1
|
Chen S, Wang Y, Dang J, Song N, Chen X, Wang J, Huang GN, Brown CE, Yu J, Weissman IL, Rosen ST, Feng M. CAR macrophages with built-In CD47 blocker combat tumor antigen heterogeneity and activate T cells via cross-presentation. Nat Commun 2025; 16:4069. [PMID: 40307254 PMCID: PMC12043996 DOI: 10.1038/s41467-025-59326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Macrophage-based cancer cellular therapy has gained substantial interest. However, the capability of engineered macrophages to target cancer heterogeneity and modulate adaptive immunity remains unclear. Here, exploiting the myeloid antibody-dependent cellular phagocytosis biology and phagocytosis checkpoint blockade, we report the enhanced synthetic phagocytosis receptor (eSPR) that integrate FcRγ-driven phagocytic chimeric antigen receptors (CAR) with built-in secreted CD47 blockers. The eSPR engineering empowers macrophages to combat tumor antigen heterogeneity. Transduced by adenoviral vectors, eSPR macrophages are intrinsically pro-inflammatory imprinted and resist tumoral polarization. Transcriptomically and phenotypically, eSPR macrophages elicit a more favorable tumor immune landscape. Mechanistically, eSPR macrophages in situ stimulate CD8 T cells via phagocytosis-dependent antigen cross-presentation. We also validate the functionality of the eSPR system in human primary macrophages.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingyu Wang
- City of Hope National Medical Center, Duarte, CA, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nuozi Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Christine E Brown
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Steven T Rosen
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Bousso P, Grandjean CL. Immunomodulation under the lens of real-time in vivo imaging. Eur J Immunol 2023; 53:e2249921. [PMID: 37051691 DOI: 10.1002/eji.202249921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
Modulation of cells and molecules of the immune system not only represents a major opportunity to treat a variety of diseases including infections, cancer, autoimmune, and inflammatory disorders but could also help understand the intricacies of immune responses. A detailed mechanistic understanding of how a specific immune intervention may provide clinical benefit is essential for the rational design of efficient immunomodulators. Visualizing the impact of immunomodulation in real-time and in vivo has emerged as an important approach to achieve this goal. In this review, we aim to illustrate how multiphoton intravital imaging has helped clarify the mode of action of immunomodulatory strategies such as antibodies or cell therapies. We also discuss how optogenetics combined with imaging will further help manipulate and precisely understand immunomodulatory pathways. Combined with other single-cell technologies, in vivo dynamic imaging has therefore a major potential for guiding preclinical development of immunomodulatory drugs.
Collapse
Affiliation(s)
- Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| | - Capucine L Grandjean
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| |
Collapse
|
4
|
Li C, Wu C, Xu G, Liu Y, Chen J, Zhang J, Hong H, Ji C, Cui Z. CCR7-mediated T follicular helper cell differentiation is associated with the pathogenesis and immune microenvironment of spinal cord injury-induced immune deficiency syndrome. Front Neurosci 2022; 16:1019406. [PMCID: PMC9615471 DOI: 10.3389/fnins.2022.1019406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury-induced immune deficiency syndrome (SCI-IDS) is a disorder characterized by systemic immunosuppression secondary to SCI that dramatically increases the likelihood of infection and is difficult to treat. T follicular helper (Tfh) cells regulated by chemokine receptor CCR7 are associated with SCI-IDS after acute SCI. The present study explored the roles of CCR7 in SCI-IDS occurrence and immune microenvironment composition. Gene expression profile data of peripheral blood leukocytes from SCI and non-SCI subjects were collected from the Gene Expression Omnibus database. According to differential gene expression analysis, a protein-protein interaction (PPI) network, and risk model construction, the CCR7 expression level was prominently related to acute SCI and CCR7 expression was significantly downregulated after acute SCI. Next, we constructed a clinical prediction model and used it to identify patients with acute SCI. Using Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA), we discovered that immune-related biological processes, such as T cell receptor signaling pathway, were suppressed, whereas chemokine-related signaling pathways were activated after acute SCI. Immune infiltration analysis performed using single sample GSEA and CIBERSORT suggested that Tfh cell function was significantly correlated with the CCR7 expression levels and was considerably reduced after acute SCI. Acute SCI was divided into two subtypes, and we integrated multiple classifiers to analyze and elucidate the immunomodulatory relationships in both subtypes jointly. The results suggested that CCR7 suppresses the immunodeficiency phenotype by activating the chemokine signaling pathway in Tfh cells. In conclusion, CCR7 exhibits potential as a diagnostic marker for acute SCI.
Collapse
Affiliation(s)
- Chaochen Li
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
- Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, China
| | - Chunshuai Wu
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
- Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, China
| | - Guanhua Xu
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yang Liu
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jiajia Chen
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jinlong Zhang
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Hongxiang Hong
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Chunyan Ji
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
- Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, China
| | - Zhiming Cui
- The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
- Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, China
- *Correspondence: Zhiming Cui,
| |
Collapse
|
5
|
3D Model of the Early Melanoma Microenvironment Captures Macrophage Transition into a Tumor-Promoting Phenotype. Cancers (Basel) 2021; 13:cancers13184579. [PMID: 34572807 PMCID: PMC8471848 DOI: 10.3390/cancers13184579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary We developed a “tumor-in-a-dish” experimental system to study the early events favoring tumor growth and suppression of the immune response in metastatic melanoma. We combined murine melanoma tumor cells with fibroblasts and macrophages in a 3D collagen matrix and characterized how interactions between these three cell types, which are present in the early stages of tumorigenesis, drive immune suppression and the tumor-promoting transition in macrophages that is observed in vivo. Over the course of 7 days in the co-cultures, we quantified the dynamics of cues transmitted by direct cell–cell interactions, through the extracellular matrix and through secretion of immune mediators. We found that macrophages acquired features and a functional profile consistent with those present in in vivo murine melanoma tumors. This system will enable future studies of macrophage–stromal cross-talk in the melanoma microenvironment and provide a platform to test potential therapeutic approaches aimed at stimulating immune activity in macrophages. Abstract Tumor immune response is shaped by the tumor microenvironment (TME), which often evolves to be immunosuppressive, promoting disease progression and metastasis. An important example is melanoma tumors, which display high numbers of tumor-associated macrophages (TAMs) that are immunosuppressive but also have the potential to restore anti-tumor activity. However, to therapeutically target TAMs, there is a need to understand the early events that shape their tumor-promoting profile. To address this, we built and optimized 3D in vitro co-culture systems, composed of a collagen-I matrix scaffolding murine bone-marrow-derived macrophages (BMDMs), YUMM1.7 melanoma cells, and fibroblasts to recreate the early melanoma TME and study how interactions with fibroblasts and tumor cells modulate macrophage immune activity. We monitored BMDM behavior and interactions through time-lapse imaging and characterized their activation and secretion. We found that stromal cells induced a rapid functional activation, with increased motility and response from BMDMs. Over the course of seven days, BMDMs acquired a phenotype and secretion profile that resembled melanoma TAMs in established tumors. Overall, the direct cell–cell interactions with the stromal components in a 3D environment shape BMDM transition to a TAM-like immunosuppressive state. Our systems will enable future studies of changes in macrophage–stromal cross-talk in the melanoma TME.
Collapse
|