1
|
Jin M, Yang J, Park J, Kim H, Eom SH. Structure of MICU from non-metazoan Dictyostelium discoideum reveals unique characteristics. Commun Biol 2025; 8:782. [PMID: 40399431 PMCID: PMC12095637 DOI: 10.1038/s42003-025-08218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
In most eukaryotes, the mitochondrial calcium uniporter (MCU) mediates Ca2+ influx into the mitochondrial matrix through a process regulated by MICUs and the EMRE. In Dictyostelium discoideum, a model organism for amoebozoans that lack an EMRE, the MCU complex consists solely of the MCU and MICU. Most likely, therefore, the mechanism by which DdMICU regulates the DdMCU differs from the extensively studied metazoan MCU-EMRE-MICU system. Here, we report the crystal structure of Ca2+-bound DdMICU at 2.5 Å resolution. Unlike human MICUs, which contain two Ca2+-binding EF-hand motifs, DdMICU possesses three EF-hand motifs, each with a submicromolar Ca2+ binding affinity. The overall structure of DdMICU is comparable to that of human MICUs, and their well-conserved dimer interface interactions are similar. In addition to the face-to-face dimer observed in human MICUs, DdMICU forms a head-to-head dimer with multimeric states that equilibrate between tetrameric and dimeric forms, depending on the solution ionic strength. Moreover, the C-helix of DdMICU plays a critical role in membrane binding. These findings provide a molecular basis for the unique mechanism regulating Ca2+ uptake by MICUs in an EMRE-free system and offer insight into the evolution and functional diversity of the MCU complex in non-metazoan organisms.
Collapse
Affiliation(s)
- Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Obesity & Metabolic Research Team, Hanmi Pharmaceutical, R&D Center, Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Hyunwoo Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Zhao H, Chen S, Cao N, Wu W, Liu G, Gao J, Chen J, Li T, Lu D, Zeng L, Zhu H, Zhang W, Xia Q, Li T, Zhou T, Zhang X, Li A, Pan X. Berberine is a Novel Mitochondrial Calcium Uniporter Inhibitor that Disrupts MCU-EMRE Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412311. [PMID: 39921279 PMCID: PMC12061237 DOI: 10.1002/advs.202412311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The mitochondrial calcium uniporter (MCU) complex mediates Ca2+ entry into mitochondria, which plays a crucial role in regulating cellular energy metabolism and apoptosis. Dysregulation of MCU is implicated in various diseases, such as neurodegenerative disorders, cardiac diseases, and cancer. Despite its importance, developing specific and clinically viable MCU inhibitors is challenging. Here, Berberine, a well-established drug with a documented safety profile, is identified as a potent MCU inhibitor through a virtual screening of an FDA-approved drug library. Berberine localizes within mitochondria and directly binds to the juxtamembrane loop domain of MCU. This binding disrupts the interaction of MCU with its essential regulator, EMRE, thereby inhibiting rapid Ca2+ entry into the mitochondria. Notably, Berberine pretreatment reduces mitochondrial Ca2+ overload and mitigates ischemia/reperfusion-induced myocardial injury in mice. These findings establish Berberine as a potent MCU inhibitor, offering a safe therapeutic strategy for diseases associated with dysregulated mitochondrial calcium homeostasis.
Collapse
Affiliation(s)
- Haixin Zhao
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
- State Key Laboratory of Experimental HaematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Siqi Chen
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
- School of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Nian Cao
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
- Department of Cardiologythe Sixth Medical CentreChinese PLA General HospitalBeijing100048China
| | - Wenjun Wu
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Guangqin Liu
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
- School of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Jun Gao
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Jiayi Chen
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Ting Li
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Dingyi Lu
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Lingmin Zeng
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Haizhen Zhu
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Weina Zhang
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Qing Xia
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Teng Li
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Tao Zhou
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
| | - Xue‐Min Zhang
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
- School of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Ai‐Ling Li
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
- School of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Xin Pan
- Nanhu LaboratoryNational Center of Biomedical Analysis27 Tai‐Ping RoadBeijing100039China
- School of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
3
|
Li L, Xu D, Huang X. SERCA-mediated endoplasmic reticulum stress facilitates hematopoietic stem cell mobilization. Stem Cell Res Ther 2025; 16:208. [PMID: 40275396 PMCID: PMC12023629 DOI: 10.1186/s13287-025-04345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Hematopoietic stem cell (HSC) transplantation is widely recognized as an effective treatment for various malignant diseases. Enhancing HSC mobilization can improve transplantation outcomes and ultimately increase patient survival rates. Recent studies suggest that mild endoplasmic reticulum (ER) stress promotes HSC self-renewal, anti-apoptotic, and anti-aging capabilities. This led us to investigate whether inducing mild ER stress could facilitate HSC mobilization. METHODS The phenotype changes in cells treated with ER stress inducers and Sarco/endoplasmic reticulum Ca²⁺-ATPase (SERCA) inhibitors were assessed using flow cytometry. The efficacy of these agents on HSC mobilization was evaluated in C57Bl/6 mice, with colony forming unit (CFU) assays used for quantification. Knockdown Jurkat cell lines were constructed to validate the role of SERCA in the mobilization mechanism. Molecular and protein expression levels associated with the pathway were analyzed through quantitative reverse-transcription PCR and western blotting. RESULTS Our findings revealed that BHQ, a SERCA inhibitor, efficiently enhanced HSC mobilization in vivo. Mechanistically, BHQ regulated the CaMKII-STAT3-CXCR4 pathway by suppressing SERCA activity. This inhibition led to a reduction in CXCR4 expression on the surface of HSCs, facilitating their migration from the bone marrow into peripheral circulation. CONCLUSIONS Our study provides novel insights into the role of the SERCA-ER stress pathway in HSC mobilization. By targeting SERCA activity with BHQ, we observed a significant enhancement in the mobilization of HSCs, facilitated by the modulation of the CaMKII-STAT3-CXCR4 signaling pathway. This research highlights the potential of utilizing mild ER stress as a strategy to promote HSC mobilization, with significant implications for improving stem cell-based therapies, including those used in HSC transplantation.
