1
|
Dai J, Lin Q, Ye L, Chen X, Li Z, Lu C, Chen M, Ba H, Sun J, Cai J. Temporal Trends in Serum Homer1 Levels and Their Prognostic Implications in Aneurysmal Subarachnoid Hemorrhage: A Prospective Cohort Study. Int J Gen Med 2025; 18:567-584. [PMID: 39911298 PMCID: PMC11796440 DOI: 10.2147/ijgm.s508325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Background Homer scaffold protein 1 (homer1) may harbor neuroprotective effects against acute brain injury. This study aimed to investigate the prognostic role of serum homer1 in human aneurysmal subarachnoid hemorrhage (aSAH). Methods A total of 209 patients with aSAH and 100 controls were encompassed in this prospective cohort study. Serum homer1 levels were quantified at admission in all patients, on post-aSAH days 1, 3, 5, 7, 10, and 14 in 83 patients and at recruitments in controls. The modified Fisher scale (mFisher) and World Federation of Neurological Surgeons Scale (WFNS) were used for severity assessment. Glasgow Outcome Scale (GOS) scores of 1-3 at post-aSAH 90 days indicated poor prognosis. Results Serum homer1 levels of patients were abruptly elevated at admission, peaked at day 3, and afterwards decreased from day 5 until day 14 after aSAH, and were markedly higher during 14 days than those of controls. Serum homer1 levels were linearly and independently correlated with WFNS scores, mFisher scores, continuous GOS scores, ordinal GOS scores, poor prognosis risk and delayed cerebral ischemia (DCI) likelihood. DCI partially mediated association of serum homer1 levels with poor prognosis. The prognosis model was composed of the four independent predictors, that is serum homer1 levels, DCI, WFNS scores and mFisher scores. As demonstrated by a series of statistical methods, the model had a good performance. Conclusion Serum homer1 levels are significantly elevated in acute phase after aSAH, and are strongly related to heightened bleeding intensity, poor 90-day prognosis and DCI. Nevertheless, associational mechanism of serum homer1 and poor prognosis mediated by DCI needs to be further deciphered.
Collapse
Affiliation(s)
- Junxia Dai
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Qun Lin
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Liangzhi Ye
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Zhiwei Li
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Chuan Lu
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Maohua Chen
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Huajun Ba
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Jun Sun
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Jianyong Cai
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
2
|
Kurita H, Masuda H, Okuda A, Go S, Ohuchi K, Yoshioka H, Fujimura M, Hozumi I, Inden M. Epigenetic alternations in the SYP and DLG4 genes due to low-level methylmercury exposure during neuronal differentiation in vitro. J Appl Toxicol 2024; 44:1986-1996. [PMID: 39187442 DOI: 10.1002/jat.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Methylmercury (MeHg) is an environmental toxin known to damage the central nervous system. When pregnant women ingest seafood, which may contain accumulated MeHg, fetal development may be affected. The embryonic period, a time of major epigenetic change, is susceptible to epigenetic disruptions due to chemical exposure. Therefore, understanding the molecular mechanism underlying MeHg's effects on neuronal development requires consideration of epigenetic factors. In this study, we investigated epigenetic modifications in the synaptophysin (SYP) and discs large MAGUK scaffold protein 4 (DLG4) genes. LUHMES cells were exposed to 1 nM MeHg for 6 days during days 2-8 of neural differentiation. MeHg exposure significantly reduced the number of spikes observed on day 16 of differentiation. Both mRNA and protein expression levels of SYP and DLG4 were significantly decreased by MeHg exposure. Additionally, MeHg treatment reduced acetyl histone H3 levels associated with transcriptional activity in the SYP gene while increasing histone H3 lysine 27 tri-methylation (H3K27me3) levels related to transcriptional repression. Conversely, regarding the DLG4 gene, MeHg exposure increased H3K27me3 levels. Differential changes in DNA methylation (high and low methylation states) were observed in the SYP and DLG4 genes due to MeHg exposure depending on CpG site position. In conclusion, this study suggests that epigenetic changes, particularly histone modifications, contribute to decreased MeHg exposure-induced SYP and DLG4 expression during neuronal differentiation.
