, Olcese U, Pennartz CMA. Triple dissociation of visual, auditory and motor processing in mouse primary visual cortex. Nat Neurosci 2024; 27:758-771. [PMID: 38307971 DOI: 10.1038/s41593-023-01564-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Primary sensory cortices respond to crossmodal stimuli-for example, auditory responses are found in primary visual cortex (V1). However, it remains unclear whether these responses reflect sensory inputs or behavioral modulation through sound-evoked body movement. We address this controversy by showing that sound-evoked activity in V1 of awake mice can be dissociated into auditory and behavioral components with distinct spatiotemporal profiles. The auditory component began at approximately 27 ms, was found in superficial and deep layers and originated from auditory cortex. Sound-evoked orofacial movements correlated with V1 neural activity starting at approximately 80-100 ms and explained auditory frequency tuning. Visual, auditory and motor activity were expressed by different laminar profiles and largely segregated subsets of neuronal populations. During simultaneous audiovisual stimulation, visual representations remained dissociable from auditory-related and motor-related activity. This three-fold dissociability of auditory, motor and visual processing is central to understanding how distinct inputs to visual cortex interact to support vision.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Pietro Marchesi
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
5
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Klaver LMF, Brinkhof LP, Sikkens T, Casado-Román L, Williams AG, van Mourik-Donga L, Mejías JF, Pennartz CMA, Bosman CA. Spontaneous variations in arousal modulate subsequent visual processing and local field potential dynamics in the ferret during quiet wakefulness. Cereb Cortex 2023; 33:7564-7581. [PMID: 36935096 PMCID: PMC10267643 DOI: 10.1093/cercor/bhad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Behavioral states affect neuronal responses throughout the cortex and influence visual processing. Quiet wakefulness (QW) is a behavioral state during which subjects are quiescent but awake and connected to the environment. Here, we examined the effects of pre-stimulus arousal variability on post-stimulus neural activity in the primary visual cortex and posterior parietal cortex in awake ferrets, using pupil diameter as an indicator of arousal. We observed that the power of stimuli-induced alpha (8-12 Hz) decreases when the arousal level increases. The peak of alpha power shifts depending on arousal. High arousal increases inter- and intra-areal coherence. Using a simplified model of laminar circuits, we show that this connectivity pattern is compatible with feedback signals targeting infragranular layers in area posterior parietal cortex and supragranular layers in V1. During high arousal, neurons in V1 displayed higher firing rates at their preferred orientations. Broad-spiking cells in V1 are entrained to high-frequency oscillations (>80 Hz), whereas narrow-spiking neurons are phase-locked to low- (12-18 Hz) and high-frequency (>80 Hz) rhythms. These results indicate that the variability and sensitivity of post-stimulus cortical responses and coherence depend on the pre-stimulus behavioral state and account for the neuronal response variability observed during repeated stimulation.
Collapse
Affiliation(s)
- Lianne M F Klaver
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lotte P Brinkhof
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tom Sikkens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lorena Casado-Román
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alex G Williams
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Laura van Mourik-Donga
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jorge F Mejías
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Conrado A Bosman
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Mertens PEC, Marchesi P, Ruikes TR, Oude Lohuis M, Krijger Q, Pennartz CMA, Lansink CS. Coherent mapping of position and head direction across auditory and visual cortex. Cereb Cortex 2023; 33:7369-7385. [PMID: 36967108 PMCID: PMC10267650 DOI: 10.1093/cercor/bhad045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 09/21/2024] Open
Abstract
Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual information such as reward expectancy and the subject's spatial position. Such contextual representations need not be restricted to V1 but could participate in a coherent mapping throughout sensory cortices. Here, we show that spiking activity coherently represents a location-specific mapping across auditory cortex (AC) and lateral, secondary visual cortex (V2L) of freely moving rats engaged in a sensory detection task on a figure-8 maze. Single-unit activity of both areas showed extensive similarities in terms of spatial distribution, reliability, and position coding. Importantly, reconstructions of subject position based on spiking activity displayed decoding errors that were correlated between areas. Additionally, we found that head direction, but not locomotor speed or head angular velocity, was an important determinant of activity in AC and V2L. By contrast, variables related to the sensory task cues or to trial correctness and reward were not markedly encoded in AC and V2L. We conclude that sensory cortices participate in coherent, multimodal representations of the subject's sensory-specific location. These may provide a common reference frame for distributed cortical sensory and motor processes and may support crossmodal predictive processing.