Collapse
Affiliation(s)
- Lijun Li
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Danhua Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinxin Huang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Benarroch E. What Is the Role of Inner Membrane Metalloproteases in Mitochondrial Quality Control and Disease? Neurology 2025; 104:e213532. [PMID: 40184575 DOI: 10.1212/wnl.0000000000213532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 04/06/2025] Open
|
5
|
Rai NK, Eberhardt DR, Balynas AM, MacEwen MJS, Bratt AR, Sancak Y, Chaudhuri D. Mechanism of MCUB-Dependent Inhibition of Mitochondrial Calcium Uptake. J Cell Physiol 2025; 240:e70033. [PMID: 40227803 PMCID: PMC11996009 DOI: 10.1002/jcp.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Mitochondrial Ca2+ levels are regulated to balance stimulating respiration against the harm of Ca2+ overload. Contributing to this balance, the main channel transporting Ca2+ into the matrix, the mitochondrial Ca2+ uniporter, can incorporate a dominant-negative subunit (MCUB). MCUB is homologous to the pore-forming subunit MCU, but when present in the pore-lining tetramer, inhibits Ca2+ transport. Here, using cell lines deleted of both MCU and MCUB, we identify three factors that contribute to MCUB-dependent inhibition. First, MCUB protein requires MCU to express. The effect is mediated via the N-terminal domain (NTD) of MCUB. Replacement of the MCUB NTD with the MCU NTD recovers autonomous expression but fails to rescue Ca2+ uptake. Surprisingly, mutations to MCUB that affect interactions with accessory subunits or the conduction pore all failed to rescue Ca2+ uptake, suggesting the mechanism of inhibition may involve more global domain rearrangements. Second, using concatemeric tetramers with varying MCU:MCUB ratios, we find that MCUB incorporation does not abolish conduction, but rather inhibits Ca2+ influx proportional to the amount of MCUB present in the channel. Reducing rather than abolishing Ca2+ transport is consistent with MCUB retaining the highly-conserved selectivity filter DIME sequence. Finally, we apply live-cell Förster resonance energy transfer to establish that the endogenous stoichiometry is 2:2 MCU:MCUB. Taken together, our results suggest MCUB preferentially incorporates into nascent uniporters, and the amount of MCUB protein present linearly correlates with the degree of inhibition of Ca2+ transport, creating a precise, tunable mechanism for cells to regulate mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Neeraj K. Rai
- Nora Eccles Harrison Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUtahUSA
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - David R. Eberhardt
- Nora Eccles Harrison Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Anthony M. Balynas
- Nora Eccles Harrison Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUtahUSA
| | | | - Ashley R. Bratt
- Nora Eccles Harrison Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Yasemin Sancak
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUtahUSA
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Biochemistry, Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
6
|
Shehwar D, Barki S, Aliotta A, Calderara DB, Veuthey L, Portela CP, Alberio L, Alam MR. Platelets and mitochondria: the calcium connection. Mol Biol Rep 2025; 52:276. [PMID: 40029418 DOI: 10.1007/s11033-025-10389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Calcium signaling has a fundamental importance in maintaining various platelet functions, such as those involved in hemostasis and thrombosis. Agonist-induced mobilization of calcium (Ca2+) from intracellular stores coupled with activation of store-operated calcium entry (SOCE) and non-SOCE or receptor-operated calcium entry (ROCE) regulates platelet degranulation, integrin activation, shape change, generation of thromboxane A2, and aggregation or procoagulant function. Platelet mitochondria also take up a small amount of cytosolic Ca2+ that contributes to bioenergetics, cytosolic Ca2+ buffering, cell signaling and death. Voltage-dependent anion channels (VDAC) in the outer mitochondrial membrane and mitochondrial Ca2+ uniporter complex (MCUC) in the inner mitochondrial membrane (IMM) are pivotal for transporting Ca2+ into the mitochondrial matrix. On the other hand, matrix Ca2+ efflux is dependent on the IMM localized sodium/calcium exchanger (NCLX). Despite the well-established role of cytosolic Ca2+, the participation of mitochondrial Ca2+ homeostasis in platelet physiology remains unknown. This mini-review summarizes the recent developments in the field of mitochondrial Ca2+ transport in platelet physiology.
