1
|
Shin B, Kim M, Lee Y, Rhee K. M phase-specific generation of supernumerary centrioles in cancer cells. Mol Biol Cell 2025; 36:ar65. [PMID: 40266756 DOI: 10.1091/mbc.e24-08-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Many cancer cells maintain supernumerary centrioles, despite the potential risks associated with catastrophic outcomes during mitosis. In this study, we searched for cancer cell lines in which supernumerary centrioles are generated during the M phase and identified a few cell lines among the dozen examined. PLK4 activity is also required for M phase-specific generation of supernumerary centrioles. We observed that mitotic centrioles prematurely separate in many cancer cells when levels of pericentriolar material (PCM) proteins, such as PCNT and CEP215, are low. Furthermore, the presence of supernumerary centrioles was correlated with reduced mitotic PCM levels. Notably, overexpression of PCNT led to a reduction in supernumerary centrioles in MDA-MB-157 cells. These findings suggest that diminution of mitotic PCM may be a cause of M phase-specific generation of supernumerary centrioles in selected cancer cells.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| | - Myungse Kim
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| |
Collapse
|
2
|
Ivanova A, Korchivaia E, Semenova M, Lebedev I, Mazunin I, Volodyaev I. The chromosomal challenge of human embryos: Mechanisms and fundamentals. HGG ADVANCES 2025; 6:100437. [PMID: 40211536 PMCID: PMC12050003 DOI: 10.1016/j.xhgg.2025.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Chromosomal abnormalities in human pre-implantation embryos, originating from either meiotic or mitotic errors, present a significant challenge in reproductive biology. Complete aneuploidy is primarily linked to errors during the resumption of meiosis in oocyte maturation, which increase with maternal age, while mosaic aneuploidies result from mitotic errors after fertilization. The biological causes of these abnormalities are increasingly becoming a topic of interest for research groups and clinical specialists. This review explores the intricate processes of meiotic and early mitotic divisions in embryos, shedding light on the mechanisms that lead to changes in chromosome number in daughter cells. Key factors in meiotic division include difficulties in spindle assembly without centrosomes, kinetochore (KT) orientation disturbances, and inefficient cell-cycle checkpoints. The weakening of cohesion molecules that bind chromosomes, exacerbated by maternal aging, further complicates chromosomal segregation. Mitotic errors in early development are influenced by defects in sperm centrosomes, KT misalignment, and the gradual depletion of maternal regulatory factors. Coupled with the inactive or partially active embryonic genome, this depletion increases the likelihood of chromosomal aberrations. While various theoretical mechanisms for these abnormalities exist, current data remain insufficient to determine their exact contributions. Continued research is essential to unravel these complex processes and improve outcomes in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna Ivanova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | - Maria Semenova
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Igor Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia
| | - Ilya Volodyaev
- Faculty of Biology, Moscow State University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia; European Medical Center, Moscow, Russia.
| |
Collapse
|
3
|
Sato S, Rancourt A, Satoh MS. Cell fate simulation reveals cancer cell features in the tumor microenvironment. J Biol Chem 2024; 300:107697. [PMID: 39173950 PMCID: PMC11419826 DOI: 10.1016/j.jbc.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.
Collapse
Affiliation(s)
- Sachiko Sato
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Ann Rancourt
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada; Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Masahiko S Satoh
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada.