Collapse
Affiliation(s)
- Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Haruka Masuda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ayu Okuda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Suzuna Go
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Kani, Japan
- Department of Hygiene, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masatake Fujimura
- Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
3
|
Li F, Bahr JN, Bierth FAL, Reshetniak S, Tetzlaff C, Fornasiero EF, Wichmann C, Rizzoli SO. Morphological correlates of synaptic protein turnover in the mouse brain. Life Sci Alliance 2024; 7:e202402793. [PMID: 39134363 PMCID: PMC11325198 DOI: 10.26508/lsa.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Synaptic proteins need to be replaced regularly, to maintain function and to prevent damage. It is unclear whether this process, known as protein turnover, relates to synaptic morphology. To test this, we relied on nanoscale secondary ion mass spectrometry, to detect newly synthesized synaptic components in the brains of young adult (6 mo old) and aged mice (24 mo old), and on transmission electron microscopy, to reveal synapse morphology. Several parameters correlated to turnover, including pre- and postsynaptic size, the number of synaptic vesicles and the presence of a postsynaptic nascent zone. In aged mice, the turnover of all brain compartments was reduced by ∼20%. The turnover rates of the pre- and postsynapses correlated well in aged mice, suggesting that they are subject to common regulatory mechanisms. This correlation was poorer in young adult mice, in line with their higher synaptic dynamics. We conclude that synapse turnover is reflected by synaptic morphology.
Collapse
Affiliation(s)
- Fengxia Li
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Julius N Bahr
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany
| | - Felicitas A-L Bierth
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Molecular Medicine Bachelor Programme, University Medical Center Göttingen, Göttingen, Germany
| | - Sofiia Reshetniak
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Pascual-Caro C, de Juan-Sanz J. Monitoring of activity-driven trafficking of endogenous synaptic proteins through proximity labeling. PLoS Biol 2024; 22:e3002860. [PMID: 39466808 PMCID: PMC11542813 DOI: 10.1371/journal.pbio.3002860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
To enable transmission of information in the brain, synaptic vesicles fuse to presynaptic membranes, liberating their content and exposing transiently a myriad of vesicular transmembrane proteins. However, versatile methods for quantifying the synaptic translocation of endogenous proteins during neuronal activity remain unavailable, as the fast dynamics of synaptic vesicle cycling difficult specific isolation of trafficking proteins during such a transient surface exposure. Here, we developed a novel approach using synaptic cleft proximity labeling to capture and quantify activity-driven trafficking of endogenous synaptic proteins at the synapse. We show that accelerating cleft biotinylation times to match the fast dynamics of vesicle exocytosis allows capturing endogenous proteins transiently exposed at the synaptic surface during neural activity, enabling for the first time the study of the translocation of nearly every endogenous synaptic protein. As proof-of-concept, we further applied this technology to obtain direct evidence of the surface translocation of noncanonical trafficking proteins, such as ATG9A and NPTX1, which had been proposed to traffic during activity but for which direct proof had not yet been shown. The technological advancement presented here will facilitate future studies dissecting the molecular identity of proteins exocytosed at the synapse during activity, helping to define the molecular machinery that sustains neurotransmission in the mammalian brain.
Collapse
Affiliation(s)
- Carlos Pascual-Caro
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jaime de Juan-Sanz
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
6
|
Harasimov K, Gorry RL, Welp LM, Penir SM, Horokhovskyi Y, Cheng S, Takaoka K, Stützer A, Frombach AS, Taylor Tavares AL, Raabe M, Haag S, Saha D, Grewe K, Schipper V, Rizzoli SO, Urlaub H, Liepe J, Schuh M. The maintenance of oocytes in the mammalian ovary involves extreme protein longevity. Nat Cell Biol 2024; 26:1124-1138. [PMID: 38902423 PMCID: PMC11252011 DOI: 10.1038/s41556-024-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.