Collapse
Affiliation(s)
- Durre Shehwar
- Department of Biochemistry Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Barki
- Department of Biochemistry Quaid-i-Azam University, Islamabad, Pakistan
| | - Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Lucas Veuthey
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Cindy Pereira Portela
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | | |
Collapse
|
7
|
Tu YC, Lee IC, Chang TW, Lee V, Chao FY, Geltser ER, Tsai MF. Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex. J Biol Chem 2025; 301:108218. [PMID: 39863104 PMCID: PMC11871460 DOI: 10.1016/j.jbc.2025.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The mitochondrial Ca2+ uniporter is the Ca2+ channel responsible for mitochondrial Ca2+ uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca2+ signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca2+ concentrations. It has been known for decades that spermine, a biological polyamine ubiquitously present in animal cells, can enhance mitochondrial Ca2+ uptake, but the underlying mechanisms remain incompletely understood. In this study, we demonstrate that spermine exerts both potentiation and inhibitory effects on the uniporter. At physiological concentrations, spermine binds to membranes and disrupts MCU-MICU1 interactions, thereby opening the uniporter to import more Ca2+. However, at millimolar concentrations, spermine also inhibits the uniporter by targeting the pore-forming region in a MICU1-independent manner. These findings provide molecular insights into how cells can use spermine to control the critical processes of mitochondrial Ca2+ signaling and homeostasis.
Collapse
Affiliation(s)
- Yung-Chi Tu
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - I-Chi Lee
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsai-Wei Chang
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Vivian Lee
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fan-Yi Chao
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eitel R Geltser
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
8
|
Chagas PS, Garcia CB, Chagas HIS, Yeudall WA, Yu JC, Baban B, Leopoldino AM. Suppression of SIGMAR1 hinders oral cancer cell growth via modulation of mitochondrial Ca 2+ dynamics. Mol Biol Rep 2025; 52:220. [PMID: 39934454 DOI: 10.1007/s11033-025-10336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Oral cancer is the most common malignancy of the oral cavity and facial region, affecting the mucosal and epithelial surfaces in the mouth and lips. Unfortunately, OC is often associated with a high mortality rate and limited treatment options for patients. METHODS AND RESULTS Herein, we used in silico analysis and in vitro assays to investigate the impact of the Sigma-1 receptor (SIGMAR1) in OC progression by evaluating mitochondrial function, calcium signaling and clonogenic growth. First, the data from the TCGA pan-cancer analysis revealed that SIGMAR1 was overexpressed in OC versus healthy tissue and related to a worse survival rate. Furthermore, we demonstrated that SIGMAR1 silencing led to an increase in mitochondrial membrane potential, a reduction in cellular ATP levels, inhibition of Ca²⁺ influx, and a significant decrease in the clonogenic growth of OC cells. CONCLUSIONS Based on these findings, we suggest that SIGMAR1 may influence mitochondrial membrane potential and energy production by modulating Ca2+ uptake, which is critically important to cellular survival. In addition, SIGMAR1 knockdown may offer a potential strategy to be further explored as treatment for OC.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, SP, Brazil.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA.
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, SP, Brazil
| | - Henrique Izumi Shimaoka Chagas
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - W Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, SP, Brazil
| |
Collapse
|
9
|
Huo J, Molkentin JD. MICU1 and MICU2, two peas in a pod or entirely different fruits? Cell Calcium 2024; 124:102959. [PMID: 39405656 DOI: 10.1016/j.ceca.2024.102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 12/07/2024]
Abstract
Fluctuations in mitochondrial matrix Ca2+ plays a critical role in matching energy production to cellular demand through direct effects on oxidative phosphorylation and ATP production. Disruption in mitochondrial Ca2+ homeostasis, particularly under pathological conditions such as ischemia or heart failure, can lead to mitochondrial dysfunction, energy deficit, and eventually death of cardiomyocytes. The primary channel regulating acute mitochondrial Ca2+ influx is the mitochondrial Ca2+ uniporter (mtCU), which is regulated by the mitochondrial Ca2+ uptake (MICU) proteins that were examined here.
Collapse
Affiliation(s)
- Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Rai NK, Balynas AM, MacEwen MJ, Bratt AR, Sancak Y, Chaudhuri D. Mechanism of MCUB-dependent inhibition of mitochondrial calcium uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625228. [PMID: 39651176 PMCID: PMC11623618 DOI: 10.1101/2024.11.25.625228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Mitochondrial Ca 2+ levels are regulated to balance stimulating respiration against the harm of Ca 2+ overload. Contributing to this balance, the main channel transporting Ca 2+ into the matrix, the mitochondrial Ca 2+ uniporter, can incorporate a dominant-negative subunit (MCUB). MCUB is homologous to the pore-forming subunit MCU, but when present in the pore-lining tetramer, inhibits Ca 2+ transport. Here, using cell lines deleted of both MCU and MCUB, we identify three factors that contribute to MCUB-dependent inhibition. First, MCUB protein requires MCU to express. The effect is mediated via the N-terminal domain (NTD) of MCUB. Replacement of the MCUB NTD with the MCU NTD recovers autonomous expression but fails to rescue Ca 2+ uptake. Surprisingly, mutations to MCUB that affect interactions with accessory subunits or the conduction pore all failed to rescue Ca 2+ uptake, suggesting the mechanism of inhibition may involve global rearrangements. Second, using concatemeric tetramers with varying MCU:MCUB ratios, we find that MCUB incorporation does not abolish conduction, but rather inhibits Ca 2+ influx proportional to the amount of MCUB present in the channel. Reducing rather than abolishing Ca 2+ transport is consistent with MCUB retaining the highly-conserved selectivity filter DIME sequence. Finally, we apply live-cell Förster resonance energy transfer to establish that the endogenous stoichiometry is 2:2 MCU:MCUB. Taken together, our results suggest MCUB preferentially incorporates into nascent uniporters, and the amount of MCUB protein present linearly correlates with the degree of inhibition of Ca 2+ transport, creating a precise, tunable mechanism for cells to regulate mitochondrial Ca 2+ uptake.
