1
|
Deshpande SS, van Drongelen W. Third-order entropy for spatiotemporal neural network characterization. J Neurophysiol 2025; 133:1234-1244. [PMID: 40098383 DOI: 10.1152/jn.00108.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
The human brain comprises an intricate web of connections that generate complex neural networks capable of storing and processing information based on factors such as network structure, connectivity strength, and interactions. To further unravel and understand this information, we introduce third-order entropy, a new metric grounded in the Triple Correlation Uniqueness (TCU) theorem. Triple correlation, which provides a complete and unique characterization of the network, relates three nodes separated by up to two spatiotemporal lags. Based on these four lags, we evaluate third-order entropy from the spatiotemporal lag probability distribution function (PDF) of the network activity's triple correlation. Given a spike raster, we compute triple correlation by iterating over time and space. Summing the contributions to the triple correlation over each of the spatial and temporal lag combinations generates a 4-D spatiotemporal frequency histogram, from which we estimate a PDF and compute entropy. To validate our approach, we first estimate third-order entropy from feedforward motifs in a simulated spike raster and then simulate the effects of adding increasing motif-class structure to a Poisson-modeled spike raster. Finally, we apply this methodology to spiking activity recorded from rat cortical cultures and compare our results to previously published results of pairwise entropy over time. Although first- and second-order metrics of activity (spike rate and cross-correlation) show agreement with previously published results, our TCU-based third-order entropy computation is a more complete tool for neural network characterization and reveals a greater depth of underlying network organization compared with pairwise entropy.NEW & NOTEWORTHY Here, we present third-order entropy built from triple correlation, which measures spatiotemporal interactions among up to three neurons. Per the Triple Correlation Uniqueness theorem, third-order entropy is based on a complete and unique characterization of the network. We first outline and validate the method and then apply it to an experimental dataset of rat cortical cultures. We show that the third-order entropy metric provides greater insight into network activity compared with pairwise entropy.
Collapse
Affiliation(s)
- Sarita S Deshpande
- Medical Scientist Training Program, University of Chicago, Chicago, Illinois, United States
- Committee on Neurobiology, University of Chicago, Chicago, Illinois, United States
- Section of Pediatric Neurology, University of Chicago, Chicago, Illinois, United States
| | - Wim van Drongelen
- Committee on Neurobiology, University of Chicago, Chicago, Illinois, United States
- Section of Pediatric Neurology, University of Chicago, Chicago, Illinois, United States
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Jaffe PI, Santiago-Reyes GX, Schafer RJ, Bissett PG, Poldrack RA. An image-computable model of speeded decision-making. eLife 2025; 13:RP98351. [PMID: 40019474 PMCID: PMC11870652 DOI: 10.7554/elife.98351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.
Collapse
Affiliation(s)
- Paul I Jaffe
- Department of Psychology, Stanford UniversityStanfordUnited States
| | | | | | | | | |
Collapse
|
3
|
Yiu TL, Wilson EA, Yahiro T, Ma L, Qin M, Zhong H. Cerebellar climbing fibers convey perceptual choice during decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636959. [PMID: 39975157 PMCID: PMC11839012 DOI: 10.1101/2025.02.06.636959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cerebellar climbing fibers are thought to signal reward prediction errors in non-motor functions. By imaging postsynaptic responses of climbing fibers onto mouse Purkinje cell dendrites during auditory discrimination, we found that climbing fibers in crus I can encode cue identities or perceptual choices. These responses were reshaped by reversal learning. Optogenetic perturbation of climbing fiber activity impaired discrimination. These results suggest a feedforward role of climbing fibers in perceptual decision-making.