Collapse
Affiliation(s)
- Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rebecca L Gorry
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katsuyoshi Takaoka
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ann-Sophie Frombach
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ana Lisa Taylor Tavares
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sara Haag
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translation Alliance Lower Saxony, Hannover, Braunschweig, Göttingen, Germany
| | - Debojit Saha
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Grewe
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Vera Schipper
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Silvio O Rizzoli
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Berlin E, Lork AA, Bornecrantz M, Ernst C, Phan NTN. Lipid organization and turnover in the plasma membrane of human differentiating neural progenitor cells revealed by time-of-flight secondary ion mass spectrometry imaging. Talanta 2024; 272:125762. [PMID: 38394748 DOI: 10.1016/j.talanta.2024.125762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Membrane lipids have been known to influence multiple signalling and cellular processes. Dysregulation of lipids at the neuronal membrane is connected to a significant alteration of the brain function and morphology, leading to brain diseases and neurodegeneration. Understanding the lipid composition and turnover of neuronal membrane will provide a significant insight into the molecular events underlying the regulatory effects of these biomolecules in a neuronal system. In this study, we aimed to characterize the composition and turnover of the plasma membrane lipids in human neural progenitor cells (NPCs) at an early differentiation stage into midbrain neurons using ToF-SIMS imaging. Lipid composition of the native plasma membrane was explored, followed by an examination of the lipid turnover using different isotopically labelled lipid precursors, including 13C-choline, 13C-lauric acid, 15N-linoleic, and 13C-stearic. Our results showed that differentiating NPCs contain a high abundance of ceramides, glycerophosphoserines, neutral glycosphingolipids, diradylglycerols, and glycerophosphocholines at the plasma membrane. In addition, different precursors were found to incorporate into different membrane lipids which are specific for the short- or long-carbon chains, and the unsaturation or saturation stage of the precursors. The lipid structure of neuronal membrane reflects the differentiation status of NPCs, and it can be altered significantly using a particular lipid precursor. Our study illustrates a potential of ToF-SIMS imaging to study native plasma membrane lipids and elucidate complex cellular processes by providing molecular -rich information at a single cell level.
Collapse
Affiliation(s)
- Emmanuel Berlin
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Alicia A Lork
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Martin Bornecrantz
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Carl Ernst
- McGill University, Montreal Neurological Institute, Montreal, H3A 2B4, Canada
| | - Nhu T N Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
8
|
Binotti B, Ninov M, Cepeda AP, Ganzella M, Matti U, Riedel D, Urlaub H, Sambandan S, Jahn R. ATG9 resides on a unique population of small vesicles in presynaptic nerve terminals. Autophagy 2024; 20:883-901. [PMID: 37881948 PMCID: PMC11062364 DOI: 10.1080/15548627.2023.2274204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
In neurons, autophagosome biogenesis occurs mainly in distal axons, followed by maturation during retrograde transport. Autophagosomal growth depends on the supply of membrane lipids which requires small vesicles containing ATG9, a lipid scramblase essential for macroautophagy/autophagy. Here, we show that ATG9-containing vesicles are enriched in synapses and resemble synaptic vesicles in size and density. The proteome of ATG9-containing vesicles immuno-isolated from nerve terminals showed conspicuously low levels of trafficking proteins except of the AP2-complex and some enzymes involved in endosomal phosphatidylinositol metabolism. Super resolution microscopy of nerve terminals and isolated vesicles revealed that ATG9-containing vesicles represent a distinct vesicle population with limited overlap not only with synaptic vesicles but also other membranes of the secretory pathway, uncovering a surprising heterogeneity in their membrane composition. Our results are compatible with the view that ATG9-containing vesicles function as lipid shuttles that scavenge membrane lipids from various intracellular membranes to support autophagosome biogenesis.Abbreviations: AP: adaptor related protein complex: ATG2: autophagy related 2; ATG9: autophagy related 9; DNA PAINT: DNA-based point accumulation for imaging in nanoscale topography; DyMIN STED: dynamic minimum stimulated emission depletion; EL: endosome and lysosome; ER: endoplasmic reticulum; GA: Golgi apparatus; iBAQ: intensity based absolute quantification; LAMP: lysosomal-associated membrane protein; M6PR: mannose-6-phosphate receptor, cation dependent; Minflux: minimal photon fluxes; Mito: mitochondria; MS: mass spectrometry; PAS: phagophore assembly site; PM: plasma membrane; Px: peroxisome; RAB26: RAB26, member RAS oncogene family; RAB3A: RAB3A, member RAS oncogene family; RAB5A: RAB5A, member RAS oncogene family; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment receptor; SVs: synaptic vesicles; SYP: synaptophysin; TGN: trans-Golgi network; TRAPP: transport protein particle; VTI1: vesicle transport through interaction with t-SNAREs.