Collapse
|
11
|
Zhang Y, Ding X, Zhang Q, Zeng C, Chen H, Lu L. Trichosanthin elicits antitumor activity via MICU3 mediated mitochondria calcium influx. J Adv Res 2024:S2090-1232(24)00493-4. [PMID: 39505142 DOI: 10.1016/j.jare.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Trichosanthin (TK) is a glycoprotein extracted from the Chinese medicinal herb Trichosanthes kirilowi, which has anti-virus and anti-tumor activity. However, the target and detailed mechanism of TK remains elusive. OBJECTIVES We aimed to identify novel antitumor targets of TK in lung adenocarcinoma and study its anti-tumor mechanism. METHODS We utilized a Lewis lung carcinoma mouse model to evaluate the inhibition of TK on tumor growth. CCK8 assay was utilized to calculate IC50 of trichosanthin on A549 and H1299. In-vitro cellular assays and in-vivo xenograft mice studies were used to investigate MICU3 overexpression and TK treatment on tumor growth. Fluo-4 dye and JC-1 staining was used to measure the mitochondrial calcium levels and membrane potential. H&E and immunohistochemistry staining were applied the asses the effect of TK on tumor and microenvironment. RNA sequencing was applied to analyze transcriptome changes in TK-treated and MICU3-overexpressed tumor cells. The influence of trichosanthin on DNMT3B expression and MICU3 methylation were detected by qPCR and Western blotting. Transcriptional activity of the MICU3 gene was measured by ChIP-PCR and luciferase assays. RESULTS Trichosanthin ihibited the tumor growth in vivo, resulting cancer cell growth inhibition and cell death, with almost no effect on normal cells. IC50 of trichosanthin in A549 and H1299 cells were 62.8 μg/ml and 39.7 μg/ml, respectively. Mitochondrial Calcium Uptake Family complex MICU3 was shown to associated with favorable prognosis and was upregulated upon trichosanthin treatment, along with reduces tumor cell growth and migration, and increased cell death both in vitro and in vivo. Increased mitochondrial calcium level was observed in MICU3 overexpression cells. Pathway analysis of RNA-seq data revealed that cytokine and receptor pathways were enriched in MICU3-overexpressing cells. Trichosanthin decreased DNMT3B expression and altered MICU3 methylation while increased FOSL2 expression and reduced methylation that correlated with increased transcription of the MICU3 gene. CONCLUSION Trichosanthin elicits antitumor activity in lung adenocarcinoma via repressing DNMT3B and increasing FOSL2, which in turn induces MICU3-mediated mitochondrial calcium influx and tumor cell death.
Collapse
Affiliation(s)
- Yunbin Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine
| | - Qian Zhang
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine
| | - Cong Zeng
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine.
| |
Collapse
|
12
|
Zhang H, Zhang Y, Zhang J, Jia D. Exercise Alleviates Cardiovascular Diseases by Improving Mitochondrial Homeostasis. J Am Heart Assoc 2024; 13:e036555. [PMID: 39291488 DOI: 10.1161/jaha.124.036555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Yuxuan Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Jiaqiao Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Dandan Jia
- School of Exercise and health Shanghai University of Sport Shanghai China
| |
Collapse
|
13
|
Balderas E, Lee SHJ, Rai NK, Mollinedo DM, Duron HE, Chaudhuri D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology (Bethesda) 2024; 39:0. [PMID: 38713090 PMCID: PMC11460536 DOI: 10.1152/physiol.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sandra H J Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Neeraj K Rai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - David M Mollinedo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hannah E Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J Physiol 2024; 602:3315-3339. [PMID: 38857425 DOI: 10.1113/jp285515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Popoiu TA, Maack C, Bertero E. Mitochondrial calcium signaling and redox homeostasis in cardiac health and disease. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1235188. [PMID: 39086688 PMCID: PMC11285591 DOI: 10.3389/fmmed.2023.1235188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 08/02/2024]
Abstract
The energy demand of cardiomyocytes changes continuously in response to variations in cardiac workload. Cardiac excitation-contraction coupling is fueled primarily by adenosine triphosphate (ATP) production by oxidative phosphorylation in mitochondria. The rate of mitochondrial oxidative metabolism is matched to the rate of ATP consumption in the cytosol by the parallel activation of oxidative phosphorylation by calcium (Ca2+) and adenosine diphosphate (ADP). During cardiac workload transitions, Ca2+ accumulates in the mitochondrial matrix, where it stimulates the activity of the tricarboxylic acid cycle. In this review, we describe how mitochondria internalize and extrude Ca2+, the relevance of this process for ATP production and redox homeostasis in the healthy heart, and how derangements in ion handling cause mitochondrial and cardiomyocyte dysfunction in heart failure.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
16
|
