1
|
Juzekaeva E, Nasretdinov A, Mukhtarov M, Shipkov D, Valeeva G, Khazipov R. Comparison of extracellular Giant depolarizing potentials in vitro and early sharp waves in vivo in the CA1 hippocampus of neonatal rats. Biochem Biophys Res Commun 2024; 735:150823. [PMID: 39406021 DOI: 10.1016/j.bbrc.2024.150823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Giant Depolarizing Potentials (GDPs) and Early Sharp Waves (eSPWs) are the major patterns of neuronal network activity in the developing hippocampus of neonatal rodents in vitro and in vivo, respectively. Because of certain similarities in their electrographic traits, GDPs and eSPWs were originally considered as homologous patterns. Here, we compared electrographic features and current density profiles of field GDPs (fGDPs) and eSPWs using extracellular multisite silicon probe recordings from neonatal rat CA1 hippocampus. We found that fGDPs in hippocampal slices were much less in amplitude than eSPWs, and were characterized by electronegativity and current sinks in CA1 pyramidal cell layer and stratum radiatum, and positive waves/sources in stratum lacunosum-moleculare. eSPWs in vivo showed a remarkably different depth profile, with positivity and current source in the CA1 pyramidal cell layer, and negativity/sinks in stratum radiatum and stratum lacunosum-moleculare. Current sinks of CA3-evoked responses corresponded to sinks of fGDPs and eSPWs in the stratum radiatum. However, current sinks of entorhinal inputs - evoked responses in stratum lacunosum-moleculare, which were characteristic of eSPWs, were absent in fGDPs. In addition, fGDPs more strongly modulated neuronal firing in CA1 compared to eSPWs. Thus, we show important differences in the electrographic properties of GDPs and eSPWs that challenge the homology of these two activity patterns.
Collapse
Affiliation(s)
- Elvira Juzekaeva
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420015, Russia
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420015, Russia
| | - Marat Mukhtarov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420015, Russia
| | - Dmitrii Shipkov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420015, Russia
| | - Guzel Valeeva
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420015, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420015, Russia; Aix-Marseille University, INMED, INSERM, Marseille, 13273, France.
| |
Collapse
|
2
|
Li X, Qu Z, Li Z, Su R, Yin B, Yin L. Effect of GABAa-receptors on neuronal discharge and ion activity in focal seizures. Cereb Cortex 2024; 34:bhae110. [PMID: 38518225 DOI: 10.1093/cercor/bhae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Focal seizures are a type of epileptic event that has plagued the medical community for a long time, and the existing drug treatment is mainly based on the modulation of ${GABA}_a$-receptors to affect GABAergic signaling to achieve the therapeutic purpose. The majority of research currently focuses on the impact of ${GABA}_a$-receptors on neuronal firing, failing to analyze the molecular and ionic mechanisms involved. Specifically, the research on deeper-level mechanisms on how ${GABA}_a$-receptors affect neuronal firing by altering ion activity has not been addressed. This research aimed to study the effects of different ${GABA}_a$-receptor structures on ion activity in focal seizures model by adjusting parameters of the ${GABA}_a$-receptors: the rise time constant (${tau}_1$) and decay time constant (${tau}_2$). The research indicates that as the values of ${tau}_1$ and ${tau}_2$ of the ${GABA}_a$-receptor change, the ion concentration will vary based on the change of the ${GABA}_a$-receptor potential. To a certain extent, the duration of epileptic activity will also be affected to a certain extent. In conclusion, the alteration of ${GABA}_a$-receptor structure will affect the inhibitory effect of interneurons on pyramidal neurons, and different parameters of the ${GABA}_a$-receptor will directly impact the therapeutic effect.
Collapse
Affiliation(s)
- Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P.R. China
| | - Zhongjie Qu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P.R. China
| | - Zipeng Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P.R. China
| | - Rui Su
- School of Medical Imaging, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Bowen Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Liyong Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
3
|
Burman RJ, Brodersen PJN, Raimondo JV, Sen A, Akerman CJ. Active cortical networks promote shunting fast synaptic inhibition in vivo. Neuron 2023; 111:3531-3540.e6. [PMID: 37659408 PMCID: PMC11913778 DOI: 10.1016/j.neuron.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023]
Abstract
Fast synaptic inhibition determines neuronal response properties in the mammalian brain and is mediated by chloride-permeable ionotropic GABA-A receptors (GABAARs). Despite their fundamental role, it is still not known how GABAARs signal in the intact brain. Here, we use in vivo gramicidin recordings to investigate synaptic GABAAR signaling in mouse cortical pyramidal neurons under conditions that preserve native transmembrane chloride gradients. In anesthetized cortex, synaptic GABAARs exert classic hyperpolarizing effects. In contrast, GABAAR-mediated synaptic signaling in awake cortex is found to be predominantly shunting. This is due to more depolarized GABAAR equilibrium potentials (EGABAAR), which are shown to result from the high levels of synaptic activity that characterize awake cortical networks. Synaptic EGABAAR observed in awake cortex facilitates the desynchronizing effects of inhibitory inputs upon local networks, which increases the flexibility of spiking responses to external inputs. Our findings therefore suggest that GABAAR signaling adapts to optimize cortical functions.