Collapse
Affiliation(s)
- Beyenech Binotti
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Momchil Ninov
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andreia P. Cepeda
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ulf Matti
- Abberior Instruments GmbH, Göttingen, Germany
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging : from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Sivakumar Sambandan
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Synaptic Metal Ion Dynamics and Signalin, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
9
|
Lork AA, Rabasco S, Ernst C, du Toit A, Rizzoli SO, Phan NTN. Subcellular protein turnover in human neural progenitor cells revealed by correlative electron microscopy and nanoscale secondary ion mass spectrometry imaging. Chem Sci 2024; 15:3311-3322. [PMID: 38425528 PMCID: PMC10901485 DOI: 10.1039/d3sc05629e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024] Open
Abstract
Protein turnover is a critical process for accurate cellular function, in which damaged proteins in the cells are gradually replaced with newly synthesized ones. Many previous studies on cellular protein turnover have used stable isotopic labelling by amino acids in cell culture (SILAC), followed by proteomic bulk analysis. However, this approach does not take into account the heterogeneity observed at the single-cell and subcellular levels. To address this, we investigated the protein turnover of neural progenitor cells at the subcellular resolution, using correlative TEM and NanoSIMS imaging, relying on a pulse-chase analysis of isotopically-labelled protein precusors. Cellular protein turnover was found significantly heterogenous across individual organelles, which indicates a possible relation between protein turnover and subcellular activity. In addition, different isotopically-labelled amino acids provided different turnover patterns, in spite of all being protein precursors, suggesting that they undergo distinct protein synthesis and metabolic pathways at the subcellular level.
Collapse
Affiliation(s)
- Alicia A Lork
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| | - Carl Ernst
- Human Genetics, McGill University H4H1R3 Montreal Canada
| | - André du Toit
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration Göttingen Germany
| | - Nhu T N Phan
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| |
Collapse
|
10
|
Bonnin EA, Golmohammadi A, Rehm R, Tetzlaff C, Rizzoli SO. High-resolution analysis of bound Ca 2+ in neurons and synapses. Life Sci Alliance 2024; 7:e202302030. [PMID: 37833073 PMCID: PMC10575792 DOI: 10.26508/lsa.202302030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last few decades, but protein-bound Ca2+ has been difficult to analyze. Here, we introduce correlative fluorescence and nanoscale secondary ion mass spectrometry imaging as a tool to describe bound Ca2+ As expected, bound Ca2+ is ubiquitous. It does not correlate to free Ca2+ dynamics at the whole-neuron level, but does correlate significantly to the intensity of markers for GABAergic pre-synapse and glutamatergic post-synapses. In contrast, a negative correlation to pre-synaptic activity was observed, with lower levels of bound Ca2+ observed in the more active synapses. We conclude that bound Ca2+ may regulate neuronal activity and should receive more attention in the future.