Ghatge M, Nayak MK, Flora GD, Kumskova M, Jain A, Patel RB, Lin Z, Usachev YM, Chauhan AK. Mitochondrial calcium uniporter b deletion inhibits platelet function and reduces susceptibility to arterial thrombosis. J Thromb Haemost 2023; 21:2163-2174. [PMID: 37061131 DOI: 10.1016/j.jtha.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Mitochondrial calcium uniporter b (MCUb) is a negative regulator of the mitochondrial calcium uniporter (MCU) and is known to limit mitochondrial calcium ion (Ca2+) uptake. The role of MCUb in platelet function remains unclear. OBJECTIVES Utilizing MCUb-/- mice, we examined the role of MCUb in regulating platelet function and thrombosis. METHODS Platelet activation was evaluated in agonist-induced standardized in vitro assays. Susceptibility to arterial thrombosis was evaluated in FeCl3 injury-induced carotid artery and laser injury-induced mesenteric artery thrombosis models. The glycolytic proton efflux rate and oxygen consumption rate were measured to evaluate aerobic glycolysis. RESULTS Upon stimulation, MCUb-/- platelets exhibited reduced cytoplasmic Ca2+ responses concomitant with increased mitochondrial Ca2+ uptake. MCUb-/- platelets displayed reduced agonist-induced platelet aggregation and spreading on fibrinogen and decreased α and dense-granule secretion and clot retraction. MCUb-/- mice were less susceptible to arterial thrombosis in FeCl3 injury-induced carotid and laser injury-induced mesenteric thrombosis models with unaltered tail bleeding time. In adoptive transfer experiments, thrombocytopenic hIL-4Rα/GPIbα-transgenic mice transfused with MCUb-/- platelets were less susceptible to FeCl3 injury-induced carotid thrombosis compared with hIL-4Rα/GPIbα-Tg mice transfused with wild type platelets, suggesting a platelet-specific role of MCUb in thrombosis. MCUb-/- stimulated platelets exhibited reduced glucose uptake, decreased glycolytic rate, and lowered pyruvate dehydrogenase phosphorylation, suggesting that mitochondrial Ca2+ mediates bioenergetic changes in platelets. CONCLUSION Our findings suggest that mitochondrial Ca2+ signaling and glucose oxidation are functionally linked in activated platelets and reveal a novel role of MCUb in platelet activation and arterial thrombosis.
Collapse
Affiliation(s)
- Madankumar Ghatge
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA.
| | - Manasa K Nayak
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Gagan D Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Mariia Kumskova
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Aditi Jain
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Zhihong Lin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Yuriy M Usachev
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
17
|
Chan C, Yuan CC, McCoy JG, Ward PS, Grabarek Z. The mitochondrial calcium uniporter transports Ca 2+ via a ligand-relay mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.17.545435. [PMID: 37398228 PMCID: PMC10312793 DOI: 10.1101/2023.06.17.545435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The mitochondrial calcium uniporter (mtCU) is a multicomponent Ca 2+ -specific channel that imparts mitochondria with the capacity to sense the cytosolic calcium signals. The metazoan mtCU comprises the pore-forming subunit MCU and the essential regulator EMRE, arranged in a tetrameric channel complex, and the Ca 2+ sensing peripheral proteins MICU1-3. The mechanism of mitochondrial Ca 2+ uptake by mtCU and its regulation is poorly understood. Our analysis of MCU structure and sequence conservation, combined with molecular dynamics simulations, mutagenesis, and functional studies, led us to conclude that the Ca 2+ conductance of MCU is driven by a ligand-relay mechanism, which depends on stochastic structural fluctuations in the conserved DxxE sequence. In the tetrameric structure of MCU, the four glutamate side chains of DxxE (the E-ring) chelate Ca 2+ directly in a high-affinity complex (site 1), which blocks the channel. The four glutamates can also switch to a hydrogen bond-mediated interaction with an incoming hydrated Ca 2+ transiently sequestered within the D-ring of DxxE (site 2), thus releasing the Ca 2+ bound at site 1. This process depends critically on the structural flexibility of DxxE imparted by the adjacent invariant Pro residue. Our results suggest that the activity of the uniporter can be regulated through the modulation of local structural dynamics. A preliminary account of this work was presented at the 67 th Annual Meeting of the Biophysical Society in San Diego, CA, February 18-22, 2023.
Collapse
|
18
|
Tu YC, Chao FY, Tsai MF. Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543936. [PMID: 37333420 PMCID: PMC10274775 DOI: 10.1101/2023.06.06.543936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The mitochondrial Ca 2 + uniporter mediates the crucial cellular process of mitochondrial Ca 2 + uptake, which regulates cell bioenergetics, intracellular Ca 2 + signaling, and cell death initiation. The uniporter contains the pore-forming MCU subunit, an EMRE protein that binds to MCU, and the regulatory MICU1 subunit, which can dimerize with MICU1 or MICU2 and under resting cellular [Ca 2 + ] occludes the MCU pore. It has been known for decades that spermine, which is ubiquitously present in animal cells, can enhance mitochondrial Ca 2 + uptake, but the underlying mechanisms remain unclear. Here, we show that spermine exerts dual modulatory effects on the uniporter. In physiological concentrations of spermine, it enhances uniporter activity by breaking the physical interactions between MCU and the MICU1-containing dimers to allow the uniporter to constitutively take up Ca 2 + even in low [Ca 2 + ] conditions. This potentiation effect does not require MICU2 or the EF-hand motifs in MICU1. When [spermine] rises to millimolar levels, it inhibits the uniporter by targeting the pore region in a MICU-independent manner. The MICU1-dependent spermine potentiation mechanism proposed here, along with our previous finding that cardiac mitochondria have very low MICU1, can explain the puzzling observation in the literature that mitochondria in the heart show no response to spermine.