Collapse
Affiliation(s)
- Paul E C Mertens
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Pietro Marchesi
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Matthijs Oude Lohuis
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Quincy Krijger
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Carien S Lansink
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
8
|
Cao P, Zhang M, Ni Z, Song XJ, Yang CL, Mao Y, Zhou W, Dong WY, Peng X, Zheng C, Zhang Z, Jin Y, Tao W. Green light induces antinociception via visual-somatosensory circuits. Cell Rep 2023; 42:112290. [PMID: 36947545 DOI: 10.1016/j.celrep.2023.112290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Light has been shown to relieve pain, but the underlying neural mechanisms remain unknown. Here, we show that low-intensity (200 lux) green light treatment exerts antinociceptive effects through a neural circuit from the visual cortex projecting to the anterior cingulate cortex (ACC) in mice. Specifically, viral tracing, in vivo two-photon calcium imaging, and fiber photometry recordings show that green light activated glutamatergic projections from the medial part of the secondary visual cortex (V2MGlu) to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (V2MGlu→ACCGABA→Glu). Optogenetic or chemogenetic activation of the V2MGlu→ACCGABA→Glu circuit mimics green-light-induced antinociception in both neuropathic and inflammatory pain model mice. Artificial inhibition of ACC-projecting V2MGlu neurons abolishes the antinociception induced by green light. Taken together, our study shows the V2M-ACC circuit as a potential candidate mediating green-light-induced antinociceptive effects.
Collapse
Affiliation(s)
- Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingjun Zhang
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ziyun Ni
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiang-Jie Song
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Wenjie Zhou
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wan-Ying Dong
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoqi Peng
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Changjian Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Yan Jin
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China; Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China.
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Muller M, Pennartz CMA, Bosman CA, Olcese U. A novel task to investigate vibrotactile detection in mice. PLoS One 2023; 18:e0284735. [PMID: 37079581 PMCID: PMC10118142 DOI: 10.1371/journal.pone.0284735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Throughout the last decades, understanding the neural mechanisms of sensory processing has been a key objective for neuroscientists. Many studies focused on uncovering the microcircuit-level architecture of somatosensation using the rodent whisker system as a model. Although these studies have significantly advanced our understanding of tactile processing, the question remains to what extent the whisker system can provide results translatable to the human somatosensory system. To address this, we developed a restrained vibrotactile detection task involving the limb system in mice. A vibrotactile stimulus was delivered to the hindlimb of head-fixed mice, who were trained to perform a Go/No-go detection task. Mice were able to learn this task with satisfactory performance and with reasonably short training times. In addition, the task we developed is versatile, as it can be combined with diverse neuroscience methods. Thus, this study introduces a novel task to study the neuron-level mechanisms of tactile processing in a system other than the more commonly studied whisker system.
