1
|
Depret N, Gleizes M, Moreau MM, Poirault-Chassac S, Quiedeville A, Carvalho SDS, Venugopal V, Abed ASA, Ezan J, Barthet G, Mulle C, Desmedt A, Marighetto A, Racca C, Montcouquiol M, Sans N. The correct connectivity of the DG-CA3 circuits involved in declarative memory processes depends on Vangl2-dependent planar cell polarity signaling. Prog Neurobiol 2025; 246:102728. [PMID: 39956311 DOI: 10.1016/j.pneurobio.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
In the hippocampus, dentate gyrus granule cells connect to CA3 pyramidal cells via their axons, the mossy fibers (Mf). The synaptic terminals of Mfs (Mf boutons, MfBs) form large and complex synapses with thorny excrescences (TE) on the proximal dendrites of CA3 pyramidal cells (PCs). MfB/TE synapses have distinctive "detonator" properties due to low initial release probability and large presynaptic facilitation. The molecular mechanisms shaping the morpho-functional properties of MfB/TE synapses are still poorly understood, though alterations in their morphology are associated with Down syndrome, intellectual disabilities, and Alzheimer's disease. Here, we identify the core PCP gene Vangl2 as essential to the morphogenesis and function of MfB/TE synapses. Vangl2 colocalises with the presynaptic heparan sulfate proteoglycan glypican 4 (GPC4) to stabilise the postsynaptic orphan receptor GPR158. Embryonic loss of Vangl2 disrupts the morphology of MfBs and TEs, impairs ultrastructural and molecular organisation, resulting in defective synaptic transmission and plasticity. In adult, the early loss of Vangl2 results in a number of hippocampus-dependent memory deficits including characteristic flexibility of declarative memory, organisation and retention of working / everyday-like memory. These deficits also lead to abnormal generalisation of memories to salient cues and diminished ability to form detailed contextual memories. Together, these results establish Vangl2 as a key regulator of DG-CA3 connectivity and functions.
Collapse
Affiliation(s)
- Noémie Depret
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Marie Gleizes
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Maïté Marie Moreau
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Anne Quiedeville
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Vasika Venugopal
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Alice Shaam Al Abed
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Jérôme Ezan
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Gael Barthet
- Univ. Bordeaux, CNRS, IINS, UMR 5297, Bordeaux F-33000, France
| | | | - Aline Desmedt
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Aline Marighetto
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Claudia Racca
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Nathalie Sans
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France.
| |
Collapse
|
2
|
Luo M, Pang Y, Li J, Yi L, Wu B, Tian Q, He Y, Wang M, Xia L, He G, Song W, Du Y, Dong Z. miR-429-3p mediates memory decline by targeting MKP-1 to reduce surface GluA1-containing AMPA receptors in a mouse model of Alzheimer's disease. Acta Pharm Sin B 2024; 14:635-652. [PMID: 38322333 PMCID: PMC10840427 DOI: 10.1016/j.apsb.2023.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 02/08/2024] Open
Abstract
Alzheimer's disease (AD) is a leading cause of dementia in the elderly. Mitogen-activated protein kinase phosphatase 1 (MKP-1) plays a neuroprotective role in AD. However, the molecular mechanisms underlying the effects of MKP-1 on AD have not been extensively studied. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, thereby repressing mRNA translation. Here, we reported that the microRNA-429-3p (miR-429-3p) was significantly increased in the brain of APP23/PS45 AD model mice and N2AAPP AD model cells. We further found that miR-429-3p could downregulate MKP-1 expression by directly binding to its 3'-untranslated region (3' UTR). Inhibition of miR-429-3p by its antagomir (A-miR-429) restored the expression of MKP-1 to a control level and consequently reduced the amyloidogenic processing of APP and Aβ accumulation. More importantly, intranasal administration of A-miR-429 successfully ameliorated the deficits of hippocampal CA1 long-term potentiation and spatial learning and memory in AD model mice by suppressing extracellular signal-regulated kinase (ERK1/2)-mediated GluA1 hyperphosphorylation at Ser831 site, thereby increasing the surface expression of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Together, these results demonstrate that inhibiting miR-429-3p to upregulate MKP-1 effectively improves cognitive and synaptic functions in AD model mice, suggesting that miR-429/MKP-1 pathway may be a novel therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Man Luo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Wu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qiuyun Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yan He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Maoju Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guiqiong He
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver BC V6T 1Z3, Canada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Institute for Brain Science and Disease of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Chen X, Chen A, Wei J, Huang Y, Deng J, Chen P, Yan Y, Lin M, Chen L, Zhang J, Huang Z, Zeng X, Gong C, Zheng X. Dexmedetomidine alleviates cognitive impairment by promoting hippocampal neurogenesis via BDNF/TrkB/CREB signaling pathway in hypoxic-ischemic neonatal rats. CNS Neurosci Ther 2024; 30:e14486. [PMID: 37830170 PMCID: PMC10805444 DOI: 10.1111/cns.14486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
AIMS Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 μg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Andi Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianjie Wei