Collapse
Affiliation(s)
- Yung-Chi Tu
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fan-Yi Chao
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
19
|
MacEwen MJ, Sancak Y. Beyond the matrix: structural and physiological advancements in mitochondrial calcium signaling. Biochem Soc Trans 2023; 51:665-673. [PMID: 36960768 PMCID: PMC10212541 DOI: 10.1042/bst20220317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Mitochondrial calcium (Ca2+) signaling has long been known to regulate diverse cellular functions, ranging from ATP production via oxidative phosphorylation, to cytoplasmic Ca2+ signaling to apoptosis. Central to mitochondrial Ca2+ signaling is the mitochondrial Ca2+ uniporter complex (MCUC) which enables Ca2+ flux from the cytosol into the mitochondrial matrix. Several pivotal discoveries over the past 15 years have clarified the identity of the proteins comprising MCUC. Here, we provide an overview of the literature on mitochondrial Ca2+ biology and highlight recent findings on the high-resolution structure, dynamic regulation, and new functions of MCUC, with an emphasis on publications from the last five years. We discuss the importance of these findings for human health and the therapeutic potential of targeting mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
20
|
Tomar D, Thomas M, Garbincius JF, Kolmetzky DW, Salik O, Jadiya P, Joseph SK, Carpenter AC, Hajnóczky G, Elrod JW. MICU1 regulates mitochondrial cristae structure and function independently of the mitochondrial Ca 2+ uniporter channel. Sci Signal 2023; 16:eabi8948. [PMID: 37098122 PMCID: PMC10388395 DOI: 10.1126/scisignal.abi8948] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
MICU1 is a calcium (Ca2+)-binding protein that regulates the mitochondrial Ca2+ uniporter channel complex (mtCU) and mitochondrial Ca2+ uptake. MICU1 knockout mice display disorganized mitochondrial architecture, a phenotype that is distinct from that of mice with deficiencies in other mtCU subunits and, thus, is likely not explained by changes in mitochondrial matrix Ca2+ content. Using proteomic and cellular imaging techniques, we found that MICU1 localized to the mitochondrial contact site and cristae organizing system (MICOS) and directly interacted with the MICOS components MIC60 and CHCHD2 independently of the mtCU. We demonstrated that MICU1 was essential for MICOS complex formation and that MICU1 ablation resulted in altered cristae organization, mitochondrial ultrastructure, mitochondrial membrane dynamics, and cell death signaling. Together, our results suggest that MICU1 is an intermembrane space Ca2+ sensor that modulates mitochondrial membrane dynamics independently of matrix Ca2+ uptake. This system enables distinct Ca2+ signaling in the mitochondrial matrix and at the intermembrane space to modulate cellular energetics and cell death in a concerted manner.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Manfred Thomas
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Joanne F. Garbincius
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Oniel Salik
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Suresh K. Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - April C. Carpenter
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| |
Collapse
|
21
|
Tsai CW, Liu TY, Chao FY, Tu YC, Rodriguez MX, Van Keuren AM, Ma Z, Bankston J, Tsai MF. Evidence supporting the MICU1 occlusion mechanism and against the potentiation model in the mitochondrial calcium uniporter complex. Proc Natl Acad Sci U S A 2023; 120:e2217665120. [PMID: 37036971 PMCID: PMC10120041 DOI: 10.1073/pnas.2217665120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/03/2023] [Indexed: 04/12/2023] Open
Abstract
The mitochondrial calcium uniporter is a Ca2+ channel that imports cytoplasmic Ca2+ into the mitochondrial matrix to regulate cell bioenergetics, intracellular Ca2+ signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an auxiliary EMRE protein, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking/unblocking the pore. However, mitoplast patch-clamp experiments argue that MICU1 does not block, but instead potentiates MCU via allosteric mechanisms. Here, we address this direct clash of the proposed MICU1 function. Supporting the MICU1-occlusion mechanism, patch-clamp demonstrates that purified MICU1 strongly suppresses MCU Ca2+ currents, and this inhibition is abolished by mutating the MCU-interacting K126 residue. Moreover, a membrane-depolarization assay shows that MICU1 prevents MCU-mediated Na+ flux into intact mitochondria under Ca2+-free conditions. Examining the observations underlying the potentiation model, we found that MICU1 occlusion was not detected in mitoplasts not because MICU1 cannot block, but because MICU1 dissociates from the uniporter complex. Furthermore, MICU1 depletion reduces uniporter transport not because MICU1 can potentiate MCU, but because EMRE is down-regulated. These results firmly establish the molecular mechanisms underlying the physiologically crucial process of uniporter regulation by MICU1.