| |
Collapse
|
4
|
Chen L, Qi Q, Jiang X, Wu J, Li Y, Liu Z, Cai Y, Ran H, Zhang S, Zhang C, Wu H, Cao S, Mi L, Xiao D, Huang H, Jiang S, Wu J, Li B, Xie J, Qi J, Li F, Liang P, Han Q, Wu M, Zhou W, Wang C, Zhang W, Jiang X, Zhang K, Li H, Zhang X, Li A, Zhou T, Man J. Phosphocreatine Promotes Epigenetic Reprogramming to Facilitate Glioblastoma Growth Through Stabilizing BRD2. Cancer Discov 2024; 14:1547-1565. [PMID: 38563585 DOI: 10.1158/2159-8290.cd-23-1348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma (GBM) exhibits profound metabolic plasticity for survival and therapeutic resistance, while the underlying mechanisms remain unclear. Here, we show that GBM stem cells reprogram the epigenetic landscape by producing substantial amounts of phosphocreatine (PCr). This production is attributed to the elevated transcription of brain-type creatine kinase, mediated by Zinc finger E-box binding homeobox 1. PCr inhibits the poly-ubiquitination of the chromatin regulator bromodomain containing protein 2 (BRD2) by outcompeting the E3 ubiquitin ligase SPOP for BRD2 binding. Pharmacological disruption of PCr biosynthesis by cyclocreatine (cCr) leads to BRD2 degradation and a decrease in its targets' transcription, which inhibits chromosome segregation and cell proliferation. Notably, cyclocreatine treatment significantly impedes tumor growth and sensitizes tumors to a BRD2 inhibitor in mouse GBM models without detectable side effects. These findings highlight that high production of PCr is a druggable metabolic feature of GBM and a promising therapeutic target for GBM treatment. Significance: Glioblastoma (GBM) exhibits an adaptable metabolism crucial for survival and therapy resistance. We demonstrate that GBM stem cells modify their epigenetics by producing phosphocreatine (PCr), which prevents bromodomain containing protein 2 (BRD2) degradation and promotes accurate chromosome segregation. Disrupting PCr biosynthesis impedes tumor growth and improves the efficacy of BRD2 inhibitors in mouse GBM models.
Collapse
Affiliation(s)
- Lishu Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Qinghui Qi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xiaoqing Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jin Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuanyuan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Zhaodan Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yan Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Huiran Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Shuailiang Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Lanjuan Mi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haohao Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jiaqi Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Bohan Li
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Jiong Xie
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, China
| | - Panpan Liang
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenhui Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weina Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Kun Zhang
- Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xuemin Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jianghong Man
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
5
|
Martino J, Siri SO, Calzetta NL, Paviolo NS, Garro C, Pansa MF, Carbajosa S, Brown AC, Bocco JL, Gloger I, Drewes G, Madauss KP, Soria G, Gottifredi V. Inhibitors of Rho kinases (ROCK) induce multiple mitotic defects and synthetic lethality in BRCA2-deficient cells. eLife 2023; 12:e80254. [PMID: 37073955 PMCID: PMC10185344 DOI: 10.7554/elife.80254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.
Collapse
Affiliation(s)
| | | | | | | | - Cintia Garro
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
- OncoPrecisionCórdobaArgentina
| | - Maria F Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
| | - Sofía Carbajosa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
- OncoPrecisionCórdobaArgentina
| | - Aaron C Brown
- Center for Molecular Medicine, Maine Medical Center Research InstituteScarboroughUnited States
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
| | - Israel Gloger
- GlaxoSmithKline-Trust in Science, Global Health R&DStevenageUnited Kingdom
| | - Gerard Drewes
- GlaxoSmithKline-Trust in Science, Global Health R&DStevenageUnited Kingdom
| | - Kevin P Madauss
- GlaxoSmithKline-Trust in Science, Global Health R&DUpper ProvidenceUnited States
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
- OncoPrecisionCórdobaArgentina
| | | |
Collapse
|
6
|
Shindo N, Kumada K, Iemura K, Yasuda J, Fujimori H, Mochizuki M, Tamai K, Tanaka K, Hirota T. Autocleavage of separase suppresses its premature activation by promoting binding to cyclin B1. Cell Rep 2022; 41:111723. [PMID: 36450246 DOI: 10.1016/j.celrep.2022.111723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/25/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022] Open
Abstract
Accurate chromosome segregation requires timely activation of separase, a protease that cleaves cohesin during the metaphase-to-anaphase transition. However, the mechanism that maintains the inactivity of separase prior to this event remains unclear. We provide evidence that separase autocleavage plays an essential role in this process. We show that the inhibition of separase autocleavage results in premature activity before the onset of anaphase, accompanied by the formation of chromosomal bridges and spindle rocking. This deregulation is attributed to the reduced binding of cyclin B1 to separase that occurs during the metaphase-to-anaphase transition. Furthermore, when separase is mutated to render the regulation by cyclin B1 irrelevant, which keeps separase in securin-binding form, the deregulation induced by autocleavage inhibition is rescued. Our results reveal a physiological role of separase autocleavage in regulating separase, which ensures faithful chromosome segregation.
