1
|
Dixit S, Nagraj T, Bhattacharya D, Saxena S, Sahoo S, Chittela RK, Somyajit K, Nagaraju G. RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes. Cell Rep 2024; 43:114594. [PMID: 39116203 DOI: 10.1016/j.celrep.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
Collapse
Affiliation(s)
- Suruchi Dixit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Tarun Nagraj
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | | | - Sneha Saxena
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Satyaranjan Sahoo
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kumar Somyajit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India; Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | - Ganesh Nagaraju
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Mamar H, Fajka-Boja R, Mórocz M, Jurado E, Zentout S, Mihuţ A, Kopasz AG, Mérey M, Smith R, Sharma AB, Lakin N, Bowman A, Haracska L, Huet S, Timinszky G. The loss of DNA polymerase epsilon accessory subunits POLE3-POLE4 leads to BRCA1-independent PARP inhibitor sensitivity. Nucleic Acids Res 2024; 52:6994-7011. [PMID: 38828775 PMCID: PMC11229324 DOI: 10.1093/nar/gkae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.
Collapse
Affiliation(s)
- Hasan Mamar
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, 6720 Szeged, Hungary
| | - Roberta Fajka-Boja
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Mónika Mórocz
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Eva Pinto Jurado
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Alexandra Mihuţ
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Anna Georgina Kopasz
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Mihály Mérey
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | | | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Andrew James Bowman
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, UK
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| |
Collapse
|
3
|
Olivier M, Hesketh A, Pouch-Pélissier MN, Pélissier T, Huang Y, Latrasse D, Benhamed M, Mathieu O. RTEL1 is required for silencing and epigenome stability. Nucleic Acids Res 2023; 51:8463-8479. [PMID: 37471026 PMCID: PMC10484728 DOI: 10.1093/nar/gkad610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Transcriptional silencing is an essential mechanism for controlling the expression of genes, transgenes and heterochromatic repeats through specific epigenetic marks on chromatin that are maintained during DNA replication. In Arabidopsis, silenced transgenes and heterochromatic sequences are typically associated with high levels of DNA methylation, while silenced genes are enriched in H3K27me3. Reactivation of these loci is often correlated with decreased levels of these repressive epigenetic marks. Here, we report that the DNA helicase REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) is required for transcriptional silencing. RTEL1 deficiency causes upregulation of many genes enriched in H3K27me3 accompanied by a moderate decrease in this mark, but no loss of DNA methylation at reactivated heterochromatic loci. Instead, heterochromatin exhibits DNA hypermethylation and increased H3K27me3 in rtel1. We further find that loss of RTEL1 suppresses the release of heterochromatin silencing caused by the absence of the MOM1 silencing factor. RTEL1 is conserved among eukaryotes and plays a key role in resolving DNA secondary structures during DNA replication. Inducing such aberrant DNA structures using DNA cross-linking agents also results in a loss of transcriptional silencing. These findings uncover unappreciated roles for RTEL1 in transcriptional silencing and in stabilizing DNA methylation and H3K27me3 patterns.
Collapse
Affiliation(s)
- Margaux Olivier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Amy Hesketh
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Marie-Noëlle Pouch-Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Thierry Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Ying Huang
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, F-75006 Paris, France
- Institut Universitaire de France (IUF), France
| | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Abstract
After decades of research, our knowledge of the complexity of cancer mechanisms, elegantly summarized as 'hallmarks of cancer', is expanding, as are the therapeutic opportunities that this knowledge brings. However, cancer still needs intense research to diminish its tremendous impact. In this context, the use of simple model organisms such as Caenorhabditis elegans, in which the genetics of the apoptotic pathway was discovered, can facilitate the investigation of several cancer hallmarks. Amenable for genetic and drug screens, convenient for fast and efficient genome editing, and aligned with the 3Rs ('Replacement, Reduction and Refinement') principles for ethical animal research, C. elegans plays a significant role in unravelling the intricate network of cancer mechanisms and presents a promising option in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Julián Cerón
- Modeling Human Diseases in C. elegans Group – Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute – IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
5
|
Ruszel KP, Zalewski DP, Stępniewski A, Gałkowski D, Bogucki J, Feldo M, Płachno BJ, Kocki J, Bogucka-Kocka A. Next-Generation Sequencing in the Assessment of the Transcriptomic Landscape of DNA Damage Repair Genes in Abdominal Aortic Aneurysm, Chronic Venous Disease and Lower Extremity Artery Disease. Int J Mol Sci 2022; 24:551. [PMID: 36614026 PMCID: PMC9820637 DOI: 10.3390/ijms24010551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases are one of the most common causes of death and morbidity. Lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD) belong to this group of conditions and exhibit various presentations and courses; thus, there is an urgent need for revealing new biomarkers for monitoring and potential treatment. Next-generation sequencing of mRNA allows rapid and detailed transcriptome analysis, allowing us to pinpoint the most pronounced differences between the mRNA expression profiles of vascular disease patients. Comparison of expression data of 519 DNA-repair-related genes obtained from mRNA next-generation sequencing revealed significant transcriptomic marks characterizing AAA, CVD and LEAD. Statistical, gene set enrichment analysis (GSEA), gene ontology (GO) and literature analyses were applied and highlighted many DNA repair and accompanying processes, such as cohesin functions, oxidative stress, homologous recombination, ubiquitin turnover, chromatin remodelling and DNA double-strand break repair. Surprisingly, obtained data suggest the contribution of genes engaged in the regulatory function of DNA repair as a key component that could be used to distinguish between analyzed conditions. DNA repair-related genes depicted in the presented study as dysregulated in AAA, CVD and LEAD could be utilized in the design of new biomarkers or therapies associated with these diseases.