Collapse
Affiliation(s)
- Chen-Wei Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Tsung-Yun Liu
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Fan-Yi Chao
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Yung-Chi Tu
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Madison X. Rodriguez
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Anna M. Van Keuren
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - John Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| |
Collapse
|
22
|
Sánchez-Aguilera P, López-Crisosto C, Norambuena-Soto I, Penannen C, Zhu J, Bomer N, Hoes MF, Van Der Meer P, Chiong M, Westenbrink BD, Lavandero S. IGF-1 boosts mitochondrial function by a Ca 2+ uptake-dependent mechanism in cultured human and rat cardiomyocytes. Front Physiol 2023; 14:1106662. [PMID: 36846332 PMCID: PMC9944404 DOI: 10.3389/fphys.2023.1106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
A physiological increase in cardiac workload results in adaptive cardiac remodeling, characterized by increased oxidative metabolism and improvements in cardiac performance. Insulin-like growth factor-1 (IGF-1) has been identified as a critical regulator of physiological cardiac growth, but its precise role in cardiometabolic adaptations to physiological stress remains unresolved. Mitochondrial calcium (Ca2+) handling has been proposed to be required for sustaining key mitochondrial dehydrogenase activity and energy production during increased workload conditions, thus ensuring the adaptive cardiac response. We hypothesized that IGF-1 enhances mitochondrial energy production through a Ca2+-dependent mechanism to ensure adaptive cardiomyocyte growth. We found that stimulation with IGF-1 resulted in increased mitochondrial Ca2+ uptake in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes, estimated by fluorescence microscopy and indirectly by a reduction in the pyruvate dehydrogenase phosphorylation. We showed that IGF-1 modulated the expression of mitochondrial Ca2+ uniporter (MCU) complex subunits and increased the mitochondrial membrane potential; consistent with higher MCU-mediated Ca2+ transport. Finally, we showed that IGF-1 improved mitochondrial respiration through a mechanism dependent on MCU-mediated Ca2+ transport. In conclusion, IGF-1-induced mitochondrial Ca2+ uptake is required to boost oxidative metabolism during cardiomyocyte adaptive growth.
Collapse
Affiliation(s)
- Pablo Sánchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Penannen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jumo Zhu
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijn F. Hoes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands,Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, Netherlands
| | - Peter Van Der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,*Correspondence: B. Daan Westenbrink, ; Sergio Lavandero,
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: B. Daan Westenbrink, ; Sergio Lavandero,
| |
Collapse
|
23
|
Breault NM, Wu D, Dasgupta A, Chen KH, Archer SL. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1105565. [PMID: 36819102 PMCID: PMC9933518 DOI: 10.3389/fcell.2023.1105565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an orphan disease of the cardiopulmonary unit that reflects an obstructive pulmonary vasculopathy and presents with hypertrophy, inflammation, fibrosis, and ultimately failure of the right ventricle (RVF). Despite treatment using pulmonary hypertension (PH)-targeted therapies, persistent functional impairment reduces the quality of life for people with PAH and death from RVF occurs in approximately 40% of patients within 5 years of diagnosis. PH-targeted therapeutics are primarily vasodilators and none, alone or in combination, are curative. This highlights a need to therapeutically explore molecular targets in other pathways that are involved in the pathogenesis of PAH. Several candidate pathways in PAH involve acquired mitochondrial dysfunction. These mitochondrial disorders include: 1) a shift in metabolism related to increased expression of pyruvate dehydrogenase kinase and pyruvate kinase, which together increase uncoupled glycolysis (Warburg metabolism); 2) disruption of oxygen-sensing related to increased expression of hypoxia-inducible factor 1α, resulting in a state of pseudohypoxia; 3) altered mitochondrial calcium homeostasis related to impaired function of the mitochondrial calcium uniporter complex, which elevates cytosolic calcium and reduces intramitochondrial calcium; and 4) abnormal mitochondrial dynamics related to increased expression of dynamin-related protein 1 and its binding partners, such as mitochondrial dynamics proteins of 49 kDa and 51 kDa, and depressed expression of mitofusin 2, resulting in increased mitotic fission. These acquired mitochondrial abnormalities increase proliferation and impair apoptosis in most pulmonary vascular cells (including endothelial cells, smooth muscle cells and fibroblasts). In the RV, Warburg metabolism and induction of glutaminolysis impairs bioenergetics and promotes hypokinesis, hypertrophy, and fibrosis. This review will explore our current knowledge of the causes and consequences of disordered mitochondrial function in PAH.
Collapse
Affiliation(s)
- Nolan M. Breault
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| | - Asish Dasgupta
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON, Canada,Queen’s Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| |
Collapse
|
24
|
Colussi DM, Stathopulos PB. From passage to inhibition: Uncovering the structural and physiological inhibitory mechanisms of MCUb in mitochondrial calcium regulation. FASEB J 2023; 37:e22678. [PMID: 36538269 PMCID: PMC10107711 DOI: 10.1096/fj.202201080r] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial calcium (Ca2+ ) regulation is critically implicated in the regulation of bioenergetics and cell fate. Ca2+ , a universal signaling ion, passively diffuses into the mitochondrial intermembrane space (IMS) through voltage-dependent anion channels (VDAC), where uptake into the matrix is tightly regulated across the inner mitochondrial membrane (IMM) by the mitochondrial Ca2+ uniporter complex (mtCU). In recent years, immense progress has been made in identifying and characterizing distinct structural and physiological mechanisms of mtCU component function. One of the main regulatory components of the Ca2+ selective mtCU channel is the mitochondrial Ca2+ uniporter dominant-negative beta subunit (MCUb). The structural mechanisms underlying the inhibitory effect(s) exerted by MCUb are poorly understood, despite high homology to the main mitochondrial Ca2+ uniporter (MCU) channel-forming subunits. In this review, we provide an overview of the structural differences between MCUb and MCU, believed to contribute to the inhibition of mitochondrial Ca2+ uptake. We highlight the possible structural rationale for the absent interaction between MCUb and the mitochondrial Ca2+ uptake 1 (MICU1) gatekeeping subunit and a potential widening of the pore upon integration of MCUb into the channel. We discuss physiological and pathophysiological information known about MCUb, underscoring implications in cardiac function and arrhythmia as a basis for future therapeutic discovery. Finally, we discuss potential post-translational modifications on MCUb as another layer of important regulation.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
Yoo J. Structural basis of Ca 2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review. BMB Rep 2022; 55:528-534. [PMID: 36195565 PMCID: PMC9712701 DOI: 10.5483/bmbrep.2022.55.11.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 03/17/2024] Open
Abstract
Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holocomplex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated. [BMB Reports 2022; 55(11): 528-534].