Collapse
Affiliation(s)
- Elisa A Bonnin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Arash Golmohammadi
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronja Rehm
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Parkes M, Landers NL, Gramlich MW. Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons. Front Cell Dev Biol 2023; 11:1286915. [PMID: 38020880 PMCID: PMC10657820 DOI: 10.3389/fcell.2023.1286915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma.
Collapse
|
12
|
Spataro S, Maco B, Escrig S, Jensen L, Polerecky L, Knott G, Meibom A, Schneider BL. Stable isotope labeling and ultra-high-resolution NanoSIMS imaging reveal alpha-synuclein-induced changes in neuronal metabolism in vivo. Acta Neuropathol Commun 2023; 11:157. [PMID: 37770947 PMCID: PMC10540389 DOI: 10.1186/s40478-023-01608-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/30/2023] Open
Abstract
In Parkinson's disease, pathogenic factors such as the intraneuronal accumulation of the protein α-synuclein affect key metabolic processes. New approaches are required to understand how metabolic dysregulations cause degeneration of vulnerable subtypes of neurons in the brain. Here, we apply correlative electron microscopy and NanoSIMS isotopic imaging to map and quantify 13C enrichments in dopaminergic neurons at the subcellular level after pulse-chase administration of 13C-labeled glucose. To model a condition leading to neurodegeneration in Parkinson's disease, human α-synuclein was unilaterally overexpressed in the substantia nigra of one brain hemisphere in rats. When comparing neurons overexpressing α-synuclein to those located in the control hemisphere, the carbon anabolism and turnover rates revealed metabolic anomalies in specific neuronal compartments and organelles. Overexpression of α-synuclein enhanced the overall carbon turnover in nigral neurons, despite a lower relative incorporation of carbon inside the nucleus. Furthermore, mitochondria and Golgi apparatus showed metabolic defects consistent with the effects of α-synuclein on inter-organellar communication. By revealing changes in the kinetics of carbon anabolism and turnover at the subcellular level, this approach can be used to explore how neurodegeneration unfolds in specific subpopulations of neurons.
Collapse
Affiliation(s)
- Sofia Spataro
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bohumil Maco
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Louise Jensen
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lubos Polerecky
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Graham Knott
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Bioelectron Microscopy Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.
- EPFL ENAC IIE LGB, Station 2, 1015, Lausanne, Switzerland.
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- EPFL SV PTECH PTBTG, Ch. Des Mines 9, 1202, Geneva, Switzerland.
| |
Collapse
|
13
|
Georgiev SV, Rizzoli SO. The long-loop recycling (LLR) of synaptic components as a question of economics. Mol Cell Neurosci 2023; 126:103862. [PMID: 37236414 DOI: 10.1016/j.mcn.2023.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The pre- and post-synaptic compartments contain a variety of molecules that are known to recycle between the plasma membrane and intracellular organelles. The recycling steps have been amply described in functional terms, with, for example, synaptic vesicle recycling being essential for neurotransmitter release, and postsynaptic receptor recycling being a fundamental feature of synaptic plasticity. However, synaptic protein recycling may also serve a more prosaic role, simply ensuring the repeated use of specific components, thereby minimizing the energy expenditure on the synthesis of synaptic proteins. This type of process has been recently described for components of the extracellular matrix, which undergo long-loop recycling (LLR), to and from the cell body. Here we suggest that the energy-saving recycling of synaptic components may be more widespread than is generally acknowledged, potentially playing a role in both synaptic vesicle protein usage and postsynaptic receptor metabolism.
Collapse
Affiliation(s)
- Svilen Veselinov Georgiev
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; International Max Planck Research School for Neuroscience, Göttingen, Germany.