Collapse
Affiliation(s)
- Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| |
Collapse
|
6
|
Vipat S, Gupta D, Jonchhe S, Anderspuk H, Rothenberg E, Moiseeva TN. The non-catalytic role of DNA polymerase epsilon in replication initiation in human cells. Nat Commun 2022; 13:7099. [PMID: 36402816 PMCID: PMC9675812 DOI: 10.1038/s41467-022-34911-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
DNA polymerase epsilon (PolE) in an enzyme essential for DNA replication. Deficiencies and mutations in PolE cause severe developmental abnormalities and cancers. Paradoxically, the catalytic domain of yeast PolE catalytic subunit is dispensable for survival, and its non-catalytic essential function is linked with replicative helicase (CMG) assembly. Less is known about the PolE role in replication initiation in human cells. Here we use an auxin-inducible degron system to study the effect of POLE1 depletion on replication initiation in U2OS cells. POLE1-depleted cells were able to assemble CMG helicase and initiate DNA synthesis that failed shortly after. Expression of POLE1 non-catalytic domain rescued this defect resulting in slow, but continuous DNA synthesis. We propose a model where in human U2OS cells POLE1/POLE2 are dispensable for CMG assembly, but essential during later steps of replication initiation. Our study provides some insights into the role of PolE in replication initiation in human cells.
Collapse
Affiliation(s)
- Sameera Vipat
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sagun Jonchhe
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Hele Anderspuk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Tatiana N Moiseeva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia.
| |
Collapse
|
7
|
Hassani MA, Murid J, Yan J. Regulator of telomere elongation helicase 1 gene and its association with malignancy. Cancer Rep (Hoboken) 2022; 6:e1735. [PMID: 36253342 PMCID: PMC9875622 DOI: 10.1002/cnr2.1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND With the progression of next-generation sequencing technologies, researchers have identified numerous variants of the regulator of telomere elongation helicase 1 (RTEL1) gene that are associated with a broad spectrum of phenotypic manifestations, including malignancies. At the molecular level, RTEL1 is involved in the regulation of the repair, replication, and transcription of deoxyribonucleic acid (DNA) and the maintenance of telomere length. RTEL1 can act both as a promotor and inhibitor of tumorigenesis. Here, we review the potential mechanisms implicated in the malignant transformation of tissues under conditions of RTEL1 deficiency or its aberrant overexpression. RECENT FINDINGS A major hemostatic challenge during RTEL1 dysfunction could arise from its unbalanced activity for unwinding guanine-rich quadruplex DNA (G4-DNA) structures. In contrast, RTEL1 deficiency leads to alterations in telomeric and genome-wide DNA maintenance mechanisms, ribonucleoprotein metabolism, and the creation of an inflammatory and immune-deficient microenvironment, all promoting malignancy. Additionally, we hypothesize that functionally similar molecules could act to compensate for the deteriorated functions of RTEL1, thereby facilitating the survival of malignant cells. On the contrary, RTEL1 over-expression was directed toward G4-unwinding, by promoting replication fork progression and maintaining intact telomeres, may facilitate malignant transformation and proliferation of various pre-malignant cellular compartments. CONCLUSIONS Therefore, restoring the equilibrium of RTEL1 functions could serve as a therapeutic approach for preventing and treating malignancies.