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yongxin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianhui Deng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Pinzhong Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yanlin Yan
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Mingxue Lin
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Lifei Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jiuyun Zhang
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
| | - Zhibin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaoqian Zeng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Cansheng Gong
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaochun Zheng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial Co‐Constructed Laboratory of “Belt and Road”FuzhouChina
| |
Collapse
|
4
|
Lv T, Wang M, Zheng HS, Mao JD, Yang F, Yang L, Zhao MG, Liu SB, Zhang K, Liu R, Wu YM. Electroacupuncture alleviates PTSD-like behaviors by modulating hippocampal synaptic plasticity via Wnt/β-catenin signaling pathway. Brain Res Bull 2023; 202:110734. [PMID: 37586426 DOI: 10.1016/j.brainresbull.2023.110734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/β-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/β-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and β-catenin, and increased GSK-3β. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and β-catenin, and decreasing that of GSK-3β. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/β-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.
Collapse
Affiliation(s)
- Tao Lv
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - He-Sheng Zheng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Jin-Dong Mao
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Fan Yang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Rui Liu
- Department of Rehabilitation Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China.
| |
Collapse
|
5
|
Nachtigall EG, D R de Freitas J, de C Myskiw J, R G Furini C. Role of hippocampal Wnt signaling pathways on contextual fear memory reconsolidation. Neuroscience 2023:S0306-4522(23)00248-8. [PMID: 37286160 DOI: 10.1016/j.neuroscience.2023.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Memories already consolidated when reactivated return to a labile state and can be modified, this process is known as reconsolidation. It is known the Wnt signaling pathways can modulate hippocampal synaptic plasticity as well as learning and memory. Yet, Wnt signaling pathways interact with NMDA (N-methyl-D-aspartate) receptors. However, whether canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ signaling pathways are required in the CA1 region of hippocampus for contextual fear memory reconsolidation remains unclear. So, here we verified that the inhibition of canonical Wnt/β-catenin pathway with DKK1 (Dickkopf-1) into CA1 impaired the reconsolidation of contextual fear conditioning (CFC) memory when administered immediately and 2h after reactivation session but not 6h later, while the inhibition of non-canonical Wnt/Ca2+ signaling pathway with SFRP1 (Secreted frizzled-related protein-1) into CA1 immediately after reactivation session had no effect. Moreover, the impairment induced by DKK1 was blocked by the administration of the agonist of the NMDA receptors glycine site, D-Serine, immediately and 2h after reactivation session. We found that hippocampal canonical Wnt/β-catenin is necessary to the reconsolidation of CFC memory at least two hours after reactivation, while non-canonical Wnt/Ca2+ signaling pathway is not involved in this process and, that there is a link between Wnt/β-catenin signaling pathway and NMDA receptors. In view of this, this study provides new evidence regarding the neural mechanisms underlying contextual fear memory reconsolidation and contributes to provide a new possible target for the treatment of fear related disorders.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil
| | - Jociane de C Myskiw
- Psychobiology and Neurocomputation Laboratory (LPBNC), Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, 9500, Bldg. 43422, room 208A, 91501-970, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681 - Bldg. 40, 8(th) floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Koehl M, Ladevèze E, Montcouquiol M, Abrous DN. Vangl2, a Core Component of the WNT/PCP Pathway, Regulates Adult Hippocampal Neurogenesis and Age-Related Decline in Cognitive Flexibility. Front Aging Neurosci 2022; 14:844255. [PMID: 35370613 PMCID: PMC8965557 DOI: 10.3389/fnagi.2022.844255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Decline in episodic memory is one of the hallmarks of aging and represents one of the most important health problems facing Western societies. A key structure in episodic memory is the hippocampal formation and the dentate gyrus in particular, as the continuous production of new dentate granule neurons in this brain region was found to play a crucial role in memory and age-related decline in memory. As such, understanding the molecular processes that regulate the relationship between adult neurogenesis and aging of memory function holds great therapeutic potential. Recently, we found that Vang-Gogh like 2 (Vangl2), a core component of the Planar Cell Polarity (PCP) signaling pathway, is enriched in the dentate gyrus of adult mice. In this context, we sought to evaluate the involvement of this member of the Wnt/PCP pathway in both adult neurogenesis and memory abilities in adult and middle-aged mice. Using a heterozygous mouse model carrying a dominant-negative mutation in the Vangl2 gene, called Looptail (Vangl2Lp), we show that alteration in Vangl2 expression decreases the survival of adult-born granule cells and advances the onset of a decrease in cognitive flexibility. The inability of mutant mice to erase old irrelevant information to the benefit of new relevant ones highlights a key role of Vangl2 in interference-based forgetting. Taken together, our findings show that Vangl2 activity may constitute an interesting target to prevent age-related decline in hippocampal plasticity and memory.
