1
|
Tsukahara T, Kethireddy S, Bonefas KM, Chen A, Sutton BLM, Bandow K, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 methyltransferases defines distinct facets of homeostatic plasticity. Cell Rep 2025; 44:115746. [PMID: 40402740 DOI: 10.1016/j.celrep.2025.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2024] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating non-redundant yet poorly understood roles of this enzyme family in neurodevelopment. However, the specific cellular role of KMT2 enzymes in the brain remains poorly understood, owing to the clear non-catalytic functions of each family member and the potential for functional redundancy in installing H3K4 methylation (H3K4me). Here, we identify an instructive role for H3K4me in controlling synapse function and a division of labor among the six KMT2 enzymes in regulating homeostatic synaptic scaling. Using RNAi screening, conditional genetics, small-molecule inhibitors, and transcriptional profiling, our data reveal that individual KMT2 enzymes have unique roles and operate in specific phases to control distinct facets of homeostatic scaling. Together, our results suggest that the expansion of this enzyme family in mammals is key to coupling fine-tuned gene expression changes to adaptive modifications of synaptic function.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Meikai University School of Dentistry, Department of Oral Biology and Tissue Engineering, Division of Biochemistry, Sakado, Saitama 350-0283, Japan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan L M Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenjiro Bandow
- Meikai University School of Dentistry, Department of Oral Biology and Tissue Engineering, Division of Biochemistry, Sakado, Saitama 350-0283, Japan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael A Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zorumski CF, Covey DF, Izumi Y, Evers AS, Maguire JL, Mennerick SJ. New directions in neurosteroid therapeutics in neuropsychiatry. Neurosci Biobehav Rev 2025; 172:106119. [PMID: 40127877 DOI: 10.1016/j.neubiorev.2025.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
In recent years three neuroactive steroids (NAS), brexanolone (allopregnanolone, AlloP), ganaxolone and zuranolone, have been approved for the treatment of neuropsychiatric illnesses including postpartum depression and seizures in a neurodevelopmental syndrome. The approved agents are pregnane steroids and strong positive allosteric modulators (PAMs) of gamma-aminobutyric acid type A receptors (GABAARs). Broad effects on GABAARs play important roles in therapeutic benefits. However, these NAS also have actions on non-GABAR targets that could be important for clinical outcomes. Thus, understanding the broader effects of NAS is potentially important for expanding the therapeutic landscape of these important modulators. The approved NAS as well as other structurally distinct NAS and oxysterols have effects on non-GABAAR receptors and ion channels, along with intracellular actions that could have therapeutic importance, including modulation of cellular stress mechanisms, neuroinflammation, mitochondrial function and autophagy, among others. In this review, we explore GABAergic and other cellular effects of pregnane steroids including novel molecules that have potential therapeutic importance. This work discusses the complex chemical nature of NAS and what is being learned at cellular, molecular, synaptic and brain network levels about key sites of action including GABAARs and other targets.
Collapse
Affiliation(s)
- Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Yang Y, Wong MH, Huang X, Chiu DN, Liu YZ, Prabakaran V, Imran A, Panzeri E, Chen Y, Huguet P, Kunisky A, Ho J, Dong Y, Carter BC, Xu W, Schlüter OM. Distinct transmission sites within a synapse for strengthening and homeostasis. SCIENCE ADVANCES 2025; 11:eads5750. [PMID: 40215296 PMCID: PMC11988405 DOI: 10.1126/sciadv.ads5750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
At synapses, miniature synaptic transmission forms the basic unit of evoked transmission, thought to use one canonical transmission site. Two general types of synaptic plasticity, associative plasticity to change synaptic weights and homeostatic plasticity to maintain an excitatory balance, are so far thought to be expressed at individual canonical sites in principal neurons of the cortex. Here, we report two separate types of transmission sites, termed silenceable and idle-able, each participating distinctly in evoked or miniature transmission in the mouse visual cortex. Both sites operated with a postsynaptic binary mode with different unitary sizes and mechanisms. During postnatal development, silenceable sites were unsilenced by associative plasticity with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-receptor incorporation, increasing evoked transmission. Concurrently, miniature transmission remained constant, where AMPA-receptor state changes balanced unsilencing with increased idling at idle-able sites. Thus, individual cortical spine synapses mediated two parallel, interacting types of transmission, which predominantly contributed to either associative or homeostatic plasticity.