Collapse
Affiliation(s)
- Jiho Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
26
|
Yoo J. Structural basis of Ca 2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review. BMB Rep 2022; 55:528-534. [PMID: 36195565 PMCID: PMC9712701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holocomplex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated. [BMB Reports 2022; 55(11): 528-534].
Collapse
Affiliation(s)
- Jiho Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
27
|
Tsai CW, Rodriguez MX, Van Keuren AM, Phillips CB, Shushunov HM, Lee JE, Garcia AM, Ambardekar AV, Cleveland JC, Reisz JA, Proenza C, Chatfield KC, Tsai MF. Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. Mol Cell 2022; 82:3661-3676.e8. [PMID: 36206740 PMCID: PMC9557913 DOI: 10.1016/j.molcel.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/16/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022]
Abstract
Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.
Collapse
Affiliation(s)
- Chen-Wei Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madison X Rodriguez
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna M Van Keuren
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Charles B Phillips
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah M Shushunov
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica E Lee
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anastacia M Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph C Cleveland
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Quantitative assays to measure the transport activity of the mitochondrial calcium uniporter in cell lines or Xenopus oocytes. STAR Protoc 2021; 2:100979. [PMID: 34877549 PMCID: PMC8633362 DOI: 10.1016/j.xpro.2021.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial calcium uniporter, which mediates mitochondrial Ca2+ uptake, regulates key cellular functions, including intracellular Ca2+ signaling, cell-fate determination, and mitochondrial bioenergetics. Here, we describe two complementary strategies to quantify the uniporter's transport activity. First, we detail a mitochondrial Ca2+ radionuclide uptake assay in cultured cell lines. Second, we describe electrophysiological recordings of the uniporter expressed in Xenopus oocytes. These approaches enable a detailed kinetic analysis of the uniporter to link its molecular properties to physiological functions. For complete details on the use and execution of this protocol, please refer to Tsai and Tsai (2018) and Phillips et al. (2019).
Collapse
|
29
|
Structural characterization of the mitochondrial Ca 2+ uniporter provides insights into Ca 2+ uptake and regulation. iScience 2021; 24:102895. [PMID: 34401674 PMCID: PMC8353469 DOI: 10.1016/j.isci.2021.102895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mitochondrial uniporter is a Ca2+-selective ion-conducting channel in the inner mitochondrial membrane that is involved in various cellular processes. The components of this uniporter, including the pore-forming membrane subunit MCU and the modulatory subunits MCUb, EMRE, MICU1, and MICU2, have been identified in recent years. Previously, extensive studies revealed various aspects of uniporter activities and proposed multiple regulatory models of mitochondrial Ca2+ uptake. Recently, the individual auxiliary components of the uniporter and its holocomplex have been structurally characterized, providing the first insight into the component structures and their spatial relationship within the context of the uniporter. Here, we review recent uniporter structural studies in an attempt to establish an architectural framework, elucidating the mechanism that governs mitochondrial Ca2+ uptake and regulation, and to address some apparent controversies. This information could facilitate further characterization of mitochondrial Ca2+ permeation and a better understanding of uniporter-related disease conditions. The uniporter contains multiple subunits regulating various cellular processes Significant structural progresses have been made for the holo-complex of uniporter The holo-complex structures have inspired to propose several regulatory models
Collapse
|
30
|
Zhao H, Pan X. Mitochondrial Ca 2+ and cell cycle regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:171-207. [PMID: 34253295 DOI: 10.1016/bs.ircmb.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been demonstrated for more than 40 years that intracellular calcium (Ca2+) controls a variety of cellular functions, including mitochondrial metabolism and cell proliferation. Cytosolic Ca2+ fluctuation during key stages of the cell cycle can lead to mitochondrial Ca2+ uptake and subsequent activation of mitochondrial oxidative phosphorylation and a range of signaling. However, the relationship between mitochondrial Ca2+ and cell cycle progression has long been neglected because the molecule responsible for Ca2+ uptake has been unknown. Recently, the identification of the mitochondrial Ca2+ uniporter (MCU) has led to key advances. With improved Ca2+ imaging and detection, effects of MCU-mediated mitochondrial Ca2+ have been observed at different stages of the cell cycle. Elevated Ca2+ signaling boosts ATP and ROS production, remodels cytosolic Ca2+ pathways and reprograms cell fate-determining networks. These findings suggest that manipulating mitochondrial Ca2+ signaling may serve as a potential strategy in the control of many crucial biological events, such as tumor development and cell division in hematopoietic stem cells (HSCs). In this review, we summarize the current understanding of the role of mitochondrial Ca2+ signaling during different stages of the cell cycle and highlight the potential physiological and pathological significance of mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
- Haixin Zhao
- State Key Laboratory of Experimental Haematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|