Collapse
Affiliation(s)
- Richard J Burman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK; Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7935, South Africa
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
4
|
Márquez LA, Meneses A, Galván EJ. 5-HT 6 Receptors Control GABAergic Transmission and CA1 Pyramidal Cell Output of Dorsal Hippocampus. Neuroscience 2023; 532:65-78. [PMID: 37776946 DOI: 10.1016/j.neuroscience.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
The blockade of 5-HT6 receptors represents an experimental approach that might ameliorate the memory deficits associated with brain disorders, including Alzheimer's disease and schizophrenia. However, the synaptic mechanism by which 5-HT6 receptors control the GABAergic and glutamatergic synaptic transmission is barely understood. In this study, we demonstrate that pharmacological manipulation of 5-HT6 receptors with the specific agonist EMD 386088 (7.4 nM) or the antagonist SB-399885 (300 nM) modulates the field inhibitory postsynaptic potentials of the dorsal hippocampus and controls the strength of the population spike of pyramidal cells. Likewise, pharmacological modulation of 5-HT6 controls the magnitude of paired-pulse inhibition, a phenomenon mediated by GABAergic interneurons acting via GABAA receptors of pyramidal cells. The effects of pharmacological manipulation of the 5-HT6 receptor were limited to GABAergic transmission and did not affect the strength of field excitatory postsynaptic potentials mediated by the Schaffer collaterals axons. Lastly, in a modified version of the Pavlovian autoshaping task that requires the activation of the hippocampal formation, we demonstrated that the anti-amnesic effect induced by the blockade of the 5-HT6 receptor is prevented when the GAT1 transporter is blocked, suggesting that modulation of GABAergic transmission is required for the anti-amnesic properties of 5-HT6 receptor antagonists.
Collapse
Affiliation(s)
- Luis A Márquez
- Departamento de Farmacobiología, Cinvestav Sur, Ciudad de México, Mexico
| | - Alfredo Meneses
- Departamento de Farmacobiología, Cinvestav Sur, Ciudad de México, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sur, Ciudad de México, Mexico; Centro de Investigaciones sobre el Envejecimiento, CIE, Ciudad de México, Méexico.
| |
Collapse
|
5
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
6
|
Weiss SA, Sheybani L, Seenarine N, Fried I, Wu C, Sharan A, Engel J, Sperling MR, Nir Y, Staba RJ. Delta oscillation coupled propagating fast ripples precede epileptiform discharges in patients with focal epilepsy. Neurobiol Dis 2022; 175:105928. [DOI: 10.1016/j.nbd.2022.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
|
7
|
Avoli M, de Curtis M, Lévesque M, Librizzi L, Uva L, Wang S. GABAA signaling, focal epileptiform synchronization and epileptogenesis. Front Neural Circuits 2022; 16:984802. [PMID: 36275847 PMCID: PMC9581276 DOI: 10.3389/fncir.2022.984802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Under physiological conditions, neuronal network synchronization leads to different oscillatory EEG patterns that are associated with specific behavioral and cognitive functions. Excessive synchronization can, however, lead to focal or generalized epileptiform activities. It is indeed well established that in both epileptic patients and animal models, focal epileptiform EEG patterns are characterized by interictal and ictal (seizure) discharges. Over the last three decades, employing in vitro and in vivo recording techniques, several experimental studies have firmly identified a paradoxical role of GABAA signaling in generating interictal discharges, and in initiating—and perhaps sustaining—focal seizures. Here, we will review these experiments and we will extend our appraisal to evidence suggesting that GABAA signaling may also contribute to epileptogenesis, i.e., the development of plastic changes in brain excitability that leads to the chronic epileptic condition. Overall, we anticipate that this information should provide the rationale for developing new specific pharmacological treatments for patients presenting with focal epileptic disorders such as mesial temporal lobe epilepsy (MTLE).