Collapse
Affiliation(s)
- Norihisa Shindo
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| |
Collapse
|
7
|
Lacroix B, Dumont J. Spatial and Temporal Scaling of Microtubules and Mitotic Spindles. Cells 2022; 11:cells11020248. [PMID: 35053364 PMCID: PMC8774166 DOI: 10.3390/cells11020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
During cell division, the mitotic spindle, a macromolecular structure primarily comprised of microtubules, drives chromosome alignment and partitioning between daughter cells. Mitotic spindles can sense cellular dimensions in order to adapt their length and mass to cell size. This scaling capacity is particularly remarkable during early embryo cleavage when cells divide rapidly in the absence of cell growth, thus leading to a reduction of cell volume at each division. Although mitotic spindle size scaling can occur over an order of magnitude in early embryos, in many species the duration of mitosis is relatively short, constant throughout early development and independent of cell size. Therefore, a key challenge for cells during embryo cleavage is not only to assemble a spindle of proper size, but also to do it in an appropriate time window which is compatible with embryo development. How spatial and temporal scaling of the mitotic spindle is achieved and coordinated with the duration of mitosis remains elusive. In this review, we will focus on the mechanisms that support mitotic spindle spatial and temporal scaling over a wide range of cell sizes and cellular contexts. We will present current models and propose alternative mechanisms allowing cells to spatially and temporally coordinate microtubule and mitotic spindle assembly.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
- Correspondence:
| | - Julien Dumont
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France;
| |
Collapse
|
8
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|
9
|
Siri SO, Martino J, Gottifredi V. Structural Chromosome Instability: Types, Origins, Consequences, and Therapeutic Opportunities. Cancers (Basel) 2021; 13:3056. [PMID: 34205328 PMCID: PMC8234978 DOI: 10.3390/cancers13123056] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
Chromosomal instability (CIN) refers to an increased rate of acquisition of numerical and structural changes in chromosomes and is considered an enabling characteristic of tumors. Given its role as a facilitator of genomic changes, CIN is increasingly being considered as a possible therapeutic target, raising the question of which variables may convert CIN into an ally instead of an enemy during cancer treatment. This review discusses the origins of structural chromosome abnormalities and the cellular mechanisms that prevent and resolve them, as well as how different CIN phenotypes relate to each other. We discuss the possible fates of cells containing structural CIN, focusing on how a few cell duplication cycles suffice to induce profound CIN-mediated genome alterations. Because such alterations can promote tumor adaptation to treatment, we discuss currently proposed strategies to either avoid CIN or enhance CIN to a level that is no longer compatible with cell survival.
Collapse
Affiliation(s)
- Sebastián Omar Siri
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405 BWE Buenos Aires, Argentina
| | - Julieta Martino
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
| | - Vanesa Gottifredi
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405 BWE Buenos Aires, Argentina
| |
Collapse
|
10
|
Jo M, Kusano Y, Hirota T. Unraveling pathologies underlying chromosomal instability in cancers. Cancer Sci 2021; 112:2975-2983. [PMID: 34032342 PMCID: PMC8353923 DOI: 10.1111/cas.14989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Aneuploidy is a widespread feature of malignant tumors that arises through persistent chromosome mis‐segregation in mitosis associated with a pathological condition called chromosomal instability, or CIN. Since CIN is known to have a causal relationship with poor prognosis accompanying by multi‐drug resistance, tumor relapse, and metastasis, many research groups have endeavored to understand the mechanisms underlying CIN. In this review, we overview possible etiologies of CIN. The key processes to achieve faithful chromosome segregation include the regulation of sister chromatid cohesion, kinetochore‐microtubule attachment, bipolar spindle formation, spindle‐assembly checkpoint, and the activity of separase. Aberrant chromosome structures during DNA replication might also be a potential cause of CIN. Defective regulation in these processes can lead to chromosome mis‐segregation, manifested by lagging chromosomes, and DNA bridges in anaphase, leading to gross chromosome rearrangements. Investigation into the molecular etiologies of CIN should allow us to explore novel strategies to intervene in CIN to control cancers.