Collapse
Affiliation(s)
- Tin Long Yiu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| | - Evan A. Wilson
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| | - Takaki Yahiro
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| |
Collapse
|
4
|
Lin XX, Nieder A, Jacob SN. The neuronal implementation of representational geometry in primate prefrontal cortex. SCIENCE ADVANCES 2023; 9:eadh8685. [PMID: 38091404 PMCID: PMC10848744 DOI: 10.1126/sciadv.adh8685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Modern neuroscience has seen the rise of a population-doctrine that represents cognitive variables using geometrical structures in activity space. Representational geometry does not, however, account for how individual neurons implement these representations. Leveraging the principle of sparse coding, we present a framework to dissect representational geometry into biologically interpretable components that retain links to single neurons. Applied to extracellular recordings from the primate prefrontal cortex in a working memory task with interference, the identified components revealed disentangled and sequential memory representations including the recovery of memory content after distraction, signals hidden to conventional analyses. Each component was contributed by small subpopulations of neurons with distinct spiking properties and response dynamics. Modeling showed that such sparse implementations are supported by recurrently connected circuits as in prefrontal cortex. The perspective of neuronal implementation links representational geometries to their cellular constituents, providing mechanistic insights into how neural systems encode and process information.
Collapse
Affiliation(s)
- Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Germany
| | | | - Simon N. Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
5
|
Haimerl C, Ruff DA, Cohen MR, Savin C, Simoncelli EP. Targeted V1 comodulation supports task-adaptive sensory decisions. Nat Commun 2023; 14:7879. [PMID: 38036519 PMCID: PMC10689451 DOI: 10.1038/s41467-023-43432-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Sensory-guided behavior requires reliable encoding of stimulus information in neural populations, and flexible, task-specific readout. The former has been studied extensively, but the latter remains poorly understood. We introduce a theory for adaptive sensory processing based on functionally-targeted stochastic modulation. We show that responses of neurons in area V1 of monkeys performing a visual discrimination task exhibit low-dimensional, rapidly fluctuating gain modulation, which is stronger in task-informative neurons and can be used to decode from neural activity after few training trials, consistent with observed behavior. In a simulated hierarchical neural network model, such labels are learned quickly and can be used to adapt downstream readout, even after several intervening processing stages. Consistently, we find the modulatory signal estimated in V1 is also present in the activity of simultaneously recorded MT units, and is again strongest in task-informative neurons. These results support the idea that co-modulation facilitates task-adaptive hierarchical information routing.
Collapse
Affiliation(s)
- Caroline Haimerl
- Center for Neural Science, New York University, New York, NY, 10003, USA.
- Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Douglas A Ruff
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, US
| | - Marlene R Cohen
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, US
| | - Cristina Savin
- Center for Neural Science, New York University, New York, NY, 10003, USA
- Center for Data Science, New York University, New York, NY, 10011, USA
| | - Eero P Simoncelli
- Center for Neural Science, New York University, New York, NY, 10003, USA
- Center for Data Science, New York University, New York, NY, 10011, USA
- Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| |
Collapse
|
6
|
Safaai H, Wang AY, Kira S, Malerba SB, Panzeri S, Harvey CD. Specialized structure of neural population codes in parietal cortex outputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554635. [PMID: 37662297 PMCID: PMC10473762 DOI: 10.1101/2023.08.24.554635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Do cortical neurons that send axonal projections to the same target area form specialized population codes for transmitting information? We used calcium imaging in mouse posterior parietal cortex (PPC), retrograde labeling, and statistical multivariate models to address this question during a delayed match-to-sample task. We found that PPC broadcasts sensory, choice, and locomotion signals widely, but sensory information is enriched in the output to anterior cingulate cortex. Neurons projecting to the same area have elevated pairwise activity correlations. These correlations are structured as information-limiting and information-enhancing interaction networks that collectively enhance information levels. This network structure is unique to sub-populations projecting to the same target and strikingly absent in surrounding neural populations with unidentified projections. Furthermore, this structure is only present when mice make correct, but not incorrect, behavioral choices. Therefore, cortical neurons comprising an output pathway form uniquely structured population codes that enhance information transmission to guide accurate behavior.