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, Göttingen, Germany.
| |
Collapse
|
14
|
Sun C, Schuman E. A multi-omics view of neuronal subcellular protein synthesis. Curr Opin Neurobiol 2023; 80:102705. [PMID: 36913750 DOI: 10.1016/j.conb.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
While it has long been known that protein synthesis is necessary for long-term memory in the brain, the logistics of neuronal protein synthesis is complicated by the extensive subcellular compartmentalization of the neuron. Local protein synthesis solves many of the logistic problems posed by the extreme complexity of dendritic and axonal arbors and the huge number of synapses. Here we review recent multi-omic and quantitative studies that elaborate a systems view of decentralized neuronal protein synthesis. We highlight recent insights from the transcriptomic, translatomic, and proteomic levels, discuss the nuanced logic of local protein synthesis for different protein features, and list the missing information needed to build a comprehensive logistic model for neuronal protein supply.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, Frankfurt, Germany; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark; Aarhus University, Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark. https://twitter.com/LukeChaoSun
| | - Erin Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
15
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
Characterization of Stress Granule Protein Turnover in Neuronal Progenitor Cells Using Correlative STED and NanoSIMS Imaging. Int J Mol Sci 2023; 24:ijms24032546. [PMID: 36768868 PMCID: PMC9917160 DOI: 10.3390/ijms24032546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Stress granules (SGs) are stress-induced biomolecular condensates which originate primarily from inactivated RNA translation machinery and translation initiation factors. SG formation is an important defensive mechanism for cell survival, while its dysfunction has been linked to neurodegenerative diseases. However, the molecular mechanisms of SG assembly and disassembly, as well as their impacts on cellular recovery, are not fully understood. More thorough investigations into the molecular dynamics of SG pathways are required to understand the pathophysiological roles of SGs in cellular systems. Here, we characterize the SG and cytoplasmic protein turnover in neuronal progenitor cells (NPCs) under stressed and non-stressed conditions using correlative STED and NanoSIMS imaging. We incubate NPCs with isotopically labelled (15N) leucine and stress them with the ER stressor thapsigargin (TG). A correlation of STED and NanoSIMS allows the localization of individual SGs (using STED), and their protein turnover can then be extracted based on the 15N/14N ratio (using NanoSIMS). We found that TG-induced SGs, which are highly dynamic domains, recruit their constituents predominantly from the cytoplasm. Moreover, ER stress impairs the total cellular protein turnover regimen, and this impairment is not restored after the commonly proceeded stress recovery period.
Collapse
|
17
|
Sun C, Schuman EM. Logistics of neuronal protein turnover: Numbers and mechanisms. Mol Cell Neurosci 2022; 123:103793. [PMID: 36396040 DOI: 10.1016/j.mcn.2022.103793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Research in the past twenty years or so has revealed that neurons synthesize and degrade proteins at their synapses to enable synaptic proteome remodelling on demand and in real-time. Here we provide a quantitative overview of the decentralized neuronal protein-turnover logistics. We first analyse the huge neuronal protein turnover demand that arises from subcellular compartments outside the cell body, followed by an overview of key quantities and modulation strategies in neuronal protein turnover logistics. In the end, we briefly review recent progress in neuronal local protein synthesis and summarize diverse protein-degradation mechanisms that are found near synapses.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Kabatas Glowacki S, Agüi-Gonzalez P, Sograte-Idrissi S, Jähne S, Opazo F, Phan NTN, Rizzoli SO. An iodine-containing probe as a tool for molecular detection in secondary ion mass spectrometry. Chem Commun (Camb) 2022; 58:7558-7561. [PMID: 35708485 DOI: 10.1039/d2cc02290g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed here an iodine-containing probe that can be used to identify the molecules of interest in secondary ion mass spectrometry (SIMS) by simple immunolabelling procedures. The immunolabelled iodine probe was readily combined with previously-developed SIMS probes carrying fluorine, to generate dual-channel SIMS data. This probe should provide a useful complement to the currently available SIMS probes, thus expanding the scope of this technology.