Collapse
Affiliation(s)
- Yue Yang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Man Ho Wong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Xiaojie Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Delia N. Chiu
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu-Zhang Liu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu Prabakaran
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amna Imran
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elisa Panzeri
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Yixuan Chen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Paloma Huguet
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Kunisky
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Ho
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett C. Carter
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Weifeng Xu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oliver M. Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Zhang S, Wang X, Liu S, Hu C, Meng Y. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice. Brain Behav Immun 2025; 123:193-210. [PMID: 39277023 DOI: 10.1016/j.bbi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuqing Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory for Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chingyuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
5
|
Michetti C, Benfenati F. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines. Am J Physiol Cell Physiol 2024; 327:C1384-C1399. [PMID: 39401424 DOI: 10.1152/ajpcell.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
6
|
Shohayeb B, Sempert K, Wallis TP, Meunier FA, Durisic N, O'Brien EA, Flores C, Cooper HM. BDNF-dependent nano-organization of Neogenin and the WAVE regulatory complex promotes actin remodeling in dendritic spines. iScience 2024; 27:110621. [PMID: 39228790 PMCID: PMC11369513 DOI: 10.1016/j.isci.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function. Using super-resolution microscopy, we reveal that Neogenin is highly organized on the spine membrane at the nanoscale level. We show that Neogenin binding to the WRC promotes co-clustering into nanodomains in response to brain-derived neurotrophic factor (BDNF), indicating that nanoclustering occurs in response to synaptic stimulation. Disruption of Neogenin/WRC binding not only prevents BDNF-mediated actin remodeling but also inhibits BDNF-induced calcium signaling. We conclude that the assembly of Neogenin/WRC nanodomains is a prerequisite for BDNF-mediated structural and synaptic plasticity.
Collapse
Affiliation(s)
- Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan P. Wallis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frédéric A. Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A. O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Douglas Mental Health University Institute, Montréal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Canada
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Bagatelas ED, Kavalali ET. Chronic modulation of cAMP signaling elicits synaptic scaling irrespective of activity. iScience 2024; 27:110176. [PMID: 38989459 PMCID: PMC11233962 DOI: 10.1016/j.isci.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Homeostatic plasticity mechanisms act in a negative feedback manner to stabilize neuronal firing around a set point. Classically, homeostatic synaptic plasticity is elicited via rather drastic manipulation of activity in a neuronal population. Here, we employed a chemogenetic approach to regulate activity via eliciting G protein-coupled receptor (GPCR) signaling in hippocampal neurons to trigger homeostatic synaptic plasticity. We demonstrate that chronic activation of hM4D(Gi) signaling induces mild and transient activity suppression, yet still triggers synaptic upscaling akin to tetrodotoxin (TTX)-induced complete activity suppression. Therefore, this homeostatic regulation was irrespective of Gi-signaling regulation of activity, but it was mimicked or occluded by direct manipulation of cyclic AMP (cAMP) signaling in a manner that intersected with the retinoic acid receptor alpha (RARα) signaling pathway. Our data suggest chemogenetic tools can uniquely be used to probe cell-autonomous mechanisms of synaptic scaling and operate via direct modulation of second messenger signaling bypassing activity regulation.
Collapse
Affiliation(s)
- Elena D. Bagatelas
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37209, USA
| | - Ege T. Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
8
|
Wang CS, McCarthy CI, Guzikowski NJ, Kavalali ET, Monteggia LM. Brain-derived neurotrophic factor scales presynaptic calcium transients to modulate excitatory neurotransmission. Proc Natl Acad Sci U S A 2024; 121:e2303664121. [PMID: 38621124 PMCID: PMC11047077 DOI: 10.1073/pnas.2303664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.