Collapse
Affiliation(s)
- Houman Safaai
- Department of Neurobiology, Harvard Medical School, Boston, USA
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alice Y. Wang
- Department of Neurobiology, Harvard Medical School, Boston, USA
| | - Shinichiro Kira
- Department of Neurobiology, Harvard Medical School, Boston, USA
| | - Simone Blanco Malerba
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
7
|
Jonikaitis D, Zhu S. Action space restructures visual working memory in prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553135. [PMID: 37645942 PMCID: PMC10462047 DOI: 10.1101/2023.08.13.553135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Visual working memory enables flexible behavior by decoupling sensory stimuli from behavioral actions. While previous studies have predominantly focused on the storage component of working memory, the role of future actions in shaping working memory remains unknown. To answer this question, we used two working memory tasks that allowed the dissociation of sensory and action components of working memory. We measured behavioral performance and neuronal activity in the macaque prefrontal cortex area, frontal eye fields. We show that the action space reshapes working memory, as evidenced by distinct patterns of memory tuning and attentional orienting between the two tasks. Notably, neuronal activity during the working memory period predicted future behavior and exhibited mixed selectivity in relation to the sensory space but linear selectivity relative to the action space. This linear selectivity was achieved through the rapid transformation from sensory to action space and was subsequently maintained as a stable cross-temporal population activity pattern. Combined, we provide direct physiological evidence of the action-oriented nature of frontal eye field neurons during memory tasks and demonstrate that the anticipation of behavioral outcomes plays a significant role in transforming and maintaining the contents of visual working memory.
Collapse
|
8
|
Koren V, Bondanelli G, Panzeri S. Computational methods to study information processing in neural circuits. Comput Struct Biotechnol J 2023; 21:910-922. [PMID: 36698970 PMCID: PMC9851868 DOI: 10.1016/j.csbj.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The brain is an information processing machine and thus naturally lends itself to be studied using computational tools based on the principles of information theory. For this reason, computational methods based on or inspired by information theory have been a cornerstone of practical and conceptual progress in neuroscience. In this Review, we address how concepts and computational tools related to information theory are spurring the development of principled theories of information processing in neural circuits and the development of influential mathematical methods for the analyses of neural population recordings. We review how these computational approaches reveal mechanisms of essential functions performed by neural circuits. These functions include efficiently encoding sensory information and facilitating the transmission of information to downstream brain areas to inform and guide behavior. Finally, we discuss how further progress and insights can be achieved, in particular by studying how competing requirements of neural encoding and readout may be optimally traded off to optimize neural information processing.
Collapse
Affiliation(s)
- Veronika Koren
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
| | | | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
- Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Italy
| |
Collapse
|
9
|
Trepka EB, Zhu S, Xia R, Chen X, Moore T. Functional interactions among neurons within single columns of macaque V1. eLife 2022; 11:e79322. [PMID: 36321687 PMCID: PMC9662816 DOI: 10.7554/elife.79322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recent developments in high-density neurophysiological tools now make it possible to record from hundreds of single neurons within local, highly interconnected neural networks. Among the many advantages of such recordings is that they dramatically increase the quantity of identifiable, functional interactions between neurons thereby providing an unprecedented view of local circuits. Using high-density, Neuropixels recordings from single neocortical columns of primary visual cortex in nonhuman primates, we identified 1000s of functionally interacting neuronal pairs using established crosscorrelation approaches. Our results reveal clear and systematic variations in the synchrony and strength of functional interactions within single cortical columns. Despite neurons residing within the same column, both measures of interactions depended heavily on the vertical distance separating neuronal pairs, as well as on the similarity of stimulus tuning. In addition, we leveraged the statistical power afforded by the large numbers of functionally interacting pairs to categorize interactions between neurons based on their crosscorrelation functions. These analyses identified distinct, putative classes of functional interactions within the full population. These classes of functional interactions were corroborated by their unique distributions across defined laminar compartments and were consistent with known properties of V1 cortical circuitry, such as the lead-lag relationship between simple and complex cells. Our results provide a clear proof-of-principle for the use of high-density neurophysiological recordings to assess circuit-level interactions within local neuronal networks.