Collapse
Affiliation(s)
- Selda Kabatas Glowacki
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Shama Sograte-Idrissi
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Sebastian Jähne
- Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany.
| | - Nhu T N Phan
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Silvio O Rizzoli
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| |
Collapse
|
19
|
Lork AA, Vo KLL, Phan NTN. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry. Front Synaptic Neurosci 2022; 14:854957. [PMID: 35651734 PMCID: PMC9149580 DOI: 10.3389/fnsyn.2022.854957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A nerve cell is a unit of neuronal communication in the nervous system and is a heterogeneous molecular structure, which is highly mediated to accommodate cellular functions. Understanding the complex regulatory mechanisms of neural communication at the single cell level requires analytical techniques with high sensitivity, specificity, and spatial resolution. Challenging technologies for chemical imaging and analysis of nerve cells will be described in this review. Secondary ion mass spectrometry (SIMS) allows for non-targeted and targeted molecular imaging of nerve cells and synapses at subcellular resolution. Cellular electrochemistry is well-suited for quantifying the amount of reactive chemicals released from living nerve cells. These techniques will also be discussed regarding multimodal imaging approaches that have recently been shown to be advantageous for the understanding of structural and functional relationships in the nervous system. This review aims to provide an insight into the strengths, limitations, and potentials of these technologies for synaptic and neuronal analyses.
Collapse
Affiliation(s)
| | | | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
A Reliable Approach for Revealing Molecular Targets in Secondary Ion Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23094615. [PMID: 35563005 PMCID: PMC9103194 DOI: 10.3390/ijms23094615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Nano secondary ion mass spectrometry (nanoSIMS) imaging is a rapidly growing field in biological sciences, which enables investigators to describe the chemical composition of cells and tissues with high resolution. One of the major challenges of nanoSIMS is to identify specific molecules or organelles, as these are not immediately recognizable in nanoSIMS and need to be revealed by SIMS-compatible probes. Few laboratories have generated such probes, and none are commercially available. To address this, we performed a systematic study of probes initially developed for electron microscopy. Relying on nanoscale SIMS, we found that antibodies coupled to 6 nm gold particles are surprisingly efficient in terms of labeling specificity while offering a reliable detection threshold. These tools enabled accurate visualization and sample analysis and were easily employed in correlating SIMS with other imaging approaches, such as fluorescence microscopy. We conclude that antibodies conjugated to moderately sized gold particles are promising tools for SIMS imaging.
Collapse
|
21
|
Dankovich TM, Kaushik R, Olsthoorn LHM, Petersen GC, Giro PE, Kluever V, Agüi-Gonzalez P, Grewe K, Bao G, Beuermann S, Hadi HA, Doeren J, Klöppner S, Cooper BH, Dityatev A, Rizzoli SO. Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R. Nat Commun 2021; 12:7129. [PMID: 34880248 PMCID: PMC8654841 DOI: 10.1038/s41467-021-27462-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
The brain extracellular matrix (ECM) consists of extremely long-lived proteins that assemble around neurons and synapses, to stabilize them. The ECM is thought to change only rarely, in relation to neuronal plasticity, through ECM proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. Using multiple ECM labeling and imaging assays, from super-resolution optical imaging to nanoscale secondary ion mass spectrometry, both in culture and in brain slices, we find that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ~3 days, in an activity-dependent fashion. Interfering with the recycling process perturbs severely neuronal function, strongly reducing synaptic vesicle exo- and endocytosis. We conclude that the neuronal ECM can be remodeled frequently through mechanisms that involve endocytosis and recycling of ECM proteins.
Collapse
Affiliation(s)
- Tal M. Dankovich
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Rahul Kaushik
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Linda H. M. Olsthoorn
- grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany ,grid.418140.80000 0001 2104 4211Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gabriel Cassinelli Petersen
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Philipp Emanuel Giro
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Verena Kluever
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Katharina Grewe
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Guobin Bao
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Göttingen, Germany
| | - Sabine Beuermann
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Hannah Abdul Hadi
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Jose Doeren
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Simon Klöppner
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Benjamin H. Cooper
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Alexander Dityatev
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Silvio O. Rizzoli
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany
| |
Collapse
|