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
- *Correspondence: Massimo Avoli,
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Uva
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Siyan Wang
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
| |
Collapse
|
8
|
Lévesque M, Wang S, Etter G, Williams S, Avoli M. Bilateral optogenetic activation of inhibitory cells favors ictogenesis. Neurobiol Dis 2022; 171:105794. [PMID: 35718264 DOI: 10.1016/j.nbd.2022.105794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal refractory epilepsy and is characterized by recurring seizures that are often refractory to medication. Since parvalbumin-positive (PV) interneurons were recently shown to play significant roles in ictogenesis, we established here how bilateral optogenetic stimulation of these interneurons in the hippocampus CA3 regions modulates seizures, interictal spikes and high-frequency oscillations (HFOs; ripples: 80-200 Hz, fast ripples: 250-500 Hz) in the pilocarpine model of MTLE. Bilateral optogenetic stimulation of CA3 PV-positive interneurons at 8 Hz (lasting 30 s, every 2 min) was implemented in PV-ChR2 mice for 8 consecutive days starting on day 7 (n = 8) or on day 13 (n = 6) after pilocarpine-induced status epilepticus (SE). Seizure occurrence was higher in both day 7 and day 13 groups of PV-ChR2 mice during periods of optogenetic stimulation ("ON"), compared to when stimulation was not performed ("OFF") (day 7 group = p < 0.01, day 13 group = p < 0.01). In the PV-ChR2 day 13 group, rates of seizures (p < 0.05), of interictal spikes associated with fast ripples (p < 0.01), and of isolated fast ripples (p < 0.01) during optogenetic stimulations were significantly higher than in the PV-ChR2 day 7 group. Our findings reveal that bilateral activation of PV-interneurons in the hippocampus (leading to a presumptive increase in GABA signaling) favors ictogenesis. These effects may also mirror the neuropathological changes that occur over time after SE in this animal model.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Guillaume Etter
- Douglas Mental Health University Institute, McGill University, 6875 Blvd Lasalle, Montréal, H4H 1R3, QC, Canada
| | - Sylvain Williams
- Douglas Mental Health University Institute, McGill University, 6875 Blvd Lasalle, Montréal, H4H 1R3, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada.
| |
Collapse
|
9
|
Lodovichi C, Ratto GM, Trevelyan AJ, Arosio D. Genetically encoded sensors for Chloride concentration. J Neurosci Methods 2022; 368:109455. [PMID: 34952088 DOI: 10.1016/j.jneumeth.2021.109455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Insights into chloride regulation in neurons have come slowly, but they are likely to be critical for our understanding of how the brain works. The reason is that the intracellular Cl- level ([Cl-]i) is the key determinant of synaptic inhibitory function, and this in turn dictates all manner of neuronal network function. The true impact on the network will only be apparent, however, if Cl- is measured at many locations at once (multiple neurons, and also across the subcellular compartments of single neurons), which realistically, can only be achieved using imaging. The development of genetically-encoded anion biosensors (GABs) brings the additional benefit that Cl- imaging may be done in identified cell-classes and hopefully in subcellular compartments. Here, we describe the historical background and motivation behind the development of these sensors and how they have been used so far. There are, however, still major limitations for their use, the most important being the fact that all GABs are sensitive to both pH and Cl-. Disambiguating the two signals has proved a major challenge, but there are potential solutions; notable among these is ClopHensor, which has now been developed for in vivo measurements of both ion species. We also speculate on how these biosensors may yet be improved, and how this could advance our understanding of Cl- regulation and its impact on brain function.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute-CNR, Depart. Biomedical Sciences, Unipd, Padova, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| | - Gian Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniele Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biofisica, 38123 Trento, Italy.
| |
Collapse
|
10
|
Dudok B, Szoboszlay M, Paul A, Klein PM, Liao Z, Hwaun E, Szabo GG, Geiller T, Vancura B, Wang BS, McKenzie S, Homidan J, Klaver LMF, English DF, Huang ZJ, Buzsáki G, Losonczy A, Soltesz I. Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior. Neuron 2021; 109:3838-3850.e8. [PMID: 34648750 PMCID: PMC8639676 DOI: 10.1016/j.neuron.2021.09.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
The axon initial segment of hippocampal pyramidal cells is a key subcellular compartment for action potential generation, under GABAergic control by the "chandelier" or axo-axonic cells (AACs). Although AACs are the only cellular source of GABA targeting the initial segment, their in vivo activity patterns and influence over pyramidal cell dynamics are not well understood. We achieved cell-type-specific genetic access to AACs in mice and show that AACs in the hippocampal area CA1 are synchronously activated by episodes of locomotion or whisking during rest. Bidirectional intervention experiments in head-restrained mice performing a random foraging task revealed that AACs inhibit CA1 pyramidal cells, indicating that the effect of GABA on the initial segments in the hippocampus is inhibitory in vivo. Finally, optogenetic inhibition of AACs at specific track locations induced remapping of pyramidal cell place fields. These results demonstrate brain-state-specific dynamics of a critical inhibitory controller of cortical circuits.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA; NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel F English
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - György Buzsáki
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|