Collapse
Affiliation(s)
- Ethan B Trepka
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Program, Stanford UniversityStanfordUnited States
| | - Shude Zhu
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Ruobing Xia
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Xiaomo Chen
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, University of California, DavisDavisUnited States
| | - Tirin Moore
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
10
|
Panzeri S, Moroni M, Safaai H, Harvey CD. The structures and functions of correlations in neural population codes. Nat Rev Neurosci 2022; 23:551-567. [PMID: 35732917 DOI: 10.1038/s41583-022-00606-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
The collective activity of a population of neurons, beyond the properties of individual cells, is crucial for many brain functions. A fundamental question is how activity correlations between neurons affect how neural populations process information. Over the past 30 years, major progress has been made on how the levels and structures of correlations shape the encoding of information in population codes. Correlations influence population coding through the organization of pairwise-activity correlations with respect to the similarity of tuning of individual neurons, by their stimulus modulation and by the presence of higher-order correlations. Recent work has shown that correlations also profoundly shape other important functions performed by neural populations, including generating codes across multiple timescales and facilitating information transmission to, and readout by, downstream brain areas to guide behaviour. Here, we review this recent work and discuss how the structures of correlations can have opposite effects on the different functions of neural populations, thus creating trade-offs and constraints for the structure-function relationships of population codes. Further, we present ideas on how to combine large-scale simultaneous recordings of neural populations, computational models, analyses of behaviour, optogenetics and anatomy to unravel how the structures of correlations might be optimized to serve multiple functions.
Collapse
Affiliation(s)
- Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany. .,Istituto Italiano di Tecnologia, Rovereto, Italy.
| | | | - Houman Safaai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Yang Y, Wang T, Li Y, Dai W, Yang G, Han C, Wu Y, Xing D. Coding strategy for surface luminance switches in the primary visual cortex of the awake monkey. Nat Commun 2022; 13:286. [PMID: 35022404 PMCID: PMC8755737 DOI: 10.1038/s41467-021-27892-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Both surface luminance and edge contrast of an object are essential features for object identification. However, cortical processing of surface luminance remains unclear. In this study, we aim to understand how the primary visual cortex (V1) processes surface luminance information across its different layers. We report that edge-driven responses are stronger than surface-driven responses in V1 input layers, but luminance information is coded more accurately by surface responses. In V1 output layers, the advantage of edge over surface responses increased eight times and luminance information was coded more accurately at edges. Further analysis of neural dynamics shows that such substantial changes for neural responses and luminance coding are mainly due to non-local cortical inhibition in V1’s output layers. Our results suggest that non-local cortical inhibition modulates the responses elicited by the surfaces and edges of objects, and that switching the coding strategy in V1 promotes efficient coding for luminance. How brightness is encoded in the visual cortex remains incompletely understood. By recording from macaque V1, the authors revealed a switch from surface to edge encoding that is mediated by widespread inhibition in the output layers of the cortex.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guanzhong Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
12
|
Koren V. Uncovering structured responses of neural populations recorded from macaque monkeys with linear support vector machines. STAR Protoc 2021; 2:100746. [PMID: 34430919 PMCID: PMC8365527 DOI: 10.1016/j.xpro.2021.100746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When a mammal, such as a macaque monkey, sees a complex natural image, many neurons in its visual cortex respond simultaneously. Here, we provide a protocol for studying the structure of population responses in laminar recordings with a machine learning model, the linear support vector machine. To unravel the role of single neurons in population responses and the structure of noise correlations, we use a multivariate decoding technique on time-averaged responses. For complete details on the use and execution of this protocol, please refer to Koren et al. (2020a). Linear support vector machine (SVM) is an efficient model for decoding from neural data Permutation test is a rigorous method for testing the significance of results Neural responses along the cortical depth are heterogeneous Decoding weights and noise correlations share a similar structure
Collapse
Affiliation(s)
- Veronika Koren
- Institute of Mathematics, Technische Universität Berlin, 10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Corresponding author
| |
Collapse
|