Collapse
Affiliation(s)
- Mariel Muller
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Conrado A. Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Pennartz CMA. What is neurorepresentationalism? From neural activity and predictive processing to multi-level representations and consciousness. Behav Brain Res 2022; 432:113969. [PMID: 35718232 DOI: 10.1016/j.bbr.2022.113969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
Abstract
This review provides an update on Neurorepresentationalism, a theoretical framework that defines conscious experience as multimodal, situational survey and explains its neural basis from brain systems constructing best-guess representations of sensations originating in our environment and body [1]. It posits that conscious experience is characterized by five essential hallmarks: (i) multimodal richness, (ii) situatedness and immersion, (iii) unity and integration, (iv) dynamics and stability, and (v) intentionality. Consciousness is furthermore proposed to have a biological function, framed by the contrast between reflexes and habits (not requiring consciousness) versus goal-directed, planned behavior (requiring multimodal, situational survey). Conscious experience is therefore understood as a sensorily rich, spatially encompassing representation of body and environment, while we nevertheless have the impression of experiencing external reality directly. Contributions to understanding neural mechanisms underlying consciousness are derived from models for predictive processing, which are trained in an unsupervised manner, do not necessarily require overt action, and have been extended to deep neural networks. Even with predictive processing in place, however, the question remains why this type of neural network activity would give rise to phenomenal experience. Here, I propose to tackle the Hard Problem with the concept of multi-level representations which emergently give rise to multimodal, spatially wide superinferences corresponding to phenomenal experiences. Finally, Neurorepresentationalism is compared to other neural theories of consciousness, and its implications for defining indicators of consciousness in animals, artificial intelligence devices and immobile or unresponsive patients with disorders of consciousness are discussed.
Collapse
Affiliation(s)
- Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Oude Lohuis MN, Pie JL, Marchesi P, Montijn JS, de Kock CPJ, Pennartz CMA, Olcese U. Multisensory task demands temporally extend the causal requirement for visual cortex in perception. Nat Commun 2022; 13:2864. [PMID: 35606448 PMCID: PMC9126973 DOI: 10.1038/s41467-022-30600-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity. How primary sensory cortices contribute to decision making remains poorly understood. Here the authors report that increasing task demands extend the temporal window in which the primary visual cortex is required for detecting identical stimuli.
Collapse
|
12
|
Oude Lohuis MN, Canton AC, Pennartz CMA, Olcese U. Higher Order Visual Areas Enhance Stimulus Responsiveness in Mouse Primary Visual Cortex. Cereb Cortex 2021; 32:3269-3288. [PMID: 34849636 PMCID: PMC9340391 DOI: 10.1093/cercor/bhab414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
Over the past few years, the various areas that surround the primary visual cortex (V1) in the mouse have been associated with many functions, ranging from higher order visual processing to decision-making. Recently, some studies have shown that higher order visual areas influence the activity of the primary visual cortex, refining its processing capabilities. Here, we studied how in vivo optogenetic inactivation of two higher order visual areas with different functional properties affects responses evoked by moving bars in the primary visual cortex. In contrast with the prevailing view, our results demonstrate that distinct higher order visual areas similarly modulate early visual processing. In particular, these areas enhance stimulus responsiveness in the primary visual cortex, by more strongly amplifying weaker compared with stronger sensory-evoked responses (for instance specifically amplifying responses to stimuli not moving along the direction preferred by individual neurons) and by facilitating responses to stimuli entering the receptive field of single neurons. Such enhancement, however, comes at the expense of orientation and direction selectivity, which increased when the selected higher order visual areas were inactivated. Thus, feedback from higher order visual areas selectively amplifies weak sensory-evoked V1 responses, which may enable more robust processing of visual stimuli.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Alexis Cervan Canton
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Wiring of higher-order cortical areas: Spatiotemporal development of cortical hierarchy. Semin Cell Dev Biol 2021; 118:35-49. [PMID: 34034988 DOI: 10.1016/j.semcdb.2021.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 01/04/2023]
Abstract
A hierarchical development of cortical areas was suggested over a century ago, but the diversity and complexity of cortical hierarchy properties have so far prevented a formal demonstration. The aim of this review is to clarify the similarities and differences in the developmental processes underlying cortical development of primary and higher-order areas. We start by recapitulating the historical and recent advances underlying the biological principle of cortical hierarchy in adults. We then revisit the arguments for a hierarchical maturation of cortical areas, and further integrate the principles of cortical areas specification during embryonic and postnatal development. We highlight how the dramatic expansion in cortical size might have contributed to the increased number of association areas sustaining cognitive complexification in evolution. Finally, we summarize the recent observations of an alteration of cortical hierarchy in neuropsychiatric disorders and discuss their potential developmental origins.
Collapse
|
15
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|