Collapse
Affiliation(s)
- Muriel Koehl
- Univ. Bordeaux, INSERM, Magendie, U1215, Neurogenesis and Pathophysiology group, Bordeaux, France
- *Correspondence: Muriel Koehl
| | - Elodie Ladevèze
- Univ. Bordeaux, INSERM, Magendie, U1215, Neurogenesis and Pathophysiology group, Bordeaux, France
| | - Mireille Montcouquiol
- Univ. Bordeaux, INSERM, Magendie, U1215, Planar Polarity and Plasticity Group, Bordeaux, France
| | - Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Magendie, U1215, Neurogenesis and Pathophysiology group, Bordeaux, France
| |
Collapse
|
7
|
Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 187:107558. [PMID: 34808336 DOI: 10.1016/j.nlm.2021.107558] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Ever since their discoveries, the Wnt pathways have been consistently associated with key features of cellular development, including metabolism, structure and cell fate. The three known pathways (the canonical Wnt/β-catenin and the two non-canonical Wnt/Ca++ and Wnt/JNK/PCP pathways) participate in complex networks of interaction with a wide range of regulators of cell function, such as GSK-3β, AKT, PKC and mTOR, among others. These proteins are known to be involved in the formation and maintenance of memory. Currently, studies with Wnt and memory have shown that the canonical and non-canonical pathways play key roles in different processes associated with memory. So, in this review we briefly summarize the different roles that Wnt signaling can play in neurons and in memory, as well as in Alzheimer's disease, focusing towards animal studies. We start with the molecular characterization of the family and its receptors, as well as the most commonly used drugs for pharmacological manipulations. Next, we describe its role in synaptic plasticity and memory, and how the regulations of these pathways affect crucial features of neuronal function. Furthermore, we succinctly present the current knowledge on how the Wnt pathways are implicated in Alzheimer's disease, and how studies are seeing them as a potential candidate for effective treatments. Lastly, we point toward challenges of Wnt research, and how knowledge on these pathways can lead towards a better understanding of neurobiological and pathological processes.
Collapse
Affiliation(s)
- Rodrigo F Narvaes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Richter M, Peyroutou R, Rachel R, Tissir F, de Anda FC, Sans N, Montcouquiol M. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep 2021; 11:9106. [PMID: 33907211 PMCID: PMC8079449 DOI: 10.1038/s41598-021-88147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
Neurodevelopmental disorders arise from combined defects in processes including cell proliferation, differentiation, migration and commissure formation. The evolutionarily conserved tumor-suppressor protein Scribble (Scrib) serves as a nexus to transduce signals for the establishment of apicobasal and planar cell polarity during these processes. Human SCRIB gene mutations are associated with neural tube defects and this gene is located in the minimal critical region deleted in the rare Verheij syndrome. In this study, we generated brain-specific conditional cKO mouse mutants and assessed the impact of the Scrib deletion on brain morphogenesis and behavior. We showed that embryonic deletion of Scrib in the telencephalon leads to cortical thickness reduction (microcephaly) and partial corpus callosum and hippocampal commissure agenesis. We correlated these phenotypes with a disruption in various developmental mechanisms of corticogenesis including neurogenesis, neuronal migration and axonal connectivity. Finally, we show that Scrib cKO mice have psychomotor deficits such as locomotor activity impairment and memory alterations. Altogether, our results show that Scrib is essential for early brain development due to its role in several developmental cellular mechanisms that could underlie some of the deficits observed in complex neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Jerome Ezan
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| | - Maité M Moreau
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Tamrat M Mamo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Miki Shimbo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Maureen Decroo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Melanie Richter
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronan Peyroutou
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Rivka Rachel
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of Neuroscience, University of Louvain, Avenue Mounier 73, Box B1.73.16, 1200, Brussels, Belgium
| | - Froylan Calderon de Anda
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Sans
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Mireille Montcouquiol
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| |
Collapse
|