Collapse
Affiliation(s)
- Minji Jo
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Yoshiharu Kusano
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| |
Collapse
|
11
|
Abstract
Microtubule attachments to kinetochores cause their deformation - a murky phenomenon known as intra-kinetochore stretching. A new study proposes that intra-kinetochore stretching is independent of microtubule-pulling forces and mediates efficient spindle assembly checkpoint silencing to prevent chromosomal instability.
Collapse
|
12
|
Uchida KSK, Jo M, Nagasaka K, Takahashi M, Shindo N, Shibata K, Tanaka K, Masumoto H, Fukagawa T, Hirota T. Kinetochore stretching-mediated rapid silencing of the spindle-assembly checkpoint required for failsafe chromosome segregation. Curr Biol 2021; 31:1581-1591.e3. [PMID: 33651990 DOI: 10.1016/j.cub.2021.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022]
Abstract
The spindle-assembly checkpoint facilitates mitotic fidelity by delaying anaphase onset in response to microtubule vacancy at kinetochores. Following microtubule attachment, kinetochores receive microtubule-derived force, which causes kinetochores to undergo repetitive cycles of deformation; this phenomenon is referred to as kinetochore stretching. The nature of the forces and the relevance relating this deformation are not well understood. Here, we show that kinetochore stretching occurs within a framework of single end-on attached kinetochores, irrespective of microtubule poleward pulling force. An experimental method to conditionally interfere with the stretching allowed us to determine that kinetochore stretching comprises an essential process of checkpoint silencing by promoting PP1 phosphatase recruitment after the establishment of end-on attachments and removal of the majority of checkpoint-activating kinase Mps1 from kinetochores. Remarkably, we found that a lower frequency of kinetochore stretching largely correlates with a prolonged metaphase in cancer cell lines with chromosomal instability. Perturbation of kinetochore stretching and checkpoint silencing in chromosomally stable cells produced anaphase bridges, which can be alleviated by reducing chromosome-loaded cohesin. These observations indicate that kinetochore stretching-mediated checkpoint silencing provides an unanticipated etiology underlying chromosomal instability and underscores the importance of a rapid metaphase-to-anaphase transition in sustaining mitotic fidelity.
Collapse
Affiliation(s)
- Kazuhiko S K Uchida
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Functional Genomics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Minji Jo
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kota Nagasaka
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motoko Takahashi
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Norihisa Shindo
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Katsushi Shibata
- Division of Functional Genomics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
13
|
SOGA1 and SOGA2/MTCL1 are CLASP-interacting proteins required for faithful chromosome segregation in human cells. Chromosome Res 2021; 29:159-173. [PMID: 33587225 DOI: 10.1007/s10577-021-09651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
CLASPs are key modulators of microtubule dynamics throughout the cell cycle. During mitosis, CLASPs independently associate with growing microtubule plus-ends and kinetochores and play essential roles in chromosome segregation. In a proteomic survey for human CLASP1-interacting proteins during mitosis, we have previously identified SOGA1 and SOGA2/MTCL1, whose mitotic roles remained uncharacterized. Here we performed an initial functional characterization of human SOGA1 and SOGA2/MTCL1 during mitosis. Using specific polyclonal antibodies raised against SOGA proteins, we confirmed their expression and reciprocal interaction with CLASP1 and CLASP2 during mitosis. In addition, we found that both SOGA1 and SOGA2/MTCL1 are phospho-regulated during mitosis by CDK1. Immunofluorescence analysis revealed that SOGA2/MTCL1 co-localizes with mitotic spindle microtubules and spindle poles throughout mitosis and both SOGA proteins are enriched at the midbody during mitotic exit/cytokinesis. GFP-tagging of SOGA2/MTCL1 further revealed a microtubule-independent localization at kinetochores. Live-cell imaging after siRNA-mediated knockdown of SOGA1 and SOGA2/MTCL1 showed that they are independently required for distinct aspects of chromosome segregation. Thus, SOGA1 and SOGA2/MTCL1 are bona fide CLASP-interacting proteins during mitosis required for faithful chromosome segregation in human cells.
Collapse
|