Collapse
Affiliation(s)
- Camille S. Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Clara I. McCarthy
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Natalie J. Guzikowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Lisa M. Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| |
Collapse
|
9
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Ji Y, Ni X, Zheng K, Jiang Y, Ren C, Zhu H, Xiao M, Wang T. Synergistic effects of aerobic exercise and transcranial direct current stimulation on executive function and biomarkers in healthy young adults. Brain Res Bull 2023; 202:110747. [PMID: 37611879 DOI: 10.1016/j.brainresbull.2023.110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE This research explored the combined effects of transcranial direct current stimulation (tDCS) and aerobic exercise (AE) on executive function and specific serum biomarkers in healthy adults. METHODS Sixty healthy young adults were randomly assigned into tDCS+AE, tDCS only, or AE only groups. Interventions were carried out for 20 days. Executive functions were evaluated using tasks such as the 2,3-back task, the spatial working memory task, the Stroop test, T test, and hexagonal obstacle jump task. Serum biomarkers, including brain-derived neurotrophic factor (BDNF), malondialdehyde (MDA), superoxide dismutase (SOD), glutamate, glutathione peroxidase 4 (GPX4) and iron ion, were analyzed pre- and post-intervention. RESULTS The tDCS+AE group showed superior enhancements in executive function, evidenced by improved accuracy rates in 2,3-back tasks, better performance in the staircase task, and reduced reaction times in the incongruent reaction time of the Stroop task compared to other groups. Importantly, we found substantial changes in serum biomarkers: increased levels of BDNF and SOD, and decreased levels of MDA and glutamate in the tDCS+AE group. These changes were significantly different when compared with the tDCS and AE only groups. Notably, these alterations in serum biomarkers were correlated with improvements in executive function tasks, thus offering a potential physiological basis for the cognitive improvements witnessed. CONCLUSION The combined tDCS and AE intervention effectively improved executive function in healthy young adults, with the improvements linked to changes in key serum biomarkers. The results emphasize the potential of combined tDCS and AE interventions in engaging multiple physiological pathways to enhance executive function.
Collapse
Affiliation(s)
- Yingying Ji
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuemei Ni
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Kai Zheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Jiang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Caili Ren
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Haohao Zhu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Tsukahara T, Kethireddy S, Bonefas K, Chen A, Sutton BLM, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 Methyltransferases Defines Distinct Facets of Homeostatic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558734. [PMID: 37790395 PMCID: PMC10542164 DOI: 10.1101/2023.09.20.558734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity. The perturbation of H3K4me by the H3.3K4M mutant blocks synaptic scaling, a form of homeostatic plasticity that buffers the impact of prolonged reductions or increases in network activity. Unexpectedly, we found that the six individual enzymes are all necessary for synaptic scaling and that the roles of KMT2 enzymes segregate into evolutionary-defined subfamilies: KMT2A and KMT2B (fly-Trx homologs) for synaptic downscaling, KMT2C and KMT2D (Trr homologs) for upscaling, and KMT2F and KMT2G (dSet homologs) for both directions. Selective blocking of KMT2A enzymatic activity by a small molecule and targeted disruption of the enzymatic domain both blocked the synaptic downscaling and interfered with the activity-dependent transcriptional program. Furthermore, our study revealed specific phases of synaptic downscaling, i.e., induction and maintenance, in which KMT2A and KMT2B play distinct roles. These results suggest that mammalian brains have co-opted intricate H3K4me installation to achieve stability of the expanding neuronal circuits.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Katherine Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Brendan LM Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Kavalali ET, Monteggia LM. Rapid homeostatic plasticity and neuropsychiatric therapeutics. Neuropsychopharmacology 2023; 48:54-60. [PMID: 35995973 PMCID: PMC9700859 DOI: 10.1038/s41386-022-01411-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 11/08/2022]
Abstract
Neuronal and synaptic plasticity are widely used terms in the field of psychiatry. However, cellular neurophysiologists have identified two broad classes of plasticity. Hebbian forms of plasticity alter synaptic strength in a synapse specific manner in the same direction of the initial conditioning stimulation. In contrast, homeostatic plasticities act globally over longer time frames in a negative feedback manner to counter network level changes in activity or synaptic strength. Recent evidence suggests that homeostatic plasticity mechanisms can be rapidly engaged, particularly by fast-acting antidepressants such as ketamine to trigger behavioral effects. There is increasing evidence that several neuropsychoactive compounds either directly elicit changes in synaptic activity or indirectly tap into downstream signaling pathways to trigger homeostatic plasticity and subsequent behavioral effects. In this review, we discuss this recent work in the context of a wider paradigm where homeostatic synaptic plasticity mechanisms may provide novel targets for neuropsychiatric treatment advance.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
13
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
14
|
Guzikowski NJ, Kavalali ET. Nano-organization of spontaneous GABAergic transmission directs its autonomous function in neuronal signaling. Cell Rep 2022; 40:111172. [PMID: 35947950 PMCID: PMC9392417 DOI: 10.1016/j.celrep.2022.111172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Earlier studies delineated the precise arrangement of proteins that drive neurotransmitter release and postsynaptic signaling at excitatory synapses. However, spatial organization of neurotransmission at inhibitory synapses remains unclear. Here, we took advantage of the molecularly specific interaction of antimalarial artemisinins and the inhibitory synapse scaffold protein, gephyrin, to probe the functional organization of gamma-aminobutyric acid A receptor (GABAAR)-mediated neurotransmission in central synapses. Short-term application of artemisinins severely contracts the size and density of gephyrin and GABAaR γ2 subunit clusters. This size contraction elicits a neuronal activity-independent increase in Bdnf expression due to a specific reduction in GABAergic spontaneous, but not evoked, neurotransmission. The same functional effect could be mimicked by disruption of microtubules that link gephyrin to the neuronal cytoskeleton. These results suggest that the GABAergic postsynaptic apparatus possesses a concentric center-surround organization, where the periphery of gephyrin clusters selectively maintains spontaneous GABAergic neurotransmission facilitating its autonomous function regulating Bdnf expression.
