1
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
2
|
Yi Y, Zeng Y, Sam TW, Hamashima K, Tan RJR, Warrier T, Phua JX, Taneja R, Liou YC, Li H, Xu J, Loh YH. Ribosomal proteins regulate 2-cell-stage transcriptome in mouse embryonic stem cells. Stem Cell Reports 2023; 18:463-474. [PMID: 36638791 PMCID: PMC9968990 DOI: 10.1016/j.stemcr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.
Collapse
Affiliation(s)
- Yao Yi
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tsz Wing Sam
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Rachel Jun Rou Tan
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jun Xiang Phua
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Joint Center for Single Cell Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
3
|
Warrier T, El Farran C, Zeng Y, Ho B, Bao Q, Zheng Z, Bi X, Ng HH, Ong D, Chu J, Sanyal A, Fullwood MJ, Collins J, Li H, Xu J, Loh YH. SETDB1 acts as a topological accessory to Cohesin via an H3K9me3-independent, genomic shunt for regulating cell fates. Nucleic Acids Res 2022; 50:7326-7349. [PMID: 35776115 PMCID: PMC9303280 DOI: 10.1093/nar/gkac531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
SETDB1 is a key regulator of lineage-specific genes and endogenous retroviral elements (ERVs) through its deposition of repressive H3K9me3 mark. Apart from its H3K9me3 regulatory role, SETDB1 has seldom been studied in terms of its other potential regulatory roles. To investigate this, a genomic survey of SETDB1 binding in mouse embryonic stem cells across multiple libraries was conducted, leading to the unexpected discovery of regions bereft of common repressive histone marks (H3K9me3, H3K27me3). These regions were enriched with the CTCF motif that is often associated with the topological regulator Cohesin. Further profiling of these non-H3K9me3 regions led to the discovery of a cluster of non-repeat loci that were co-bound by SETDB1 and Cohesin. These regions, which we named DiSCs (domains involving SETDB1 and Cohesin) were seen to be proximal to the gene promoters involved in embryonic stem cell pluripotency and lineage development. Importantly, it was found that SETDB1-Cohesin co-regulate target gene expression and genome topology at these DiSCs. Depletion of SETDB1 led to localized dysregulation of Cohesin binding thereby locally disrupting topological structures. Dysregulated gene expression trends revealed the importance of this cluster in ES cell maintenance as well as at gene 'islands' that drive differentiation to other lineages. The 'unearthing' of the DiSCs thus unravels a unique topological and transcriptional axis of control regulated chiefly by SETDB1.
Collapse
Affiliation(s)
- Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chadi El Farran
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Benedict Shao Quan Ho
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Qiuye Bao
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zi Hao Zheng
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Xuezhi Bi
- Proteomics Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| | - Huck Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore 117597, Singapore
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Melissa Jane Fullwood
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - James J Collins
- Howard Hughes Medical Institute, Boston, MA 02114, USA
- Institute for Medical Engineering and Science Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 MedicalDrive, Singapore 117456, Singapore
| |
Collapse
|
4
|
Dai Z, Li R, Hou Y, Li Q, Zhao K, Li T, Li MJ, Wu X. Inducible CRISPRa screen identifies putative enhancers. J Genet Genomics 2021; 48:917-927. [PMID: 34531148 DOI: 10.1016/j.jgg.2021.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022]
Abstract
Enhancers are critical cis-regulatory elements that regulate spatiotemporal gene expression and control cell fates. However, the identification of enhancers in native cellular contexts still remains a challenge. Here, we develop an inducible CRISPR activation (CRISPRa) system by transgenic expression of doxycycline (Dox)-inducible dCas9-VPR in mouse embryonic stem cells (iVPR ESC). With this line, a simple introduction of specific guide RNAs targeting promoters or enhancers allows us to realize the effect of CRISPRa in an inducible, reversible, and Dox concentration-dependent manner. Taking advantage of this system, we induce tiled CRISPRa across genomic regions (105 kilobases) surrounding T (Brachyury), one of the key mesodermal development regulator genes. Moreover, we identify several CRISPRa-responsive elements with chromatin features of putative enhancers, including a region the homologous sequence in which humans harbors a body height risk variant. Genetic deletion of this region in ESC does affect subsequent T gene activation and osteogenic differentiation. Therefore, our inducible CRISPRa ESC line provides a convenient platform for high-throughput screens of putative enhancers.
Collapse
Affiliation(s)
- Zhongye Dai
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuying Hou
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- Department of Pharmacology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China.
| |
Collapse
|
5
|
Cunningham JJ, Bukkuri A, Brown JS, Gillies RJ, Gatenby RA. Coupled Source-Sink Habitats Produce Spatial and Temporal Variation of Cancer Cell Molecular Properties as an Alternative to Branched Clonal Evolution and Stem Cell Paradigms. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intratumoral molecular cancer cell heterogeneity is conventionally ascribed to the accumulation of random mutations that occasionally generate fitter phenotypes. This model is built upon the “mutation-selection” paradigm in which mutations drive ever-fitter cancer cells independent of environmental circumstances. An alternative model posits spatio-temporal variation (e.g., blood flow heterogeneity) drives speciation by selecting for cancer cells adapted to each different environment. Here, spatial genetic variation is the consequence rather than the cause of intratumoral evolution. In nature, spatially heterogenous environments are frequently coupled through migration. Drawing from ecological models, we investigate adjacent well-perfused and poorly-perfused tumor regions as “source” and “sink” habitats, respectively. The source habitat has a high carrying capacity resulting in more emigration than immigration. Sink habitats may support a small (“soft-sink”) or no (“hard-sink”) local population. Ecologically, sink habitats can reduce the population size of the source habitat so that, for example, the density of cancer cells directly around blood vessels may be lower than expected. Evolutionarily, sink habitats can exert a selective pressure favoring traits different from those in the source habitat so that, for example, cancer cells adjacent to blood vessels may be suboptimally adapted for that habitat. Soft sinks favor a generalist cancer cell type that moves between the environment but can, under some circumstances, produce speciation events forming source and sink habitat specialists resulting in significant molecular variation in cancer cells separated by small distances. Finally, sink habitats, with limited blood supply, may receive reduced concentrations of systemic drug treatments; and local hypoxia and acidosis may further decrease drug efficacy allowing cells to survive treatment and evolve resistance. In such cases, the sink transforms into the source habitat for resistant cancer cells, leading to treatment failure and tumor progression. We note these dynamics will result in spatial variations in molecular properties as an alternative to the conventional branched evolution model and will result in cellular migration as well as variation in cancer cell phenotype and proliferation currently described by the stem cell paradigm.
Collapse
|