Collapse
Affiliation(s)
- Mohammad Arian Hassani
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jamshid Murid
- Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Diamond Bay Institute of HematologySecond Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
8
|
Bady P, Marosi C, Weller M, Grønberg BH, Schultz H, Taphoorn MJB, Gijtenbeek JMM, van den Bent MJ, von Deimling A, Stupp R, Malmström A, Hegi ME. DNA methylation-based age acceleration observed in IDH wild-type glioblastoma is associated with better outcome-including in elderly patients. Acta Neuropathol Commun 2022; 10:39. [PMID: 35331339 PMCID: PMC8944086 DOI: 10.1186/s40478-022-01344-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
Elderly patients represent a growing proportion of individuals with glioblastoma, who however, are often excluded from clinical trials owing to poor expected prognosis. We aimed at identifying age-related molecular differences that would justify and guide distinct treatment decisions in elderly glioblastoma patients. The combined DNA methylome (450 k) of four IDH wild-type glioblastoma datasets, comprising two clinical trial cohorts, was interrogated for differences based on the patients' age, DNA methylation (DNAm) age acceleration (DNAm age "Horvath-clock" minus patient age), DNA methylation-based tumor classification (Heidelberg), entropy, and functional methylation of DNA damage response (DDR) genes. Age dependent methylation included 19 CpGs (p-value ≤ 0.1, Bonferroni corrected), comprising a CpG located in the ELOVL2 gene that is part of a 13-gene forensic age predictor. Most of the age related CpGs (n = 16) were also associated with age acceleration that itself was associated with a large number of CpGs (n = 50,551). Over 70% age acceleration-associated CpGs (n = 36,348) overlapped with those associated with the DNA methylation based tumor classification (n = 170,759). Gene set enrichment analysis identified associated pathways, providing insights into the biology of DNAm age acceleration and respective commonalities with glioblastoma classification. Functional methylation of several DDR genes, defined as correlation of methylation with gene expression (r ≤ -0.3), was associated with age acceleration (n = 8), tumor classification (n = 12), or both (n = 4), the latter including MGMT. DNAm age acceleration was significantly associated with better outcome in both clinical trial cohorts, whereof one comprised only elderly patients. Multivariate analysis included treatment (RT, RT/TMZ→TMZ; TMZ, RT), MGMT promoter methylation status, and interaction with treatment. In conclusion, DNA methylation features of age acceleration are an integrative part of the methylation-based tumor classification (RTK I, RTK II, MES), while patient age seems hardly reflected in the glioblastoma DNA methylome. We found no molecular evidence justifying other treatments in elderly patients, not owing to frailty or co-morbidities.
Collapse
|
9
|
Kotsantis P, Segura-Bayona S, Margalef P, Marzec P, Ruis P, Hewitt G, Bellelli R, Patel H, Goldstone R, Poetsch AR, Boulton SJ. RTEL1 Regulates G4/R-Loops to Avert Replication-Transcription Collisions. Cell Rep 2020; 33:108546. [PMID: 33357438 PMCID: PMC7773548 DOI: 10.1016/j.celrep.2020.108546] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Regulator of telomere length 1 (RTEL1) is an essential helicase that maintains telomere integrity and facilitates DNA replication. The source of replication stress in Rtel1-deficient cells remains unclear. Here, we report that loss of RTEL1 confers extensive transcriptional changes independent of its roles at telomeres. The majority of affected genes in Rtel1-/- cells possess G-quadruplex (G4)-DNA-forming sequences in their promoters and are similarly altered at a transcriptional level in wild-type cells treated with the G4-DNA stabilizer TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine). Failure to resolve G4-DNAs formed in the displaced strand of RNA-DNA hybrids in Rtel1-/- cells is suggested by increased R-loops and elevated transcription-replication collisions (TRCs). Moreover, removal of R-loops by RNaseH1 overexpression suppresses TRCs and alleviates the global replication defects observed in Rtel1-/- and Rtel1PIP_box knockin cells and in wild-type cells treated with TMPyP4. We propose that RTEL1 unwinds G4-DNA/R-loops to avert TRCs, which is important to prevent global deregulation in both transcription and DNA replication.
Collapse
Affiliation(s)
| | | | - Pol Margalef
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paulina Marzec
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Phil Ruis
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Graeme Hewitt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Harshil Patel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Anna R Poetsch
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|