Collapse
Affiliation(s)
- Natalie J. Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA,Lead contact,Correspondence:
| |
Collapse
|
15
|
Horvath PM, Piazza MK, Kavalali ET, Monteggia LM. MeCP2 loss-of-function dysregulates microRNAs regionally and disrupts excitatory/inhibitory synaptic transmission balance. Hippocampus 2022; 32:610-623. [PMID: 35851733 PMCID: PMC9344394 DOI: 10.1002/hipo.23455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Rett syndrome is a leading cause of intellectual disability in females primarily caused by loss of function mutations in the transcriptional regulator MeCP2. Loss of MeCP2 leads to a host of synaptic phenotypes that are believed to underlie Rett syndrome pathophysiology. Synaptic deficits vary by brain region upon MeCP2 loss, suggesting distinct molecular alterations leading to disparate synaptic outcomes. In this study, we examined the contribution of MeCP2's newly described role in miRNA regulation to regional molecular and synaptic impairments. Two miRNAs, miR-101a and miR-203, were identified and confirmed as upregulated in MeCP2 KO mice in the hippocampus and cortex, respectively. miR-101a overexpression in hippocampal cultures led to opposing effects at excitatory and inhibitory synapses and in spontaneous and evoked neurotransmission, revealing the potential for a single miRNA to broadly regulate synapse function in the hippocampus. These results highlight the importance of regional alterations in miRNA expression and the specific impact on synaptic function with potential implications for Rett syndrome.
Collapse
Affiliation(s)
- Patricia M. Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michelle K. Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA,Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Lisa M. Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
17
|
Wang CS, Chanaday NL, Monteggia LM, Kavalali ET. Probing the segregation of evoked and spontaneous neurotransmission via photobleaching and recovery of a fluorescent glutamate sensor. eLife 2022; 11:e76008. [PMID: 35420542 PMCID: PMC9129874 DOI: 10.7554/elife.76008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses maintain both action potential-evoked and spontaneous neurotransmitter release; however, organization of these two forms of release within an individual synapse remains unclear. Here, we used photobleaching properties of iGluSnFR, a fluorescent probe that detects glutamate, to investigate the subsynaptic organization of evoked and spontaneous release in primary hippocampal cultures. In nonneuronal cells and neuronal dendrites, iGluSnFR fluorescence is intensely photobleached and recovers via diffusion of nonphotobleached probes with a time constant of ~10 s. After photobleaching, while evoked iGluSnFR events could be rapidly suppressed, their recovery required several hours. In contrast, iGluSnFR responses to spontaneous release were comparatively resilient to photobleaching, unless the complete pool of iGluSnFR was activated by glutamate perfusion. This differential effect of photobleaching on different modes of neurotransmission is consistent with a subsynaptic organization where sites of evoked glutamate release are clustered and corresponding iGluSnFR probes are diffusion restricted, while spontaneous release sites are broadly spread across a synapse with readily diffusible iGluSnFR probes.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
18
|
Chanaday NL, Kavalali ET. Role of the endoplasmic reticulum in synaptic transmission. Curr Opin Neurobiol 2022; 73:102538. [PMID: 35395547 PMCID: PMC9167765 DOI: 10.1016/j.conb.2022.102538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Neurons possess a complex morphology spanning long distances and a large number of subcellular specializations such as presynaptic terminals and dendritic spines. This structural complexity is essential for maintenance of synaptic junctions and associated electrical as well as biochemical signaling events. Given the structural and functional complexity of neurons, neuronal endoplasmic reticulum is emerging as a key regulator of neuronal function, in particular synaptic signaling. Neuronal endoplasmic reticulum mediates calcium signaling, calcium and lipid homeostasis, vesicular trafficking, and proteostasis events that underlie autonomous functions of numerous subcellular compartments. However, based on its geometric complexity spanning the whole neuron, endoplasmic reticulum also integrates the activity of these autonomous compartments across the neuron and coordinates their interactions with the soma. In this article, we review recent work regarding neuronal endoplasmic reticulum function and its relationship to neurotransmission and plasticity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
19
|
Janach GMS, Böhm M, Döhne N, Kim HR, Rosário M, Strauss U. Interferon-γ enhances neocortical synaptic inhibition by promoting membrane association and phosphorylation of GABA A receptors in a protein kinase C-dependent manner. Brain Behav Immun 2022; 101:153-164. [PMID: 34998939 DOI: 10.1016/j.bbi.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Interferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions. To close the gap between basic research, behavioral implications and clinical applicability, knowledge of the mechanism behind IFN-γ related changes in brain function is crucial. Here, we studied the underlying mechanism of acutely augmented neocortical inhibition by IFN-γ (1.000 IU ml-1) in layer 5 pyramidal neurons of male Wistar rats. We demonstrate postsynaptic mediation of IFN-γ augmented inhibition by pressure application of GABA and analysis of paired pulse ratios. IFN-γ increases membrane presence of GABAAR γ2, as quantified by cell surface biotinylation and functional synaptic GABAAR number, as determined by peak-scaled non-stationary noise analysis. The increase in functional receptor number was comparable to the increase in underlying miniature inhibitory postsynaptic current (mIPSC) amplitudes. Blockage of putative intracellular mediators, namely phosphoinositide 3-kinase and protein kinase C (PKC) by Wortmannin and Calphostin C, respectively, revealed PKC-dependency of the pro-inhibitory IFN-γ effect. This was corroborated by increased serine phosphorylation of P-serine PKC motifs on GABAAR γ2 upon IFN-γ application. GABAAR single channel conductance, intracellular chloride levels and GABAAR driving force are unlikely to contribute to the effect, as shown by single channel recordings and chloride imaging. The effect of IFN-γ on mIPSC amplitudes was similar in female and male rats, suggesting a gender-independent mechanism of action. Collectively, these results indicate a novel mechanism for the regulation of inhibition by IFN-γ, which could impact on neocortical function and therewith behavior.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maximilian Böhm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ha-Rang Kim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
20
|
Guzikowski NJ, Kavalali ET. Nano-Organization at the Synapse: Segregation of Distinct Forms of Neurotransmission. Front Synaptic Neurosci 2022; 13:796498. [PMID: 35002671 PMCID: PMC8727373 DOI: 10.3389/fnsyn.2021.796498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Synapses maintain synchronous, asynchronous, and spontaneous modes of neurotransmission through distinct molecular and biochemical pathways. Traditionally a single synapse was assumed to have a homogeneous organization of molecular components both at the active zone and post-synaptically. However, recent advancements in experimental tools and the further elucidation of the physiological significance of distinct forms of release have challenged this notion. In comparison to rapid evoked release, the physiological significance of both spontaneous and asynchronous neurotransmission has only recently been considered in parallel with synaptic structural organization. Active zone nanostructure aligns with postsynaptic nanostructure creating a precise trans-synaptic alignment of release sites and receptors shaping synaptic efficacy, determining neurotransmission reliability, and tuning plasticity. This review will discuss how studies delineating synaptic nanostructure create a picture of a molecularly heterogeneous active zone tuned to distinct forms of release that may dictate diverse synaptic functional outputs.
Collapse
Affiliation(s)
- Natalie J Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
21
|
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022; 185:62-76. [PMID: 34963057 PMCID: PMC8741740 DOI: 10.1016/j.cell.2021.12.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|